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SUMMARY

We consider statistical methods for benchmarking clinical centers based on a dichotomous outcome indica-
tor. Borrowing ideas from the causal inference literature, we aim to reveal how the entire study population
would have fared under the current care level of each center. To this end, we evaluate direct standardiza-
tion based on fixed versus random center effects outcome models that incorporate patient-specific baseline
covariates to adjust for differential case-mix. We explore fixed effects (FE) regression with Firth correction
and normal mixed effects (ME) regression to maintain convergence in the presence of very small centers.
Moreover, we study doubly robust FE regression to avoid outcome model extrapolation. Simulation studies
show that shrinkage following standard ME modeling can result in substantial power loss relative to the
considered alternatives, especially for small centers. Results are consistent with findings in the analysis of
30-day mortality risk following acute stroke across 90 centers in the Swedish Stroke Register.
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1. INTRODUCTION

In recent years, the interest in profiling hospital performance has grown among different stakeholders
including government and health insurers, hospitals and clinicians, and last but not least the patients.
Health-care quality thus deserves careful statistical analysis yielding relevant and relatively simple mea-
sures with clear interpretation for hospital evaluation.
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In this article, we focus on statistical methods to estimate center performance on a binary quality indica-
tor such as 30-day mortality. Causal inference methods will be adopted to adjust for measured confound-
ing by differential patient mix (e.g. initial disease status, age). This is important (DeLong and others,
1997; Austin and others, 2003) as centers treating more severely ill patients tend to have higher mor-
tality irrespective of treatment quality. Most literature uses indirect standardization to adjust for patient
mix (Spiegelhalter, 2005; Shahian and Normand, 2008). This involves contrasting the observed aver-
age quality outcome in each center with what it would have been for their patients if “the average
level of care over all centers” applied. This is particularly helpful for policy makers when decid-
ing where to best spend resources for quality improvement. However, when centers are expected to
provide good health care on the overall patient population, directly standardized outcomes may be
of greater interest. This potential full population risk in each center will be our focus. It makes us
consider how the entire study population would have fared under the current level of care of each
center.

Random effects models which incorporate patient-specific baseline covariates are routinely applied
for indirect standardization (Ohlssen and others, 2007), and can also be used for direct standardization.
The main advantage of these models is that they severely reduce the effective model dimension, thereby
avoiding problems of overfitting. However, two main shortcomings deserve more in-depth study: shrink-
age and model extrapolation. First, estimates for small centers may shrink severely toward the population
mean, resulting in bias and power loss for these centers (Normand and others, 1997). This is a major con-
cern because the quality of care in small centers is sometimes questioned, in view of their potentially more
limited surgical experience or medical infrastructure (Saposnik and others, 2007). Fixed effects (FE) mod-
els are no viable substitute in settings encountering many centers with often small numbers of registered
patients, where this method suffers from bias and convergence problems (Neyman and Scott, 1948). In this
article, we will investigate whether this limitation can be overcome via the Firth correction for fixed center
effects models (Firth, 1993). Secondly, when case-mix differs severely between centers, results from the
default fixed and random effects models can become very sensitive to model misspecification which is
hard to detect (Rubin, 1997). We aim to overcome this using doubly robust methods (Robins and others,
2007) that build on a fixed center effects model (with Firth correction) but utilize inverse weighting by the
so-called propensity score (PS) (Shahian and Normand, 2008), which is the probability of being treated in
the observed center based on patient characteristics.

These statistical methods will be compared in terms of their support for correct detection of low- and
more importantly high-risk centers. For this purpose, we will adapt the decision criterion suggested by
Normand and others (1997) to the framework of direct standardization. Specifically, we will seek solid
statistical evidence of a clinically relevant difference between the potential full population risk from a
given center and the observed population risk.

Comparisons are made in two case studies: a simulation study on quality insurance for rectal can-
cer treatment in Belgium and an analysis of quality of care data from the Swedish Stroke Register
(Asplund and others, 2011). They reflect markedly different settings with chronic versus acute illness,
with major versus more limited differences in case-mix, with small versus larger center sizes, and with a
limited versus rich set of patient covariates.

2. PROFILING CENTER PERFORMANCE: FRAMEWORK

Throughout the paper, C is a random variable indicating in which center the patient was actually treated
(C = 1, . . . ,m) and L denotes the vector of patient-specific baseline characteristics such as gender and
initial disease status. The methods below focus on 30-day mortality Y , but can easily be extended to a
continuous or categorical outcome.
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2.1 Direct versus indirect standardization

Direct standardization aims to infer the potential full population risk for each center c: the risk that would
be realized if all patients under study were to experience the care level of that given center c, irrespective of
where they were actually treated. We denote this by E{Y (c)}, where Y (c) indicates the potential outcome
for a given patient if treated at the care level of center c. A main feature of direct standardization is that the
patient mix used for comparison is a common set of subjects. As such, center comparisons are based on
their current performance in the extended patient population, where the extent of extrapolation from each
center’s own patient population depends on how case-mix differs between centers. This approach may thus
evaluate a center’s performance based on patients it is not likely to treat.

In contrast, indirect standardization focuses on what a center achieves for its own patient mix. For
instance, the frequently used standardized mortality ratio (SMR) takes the ratio of the center’s observed
risk and the expected risk if these patients would experience the average care level across all centers where
center performance levels were uniformly distributed, i.e.

SMR = E{E(Y |L,C = c)|C = c}
m−1

∑m
c∗=1 E{E(Y |L,C = c∗)|C = c} = E{Y (c)|C = c}

m−1
∑m

c∗=1 E{Y (c∗)|C = c} (2.1)

(DeLong and others, 1997; Shahian and Normand, 2008). When a difference is taken instead of a ratio, the
name “excess risk” is used (Goetghebeur and others, 2011). Indirect standardization thus aims to answer
the question: “How would the risk in a given center change if its patients were to experience the average
risk across all centers?”. Such contrast with the average risk across all centers can be limiting when this
reference deviates from what is ideally targeted.

Direct and indirect standardization extrapolate observations to a general population or a general care
level, respectively. This may result in different comparisons, as illustrated in Table 1 where centers 1
and 2 have the same patient-specific mortality risks, but differ in patient mix. Following indirect stan-
dardization, these centers are classified as having different performance because their patient mix differs.
Moreover, results depend on whether indirect standardization is based on SMRs or excess risks, because
small absolute differences can result in large relative differences and vice versa. Therefore, when indirectly
standardized outcomes are of interest, we would recommend excess risks emphasizing the possibly large
extrapolation of center performance. The directly standardized risks on the other hand detect equal qual-
ity of care in centers 1 and 2, because of their equal patient-specific mortality risks. They also allow for
direct comparison with the overall risk of 7.02%, but may involve serious extrapolation when the patient
population of that center differs substantially from the overall population.

Table 1. Artificial example comparing center performance based on indirect
and direct standardization

Mortality risk (no. patients) Indirect standardization Direct standardization

L = low L = high SMR Excess risk

Center 1 1% (900) 10% (100) 0.8382 −0.0037 0.0670
Center 2 1% (100) 10% (900) 0.9349 −0.0063 0.0670
Center 3 2% (100) 12% (900) 1.1301 0.0127 0.0833

For the three centers patient-specific mortality risks and patient mix (no. patients) are given per level of
the covariate L , indicating low or high baseline severity.
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2.2 Decision criterion for labeling centers

In Section 3, we will compare statistical methods for direct standardization in terms of correctly detecting
low- and more importantly high-risk centers. Therefore, following a proposal first introduced in a Bayesian
context (Normand and others, 1997), we will classify a center as low/high risk if the data provide sufficient
evidence that the potential risk E{Y (c)} exceeds a benchmark relative to the population average risk E(Y ).
For this purpose, we will develop estimators Ê{Y (c)} for the potential risk E{Y (c)} (see Section 3) and
then classify a center as low risk if

Ê{Y (c)} + zk × sd(Ê{Y (c)}) < (1 − λ)E(Y ), (2.2)

or as high risk if

(1 + λ)E(Y ) < Ê{Y (c)} − zk × sd(Ê{Y (c)}). (2.3)

Here, λ expresses a clinically meaningful tolerance level (e.g. 20%) indicating how much the center-
specific potential risk is allowed to depart from the current population average risk E(Y ). The latter can
be estimated by the sample average of observed risks or be replaced by a reference standard if objective
benchmarks (e.g. national guidelines) are available. In practice such envisaged reference is likely to steer
the choice of λ once E(Y ) is known or has been estimated. Further, zk is the k × 100th percentile of the
standard normal distribution, so k (e.g. 0.75) expresses the degree of statistical evidence required before
flagging a center as low/high risk.

The previous criterion has close links to the often used frequentist criterion (DeLong and others, 1997)
whereby a center c is classified as low/high risk if the estimated 95% confidence interval for its potential
full population risk excludes the population average risk E(Y ):

E(Y ) /∈ [Ê{Y (c)} ± z0.975 × sd(Ê{Y (c)})]. (2.4)

See Shahian and Normand (2008) for a related Bayesian criterion. This corresponds with (2.2) and (2.3) if
λ= 0 and k = 0.975. A key drawback of this criterion is that it disregards clinical significance. In particular,
large centers are virtually guaranteed to exclude the population average risk and thus will nearly always be
labeled statistically significant low-/high-risk centers.

Pure ranking based on the estimated potential risk is dangerous as it is oblivious to a clinical appreci-
ation of differences between centers as well as to uncertainty. Large differences in ranks may correspond
with small clinical differences and vice versa. Moreover, uncertainty around the ranking is often sub-
stantial (especially for small centers) and confidence intervals may tend to overlap for different centers
(Spiegelhalter, 2005). Although ranking based on the estimated probability of exceeding performance can
be considered (Normand and others, 1997), we believe its inherent property of masking the size of dif-
ferences in center performance demands careful interpretation involving additional information; it will
therefore not be considered in this paper.

3. REGRESSION METHODS

We will now discuss different methods to estimate the potential full population risk E{Y (c)} in each cen-
ter c = 1, . . . ,m. Let n be the total sample size. Throughout we assume that the patient-specific covari-
ates L are sufficient to adjust for confounding of the center-outcome effect, so that Y (c)⊥⊥ C |L for all c
(Hernán and Robins, 2006a). Under this assumption, we have that

E{Y (c)} = E{E(Y |L,C = c)}. (3.1)
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3.1 Normal mixed effects model

We will first focus on outcome regression models that postulate that, in each center c,

E(Y |L,C = c)= expit(L′β + ψc)= f (L, c;β,ψ), (3.2)

where ψ = (ψ1, . . . , ψm) are the center effects. For convenience, we here constrain the effects β of
patient-specific covariates on outcome to be equal across all centers, but this can in principle be checked
(size permitting) or relaxed by including interactions with center. Once estimates (β̂, ψ̂) for (β,ψ) have
been obtained, it follows from (3.1) that the potential full population risk can be estimated as follows
(Hernán and Robins, 2006a):

Ê{Y (c)} = 1

n

n∑
i=1

expit(L′
i β̂ + ψ̂c)= 1

n

n∑
i=1

f (Li , c; β̂, ψ̂). (3.3)

The evaluation of center performance is often based on Bayesian normal mixed effects (ME) models.
These augment model (3.2) with a normal random effects distribution

ψc ∼ N (μψ, σ
2
ψ), c = 1, . . . ,m, (3.4)

which assumes centers to be exchangeable in the sense that any a priori information on the relative ordering
or grouping of center effects is ignored (Ohlssen and others, 2007). Here, μψ is the common mean and
σψ is the standard deviation of the center effects ψc, which we assume to have independent hyperpriors.
Moreover, assuming that the center effects are a priori independent of the effects of patient characteristics,
the joint posterior distribution of this two-level Bayesian approach is of the form

p(β,ψ, μψ, σ
2
ψ |y,L,C)∝

n∏
i=1

p(yi |β,ψ,L,C)p(ψ |μψ, σ 2
ψ)p(β)p(μψ)p(σ

2
ψ). (3.5)

This posterior is estimated using a Markov chain Monte Carlo (MCMC) algorithm, which provides val-
ues for the model parameters (β,ψ) in each step. These are subsequently used to evaluate (3.3), thereby
enabling us to estimate the posterior distribution of E{Y (c)}.

An advantage of the Bayesian over a frequentist approach based on empirical best linear unbiased pre-
dictions (Robinson, 1991) is that, by using MCMC algorithms, one can directly obtain posterior estimates
and variances of even complicated transformations such as (3.3) without the need for large sample justifica-
tions, provided a sufficient number of MCMC iterations are run (O’Brien and Dunson, 2004). Prior infor-
mation can be incorporated in Bayesian models through an informative prior distribution. When no such
information is available, a normal distribution with large variance as non-informative prior on center level
may still be hard to justify as the center effects could follow a longer-tailed distribution such as the Student’s
t or even an asymmetric distribution. In particular, choosing a normal prior may shrink estimated center
effects toward the center population mean μψ , especially for very small centers (Normand and others,
1997). Severe shrinkage may be problematic when reporting individual feedback to the centers, because
identification of centers with deviating performance is especially important. The amount of shrinkage is
related to the choice of prior, but judging the plausibility of a normal prior is difficult because it refers to
center effects on the logit scale.
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3.2 Reducing shrinkage

3.2.1 Clustered normal ME model. The mixture model of Ohlssen and others (2007) forms a first
approach considered to reduce shrinkage. This involves assigning the m centers to a chosen number K <m
of clusters each with their own normal random effects distribution. The model for the center level effects
thus becomes

ψc ∼ N (μk, σ
2
k ) with unknown probability pk, k = 1, . . . , K .

It thus assigns each center c to cluster k with probability pk and subsequently draws a random center effect
from the normal distribution of the “cluster k population” with cluster mean μk and variance σ 2

k within the
cluster. In this process, we let each center have an a priori equal probability of belonging to each cluster
without the size or performance of the clusters being predefined. When a priori knowledge of clustered
center performance is available (e.g. when large centers are expected to have better facilities resulting in
better performance (Saposnik and others, 2007)), it can be incorporated by giving centers a larger prior
probability for specific clusters.

3.2.2 FE logistic regression model with Firth correction. Shrinkage can alternatively be reduced using
maximum likelihood estimation for the FE logistic regression model (3.2). However, because of overfit-
ting the resulting estimator (3.3) may behave erratically when there are centers with few events: besides
convergence problems, there may be substantial finite sample bias and large variance (Peduzzi and others,
1996). The ME approach of Section 3.1 accommodated this by imposing a normal distribution on the
center effects. Here, we will consider the Firth corrected FE method instead.

Firth correction (Firth, 1993) reduces the O(n−1) bias of ordinary maximum likelihood estimators to
the order O(n−2) by maximizing the penalized likelihood function

L∗(β,ψ)= L(β,ψ)|I (β,ψ)|1/2, (3.6)

instead. Here, |I (·)| denotes the determinant of the Fisher information matrix of (β,ψ) and L(·) is the
ordinary likelihood function. Since |I (β,ψ)|1/2 equals Jeffreys’ invariant prior, Firth correction is equiv-
alent to penalization of the likelihood by Jeffreys’ prior (Kosmidis and Firth, 2009), suggesting that Firth
corrected maximum likelihood estimates are also subject to shrinkage. However, Jeffreys’ prior is invari-
ant under reparameterization and has the key feature of being non-informative. The latter, coupled with its
defining bias reduction property, implies that it may result in less shrinkage compared with the use of a
normal prior. There is evidence that it may also perform better in terms of other properties such as finite-
ness of the estimator and coverage of confidence intervals (Kosmidis and Firth, 2009). We will investigate
this in our setting through simulations in Section 4. In supplementary material available at Biostatistics
online (Sections 1.1 and 1.2), we give additional detail on the Firth correction and show how to estimate
the asymptotic variance of the resulting estimate of E{Y (c)}.

3.3 Accounting for model extrapolation: doubly robust PS method

All previous methods suffer from a risk of extrapolation as they require predicting for each patient how
he/she would fare if the care level of a given center c applied. When case-mix differs across centers, espe-
cially when there are strong confounders, such extrapolation may not be justified. Even models that seem
to fit the observed data well may then be misspecified and imply serious model extrapolation, resulting
in bias and underestimated uncertainty (Rubin, 1997). This is illustrated in supplementary material avail-
able at Biostatistics online (Figure 3) where we consider two centers with strongly differential case-mix:
one center has patients older than 60 and the other does not. We find strong model extrapolation that may
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not get reflected in standard errors, so the user is left without warning (Rubin, 1997). Similar concerns
are warranted for standard indirect standardization methods as these extrapolate stratum-specific center
effects to the patients of each given center.

Inverse probability weighting via PS avoids extrapolation by not relying on outcome models. For a
given patient i, the PS are defined as the vector of probabilities to belong to each given center c on the
basis of his/her baseline characteristics Li . In practice, such PS can be estimated by fitting a multinomial
regression model:

P(Ci = c|Li )= g(Li , c; γ , δ)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

1 + ∑m
j=2 exp(L′

iδ j + γ j )
, c = 1,

exp(L′
iδc + γc)

1 + ∑m
j=2 exp(L′

iδ j + γ j )
, c 	= 1,

(3.7)

where Ci indicates the center where patient i was treated. Parameter estimators (γ̂ , δ̂) can be obtained via
maximum likelihood, so by solving the following set of estimating equations:

1

n

n∑
i=1

(
1
Li

)
{I (Ci = c)− g(Li , c; γ̂ , δ̂)} = 0, c = 2, . . . ,m. (3.8)

We can now estimate E{Y (c)} as in (3.3), but using a weighted regression to fit the FE model (3.2) with
weights equal to 1 over the PS of the observed center g(Li ,Ci ; γ̂ , δ̂). That this works can be seen because
the weighted regression of the FE model sets

1

n

n∑
i=1

⎛
⎜⎜⎜⎝

Li

I (Ci = 1)
...

I (Ci = m)

⎞
⎟⎟⎟⎠

1

g(Li ,Ci ; γ̂ , δ̂)
{Yi − f (Li ,Ci ; β̂, ψ̂)} = 0. (3.9)

This enables us to rewrite

Ê{Y (c)} = 1

n

n∑
i=1

f (Li , c; β̂, ψ̂)

= 1

n

n∑
i=1

[
f (Li , c; β̂, ψ̂)+ I (Ci = c)

g(Li , c; γ̂ , δ̂) {Yi − f (Li , c; β̂, ψ̂)}
]

(3.10)

= 1

n

n∑
i=1

[
I (Ci = c)Yi

g(Li , c; γ̂ , δ̂) +
{

1 − I (Ci = c)

g(Li , c; γ̂ , δ̂)
}

f (Li , c; β̂, ψ̂)
]
. (3.11)

These expressions show how the resulting estimator of E{Y (c)} is doubly robust, i.e. unbiased (in large
samples) if either the outcome or the PS model holds, but not necessarily both (Robins and others, 2007).
Indeed, the second term in (3.10) has population mean zero if the outcome model is correctly specified
and the second term in (3.11) for a correct PS model. Furthermore, the remaining term has mean E{Y (c)}
under those respective assumptions. This double robustness property is attractive because it allows for
misspecification of the FE model if the PS is modeled correctly. It thus, in particular, offers partial pro-
tection against false omission of interactions between center and patient characteristics. When patient mix
is drastically different between centers, the resulting lack of information gets exhibited in large standard
errors.
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Small centers can give problematically small estimated PS values, especially when its patient case-mix
is very different from that of other large centers. We therefore stabilize the PS for each center by dividing
all estimates g(Li , c; γ̂ , δ̂) by the proportion of patients at that center. This stabilization does not affect
the consistency nor the double robustness property of Ê{Y (c)}. These properties are also not affected by
applying the Firth correction when fitting the outcome model (3.2) by weighted regression, because this
is a finite-sample correction. In supplementary material available at Biostatistics online (Section 1.3), we
give details on how the asymptotic variance of Ê{Y (c)} is estimated.

4. RESULTS

4.1 Simulation study application: Belgian colorectal cancer register

The Belgian cancer register collected data on colorectal cancer diagnosis and follow-up between 2006
and 2010. This fairly young register with voluntary participation has a national coverage of about 30%.
We will consider a total of 2355 patients treated in 63 centers and examine a binary outcome qual-
ity indicator with 22% events on average. Causal inference methods on this dataset were introduced by
Goetghebeur and others (2011), with descriptive statistics showing substantial heterogeneity in case-mix.

We will compare the performance of the normal ME, clustered normal ME, Firth corrected FE, and
doubly robust PS methods (Section 3) via simulation experiments that reflect the structure of these data.
Comparisons are based on the power and type I error of center classification following the profiling tech-
nique described in Section 2.2 with λ= 20% and k = 0.75. For example, the Power to detect High is the
probability of classifying a center as having high risk, given that its “true” classification is high. The
balance between type I error and power is determined by the values of the clinical (λ) and statistical (k)
tolerance levels and the distribution of true alternatives, which are fixed here. Details on the simulation
study are given in supplementary material available at Biostatistics online (Section 2.1). Results are shown
in Table 2 and Figure 1, where it can be seen that the power to detect low-risk centers is generally smaller

Table 2. Center classification (low/high risk or accepted) based on 1000 simulations for each
regression method

Classical Clustered Firth corrected Firth corrected
normal ME normal ME FE doubly robust PS

Power (%)
To detect high 28.8 31.2 61.5 53.9
To detect low 12.3 5.4 32.0 39.9

Type I error (%)
Low as high 0.1 0.3 2.4 6.3
Accepted as high 1.2 2.0 8.6 11.8

Type I error (%)
High as low 0.1 0.1 0.9 2.9
Accepted as low 3.2 2.1 11.2 19.1

Coverage of 95% CI
For E{Y (c)} (%) 95.4 87.5 93.9 89.0

Classification
% high (22%) 7.2 8.0 16.5 17.9
% low (30%) 6.0 3.0 16.0 22.2
% correct (L-A-H) 59.6 57.7 62.4 58.1

The true percentage of low- and high-risk centers is, respectively, 30% and 22%.
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Fig. 1. Percentage of correct classification against true potential full population risk for each center and regression
method, based on the simulation study mimicking the setting of the Belgian colorectal cancer register. The vertical
gray lines indicate the clinical decision limits (1 − λ)E(Y ) and (1 + λ)E(Y ), with λ= 0.20.

than the power to detect high-risk centers. This is expected because of the lower number of events and
closeness to the boundary for low mortality risk. Because of shrinkage, the normal ME method has very
low power and appears unable to detect many of the low-/high-risk centers. Mistakenly classifying centers
as low/high mortality risk is equally rare for these methods.

Interestingly, the clustered normal ME method is not performing better. This blind clustering, i.e. irre-
spective of center characteristics, thus requires considerable computing effort with no payback at the con-
sidered sample size. While similar in terms of power, the doubly robust PS method makes more Type I
errors than the FE method because of the lower coverage of the nevertheless on average wider confidence
intervals. Although the doubly robust PS method has potential value in realistic settings with strong con-
founding because of its robustness against model misspecification, confidence intervals with better finite
sample performance are needed before routine application can be recommended. The percentage of centers
that are correctly classified is similar for all methods. For the ME methods, unlike for the other methods,
this is the result of classifying nearly all centers as “accepted” (see Figure 1).

In supplementary material available at Biostatistics online (Section 2.1), we provide additional simu-
lation results: Applying the Firth correction did not severely influence the results of the uncorrected FE
methods, but ensured convergence in the presence of very small centers. Doubling the sample size espe-
cially increased the accuracy of the ME methods. When only one (outcome or PS) model is misspecified,
we found some evidence favoring the doubly robust PS method over the FE method.

4.2 Analysis of the Swedish Stroke Register

Riks-Stroke (http://www.riks-stroke.org) is a national quality register for acute stroke, collecting data from
all 90 Swedish hospitals. It has an estimated coverage of the total stroke population between 80% and 90%,

http://www.riks-stroke.org
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but there is considerable variation in coverage between hospitals. The setting is conceptually different
from the cancer register, since acute stroke is treated urgently, mostly at the nearest center. The register is
linked with a socio-economic database at Statistics Sweden and contains 149 778 patients with first stroke
between 2001 and 2009. Centers are compared on 30-day mortality, applying the classical normal ME,
the FE and the doubly robust PS method, without Firth correction as centers are no longer problematically
small.

Because of convergence issues with multinomial models, we build a separate logistic regression model
P(C = c|L)= expit(L′δc + γc) per center c and estimate the PS for individual i treated at center c as
follows:

P(Ci = c|Li )∑m
j=1 P(Ci = j |Li )

= expit(L′
iδc + γc)∑m

j=1 expit(L′
iδ j + γ j )

. (4.1)

The classical ME method is applied separately to the cluster of small (<1000 patients), medium (1000–
2000) and large (>2000) centers, to reduce the effects of shrinkage and to avoid convergence problems due
to the large data size. The potential full population risk for this method is then based on the cluster-specific
parameter estimates applied to the total population.

While, in general, few data are missing, records on education and smoking are missing for, respectively,
20.8% and 12.8% of the participants. Certain patient characteristics, like smoking status, are more likely
missing for patients who were unconscious upon admission and education level is more often unknown
for elderly patients. We fit complete-case regression models as they allow for missingness in the covari-
ates to depend on the covariates themselves, so long as there is no residual dependence on the outcome
(White and Carlin, 2010); it moreover avoids the need for modeling the distribution of those covariates.
They will therefore return center effects that are unbiased under fairly minimal assumptions. Since the
proposed estimators standardize these effects to the same reference population, selective missingness is
not expected to distort comparison of E{Y (c)} between centers, although it may yield underestimates of
E{Y (c)} for each center, as suggested by the comparison of complete cases (n = 101 051) versus all cases
in supplementary material available at Biostatistics online (Section 2.2). Supplementary material available
at Biostatistics online further specifies the covariates that were included in the PS and outcome regression
models. It shows that in general case-mix does not differ much across centers, except for considerable
variation with respect to treatment for high blood pressure, education level, and time of admission.

The fewer centers classified as low/high risk by the normal ME method are also found by the other
methods. This can be seen in Figure 2, which displays the observed center-specific risk Ê(Y |C = c) (which
does not depend on the analysis method) versus the model-based potential full population risk Ê{Y (c)}.
The ME results show the smallest range of potential full population risk with most attenuation toward the
overall risk, i.e. more shrinkage. Both FE methods classify mostly the same centers as low risk, although
the doubly robust PS method classifies two additional centers as high risk (Figure 2). Because these two
centers may be only borderline statistically significant, we examine the uncertainty in terms of a 50% CI
on the potential full population risk (Figure 3). We found good discrimination of low and high mortality
risk in general, but the 50% CI of some centers is close to the clinical decision limit where it becomes
difficult to judge. In that case, balanced testing could help to find an optimal combination of the null
and the alternative (Moerkerke and Goetghebeur, 2006). Figure 3 shows better accuracy of Ê{Y (c)} with
increasing center size, except for centers with close to zero events. Surprisingly, high mortality risks are
observed mostly for medium to large centers while low mortality risks are especially detected for small to
medium centers. This may partly be due to selectivity as it is known that patients dying early are less likely
to be recorded in this Riks-Stroke register, which could potentially happen more frequently in smaller
centers. Since size is based on the number of registered patients, a center with low coverage may come out
as smaller with better performance. This underlines again the importance of complete coverage.
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Fig. 2. The observed center-specific risk versus the potential full population risk for all 90 centers of Riks-Stroke for
the FE method, the doubly robust PS method, and the classical normal ME method, distinguishing between low (filled
circle) and high (filled triangle) mortality risk.

For the doubly robust method, we observe wider confidence intervals especially for the small centers.
This may be related to the generally lower efficiency of this method, but also be more honestly reflecting
the uncertainty on the potential risk estimates. Unlike the other two methods, the ME method did not
classify any of the very small centers as low risk. This is due to shrinkage to which especially the smallest
centers are very sensitive.

5. DISCUSSION

We have proposed and compared approaches to evaluate the performance of clinical centers via direct
standardization. This involves comparing centers in terms of the potential risk if the full study population
were treated at the current level of care of the given center. A key feature is that the evaluation of all centers
is based on the same reference population, while each center will have treated a subset. Especially when
centers can be chosen freely, this cuts bias out of the current center performance. Alternatively, indirect
standardization, which is more widely used (Austin and others, 2003; Shahian and Normand, 2008), eval-
uates each center on its own patient population and is of particular relevance when centers tend to differ
in their patient mix. Both standardizations have their virtues and in future work we will develop similar
analysis strategies for indirect standardization.

We have compared three statistical regression methods for direct standardization based on random or
fixed center effects, the latter in combination with the Firth correction or weighting by the reciprocal of
the PS to be treated in the observed center. Our primary focus on frequentist methods was motivated by
the fact that they are less computer-intensive and avoid the need to specify prior distributions about which
no information was available in our case studies. A crucial and unverifiable assumption for all considered
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Fig. 3. The potential full population risk and corresponding 50% confidence interval for all 90 centers of Riks-Stroke
for the FE method, the doubly robust PS method, and the classical normal ME method. The vertical gray lines indicate
the clinical decision limits (1 − λ)Ê(Y ) and (1 + λ)Ê(Y ), with λ= 0.20, which are used for classification of low and
high (filled circles) mortality risk centers.

methods is that the included set of baseline patient characteristics is sufficient to adjust for confounding
of the center-outcome effect. This drives the variable selection at the design stage of disease registers.
In case of violations, results will be biased and one may want to consider other methods such as those
using instrumental variables (Hernán and Robins, 2006b).

In the first case study, we found that shrinkage following traditional ME modeling results in sub-
stantial power loss compared with the suggested alternatives, especially for small centers. Although we
used direct standardization, these findings correspond to those observed for indirect standardization in
Austin and others (2003). The Firth corrected FE model as well as the doubly robust PS method recovered
power, while maintaining convergence in the presence of very small centers. In the second case study,
shrinkage was still present under the normal ME model, but disappeared using the Firth correction (see
supplementary material available at Biostatistics online, Section 2.2). As a result, fewer centers were clas-
sified as low/high risk under the random compared with the fixed center effects models.

In the simulation study, the Firth corrected FE method outperformed the doubly robust PS method,
although differences were relatively minor. While routine application of the doubly robust PS method in
its current form is not recommended, it may be of potential interest in settings with strongly differen-
tial case-mix (Shahian and Normand, 2008). In such settings, standard variable selection procedures for
outcome regression models which force the center effects into the model have a tendency, as a result of
multicollinearity, to exclude patient characteristics that are strongly correlated with center choice so that
their effects get attributed to differences between centers. This may in turn yield model extrapolation with
biased and misleadingly precise center effect estimates (Vansteelandt and others, 2010). The doubly robust
PS method helps to protect against this. By also modeling the effect of patient characteristics on the center
choice, strong predictors of center choice are potentially more likely to be picked up in variable selection
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procedures (Imbens, 2000). In future work, it will therefore be of interest to evaluate how the considered
methods perform when combined with variable selection. Double robustness moreover protects against
misspecification of the outcome model when the model for center choice is correct. It thereby lessens the
concern for violation of the assumption of equal covariate effects across centers.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at http://biostatistics.oxfordjournals.org.
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