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Junrong Li,2,* and Hong Zhang1,6,*

SUMMARY

Deep learning (DL) models based on individual images could contribute to tailored therapies and person-
alized treatment strategies. We aimed to construct a DL model using individual 3D structural images for
predicting the efficacy of non-steroidal anti-inflammatory drugs (NSAIDs) in migraine. A 3D convolutional
neural network model was constructed, with ResNet18 as the classification backbone, to link structural
images to predict the efficacy of NSAIDs. In total, 111 patients were included and allocated to the training
and testing sets in a 4:1 ratio. The prediction accuracies of the ResNet34, ResNet50, ResNeXt50,
DenseNet121, and 3D ResNet18 models were 0.65, 0.74, 0.65, 0.70, and 0.78, respectively. This model,
based on individual 3D structural images, demonstrated better predictive performance in comparison to
conventional models. Our study highlights the feasibility of the DL algorithm based on brain structural im-
ages and suggests that it can be applied to predict the efficacy of NSAIDs in migraine treatment.

INTRODUCTION

Migraine is a ubiquitous neurological disorder that is clinically characterized by recurrent, unilateral, pulsating headaches of moderate-to-se-

vere intensity and a duration of 4–72 h.1 Migraine is commonly accompanied by symptoms such as photophobia, phonophobia, and nausea/

vomiting, which are aggravated by physical activity. According to the Global Burden of Disease Study 2019, migraine is the second leading

cause of disability worldwide and the first leading cause of disability among youngwomen.2 The study has demonstrated that individuals with

episodic migraine tend to chronicity with an annual progression rate of 3%.3 Buse et al.4 observed that the comorbidity rate increased as the

frequency of headaches increased among people with migraine, incurring a considerable burden not only on the individuals but also on their

families and society. Currently, non-steroidal anti-inflammatory drugs (NSAIDs) are recommended as first-line acute medications for patients

with migraine.5 Although these drugs may ameliorate disease symptoms, they do not cure the condition and are ineffective in a significant

subset of patients, particularly in those with chronic migraine.6 The most common risk factor for episodic migraine to progress to chronic

migraine is medication overuse,1 which can lead to severe multi-organ side effects, even life-threatening situations.7 Further, limitations of

effectiveness and optimization of migraine treatment with NSAIDs may prolong the disease course and even result in undesired side reac-

tions.8 Therefore, the development of a desired clinical approach that can effectively assess the efficacy of NSAIDs inmigrainemanagement is

urgently warranted.

Increasing evidence on aberrant alterations suggests thatmarked functional and structural brain changes, central sensitization, and neuro-

inflammation are the mechanisms underlying migraine.9,10 Although patients with primary headaches and no focal neurological signs do not

undergo neuroimaging examination,11 functional magnetic resonance imaging (fMRI) has become one of the most important techniques to

noninvasively study humanbrain function and structure in vivo.12,13 Increasing advances in fMRI technology have contributed to its application

as a more powerful method to evaluate the correlation between subtle and spatially distributed signal patterns within the brain and clinical

characteristics. Recently, several studies have applied machine learning methods to neuroimaging datasets to recognize and characterize

neurological diseases.14 Previous studies have suggested that neuroimaging data and clinical evidence could be of great value for classifying

patients with migraine,15 identifying migraine subtypes,16 and predicting response to migraine treatment.17 However, conventional machine

learning models have exhibited insufficient performance and could not be able to satisfy clinical demands. Moreover, the characteristic
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parameters based on the fMRI postprocessing can be influenced by differences in prior experience,18,19 processing methods,20,21 and appli-

cation software.22,23

Deep learning (DL), a subset of machine learning, uses automatic complex multilayer neutral-network-architecture-based learning by con-

verting input data into multiple kinds of abstractions.24 DL has demonstrated promising performance in the field of medical image anal-

ysis.25,26 In DL-based analysis of medical image patterns, convolutional neural network (CNN), one of the most common DL algorithms,

can augment pattern recognition and characterization27 and automatically learn how to extract valid features from the training samples

for an assigned task by repetitive backpropagation adjustment of its weights without manual designation of the features as input informa-

tion.25 Owing to the ability of DL to detect abstract and complex patterns, it has been used in neuroimaging studies on psychiatric and neuro-

logical diseases with varying degrees of success.26 Deep CNNs could complement MRI-based diagnosis by aggregating and processing

large-scale information derived from neuroimaging data. Moreover, it is important to predict the efficacy of a specific therapy or personalized

medicine for the future development ofmedical technologies. To date, few studies have utilizedDLmethods to predict the efficacy of NSAIDs

in migraine treatment based on medical imaging analysis.28,29 In addition, brain structure may be the neural substrate of brain functional

changes, which precede changes in brain structure.30 The extent of structural changes is comparatively lesser in magnitude when compared

with functional changes, thereby suggesting that structural images possess a higher level of stability in accurately representing neuroimaging

information of the brain.31 Therefore, the present study aimed to develop and test a DL algorithm for predicting the efficacy of NSAIDs in

migraine treatment using the baseline structural images.

RESULTS

Demographic characteristics and questionnaire outcomes

In total, 111 patients withmigraine (62 responders and 49 non-responders to NSAIDs) were enrolled in this study. The statistical power of post

hoc calculated was 0.98 much more than 0.80, indicating that the sample size included in this study met the requirements. All patients were

divided into the training (n = 88) and testing (n = 23) sets in a 4:1 ratio. Detailed information about all subjects is summarized in Table 1. A

Table 1. Demographic data and questionnaire outcomes of patients with migraine

Training set (n = 88) Testing set (n = 23) t/z/c2 p-value

Age (years) 31.50 (26.50, 40.50) 31.00 (24.00, 40.00) �0.622 0.534

Sex (male/female) 19/69 2/21 1.977 0.160

Education (years) 12.00 (9.00, 16.00) 12.00 (9.00, 14.00) �1.473 0.141

Aura (yes/no) 21/67 1/22 4.370 0.037

Family history (yes/no) 64/24 14/9 1.227 0.309

Photophobia (yes/no) 51/37 17/6 1.957 0.162

Phonophobia (yes/no) 45/43 10/13 0.428 0.513

Nausea/vomiting (yes/no) 57/31 12/11 1.231 0.267

Disease duration (years) 7.00 (3.00, 13.00) 4.00 (2.00, 12.50) �1.117 0.264

VAS score 7.00 (5.50, 8.00) 7.00 (6.00, 8.00) �0.482 0.630

Frequency (days/month) 4.00 (3.00, 6.00) 3.00 (2.50, 5.00) �0.816 0.414

Attack time (hours) 12.00 (10.00, 24.00) 12.00 (10.00, 24.00) �0.086 0.932

MIDAS score 21.00 (10.00, 46.50) 31.00 (23.00, 50.50) �1.496 0.135

HIT-6 score 62.00 (51.50, 66.00) 57.00 (50.00, 68.00) �0.310 0.757

GAD7 score 4.00 (3.00, 7.00) 4.00 (2.50, 8.50) �0.139 0.889

PHQ-9 score 5.00 (3.00, 8.00) 6.00 (2.50, 10.50) �0.179 0.858

PSQI score 7.50 (5.00, 11.00) 7.00 (6.00, 12.00) �0.615 0.539

Pain medications 2.295 0.688

Ibuprofen 39 9

Aspirin 19 4

Acetaminophen 7 4

Naproxen 14 3

Celecoxib 9 3

Continuous variables of normal distribution were presented asmean (standard deviation), whereas non-normal variables were presented asmedian (interquartile

range). p-value <0.003 was considered significant after the Bonferroni correction. GAD-7, Generalized Anxiety Disorder 7-Item; HIT-6, Headache Impact Test

6-Item; MIDAS, Migraine Disability Assessment Scale; PHQ-9, Patient Health Questionnaire 9-Item; PSQI, Pittsburgh Sleep Quality Index; VAS, Visual Analogue

Scale.
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statistical difference in aura symptom was observed between the two sets (p < 0.05, uncorrected). However, there were no statistically sig-

nificant differences between the two sets after the Bonferroni correction.

Prediction performance of the different DL models

As shown in the receiver operating characteristic (ROC) curves (Figure 1), the conventional DLmodels trainedwith the 3D-T1WI sequence (i.e.,

ResNet34, ResNet50, ResNeXt50, and DenseNet121 models) had area under the curve (AUC) of 0.78, 0.79, 0.73, and 0.68, respectively, for

predicting the efficacy of NSAIDs; these values were less than the AUC of our proposed model (0.82).

The accuracy, recall, precision and F1-score, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and cutoff values were 0.65,

0.68, 0.71, 0.65, 2.13, 0.47, and 0.56; 0.74, 0.76, 0.77, 0.74, 3.13, 0.32, and 0.12; 0.65, 0.67, 0.68, 0.65, 2.02, 0.49, and 0.48; 0.70, 0.66, 0.73,

0.65, 1.95, 0.51, and 0.31; and 0.78, 0.77, 0.78, 0.78, 3.41, 0.29, and 0.50 in ResNet34, ResNet50, ResNeXt50, DenseNet121, and 3D

ResNet18 models, respectively (Table 2).

Subgroup analysis

Ibuprofen was the most commonly used NSAIDs in migrainemanagement. Considering this condition, the subgroup analysis was performed

based on the Ibuprofen group and non-Ibuprofen group. The results showed that the AUC, accuracy, recall, precision and F1-score, PLR, and

NLR values were 0.68, 0.78, 0.80, 0.83, 0.78, 4.00, and 0.25; and 0.89, 0.79, 0.79, 0.77, 0.78, 3.74, and 0.27, respectively, in Ibuprofen group and

non-Ibuprofen group.

Moreover, there was a significant difference (p < 0.05, uncorrected) in aura symptombetween the training and testing sets. Subgroup anal-

ysis was only performed in the patients without aura, because the sample size of patients with aura was too small to further conduct a reliable

analysis. The results showed that the AUC, accuracy, recall, precision, F1-score, PLR, and NLR values were 0.83, 0.77, 0.76, 0.77, 0.77, 3.39, and

0.30, respectively.

DISCUSSION

The proposedDLmodel using features extracted from the 3D-T1WI sequence could feasibly evaluate the efficacy ofNSAIDs inmigraine treat-

ment. The results demonstrated that our model using the 3D CNN algorithm could achieve a higher identification accuracy and outperform

other conventional DL models. The superior classification performance of our single-mode DL model highlights its potential applications in

clinical settings to optimize treatment decisions and improve clinical outcomes.

At present, CNN is the main approach used for detection and prediction tasks. The core elements of CNN take advantage of image prop-

erties and include local connections, shared weights, pooling, and the use of deep layers. Based on convolutional operation, the CNN input

Figure 1. Receiver operating characteristic curves showing the performance of all the deep learning models for predicting NSAIDs efficacy in the

testing set

(A–E) The areas under the curves of the ResNet34, ResNet50, ResNeXt50, DenseNet121, and 3D ResNet18 models (A–E) were 0.78, 0.79, 0.73, 0.68, and 0.82,

respectively. NSAIDs: non-steroidal anti-inflammatory drugs.
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includes highly correlatedmacroscopical information and representation. Therefore, it is well appropriate for processing structural images us-

ing spatial information to improvemodelperformance.32 For example, a recent studydemonstrated thatCNNmodelsbasedonneuroimaging

structural data have substantially improved performance compared with standardMLmodels.33 In the present study, DL was used to discrim-

inate between NSAIDs responders and non-responders. This package of techniques is self-acting and identifies patterns from raw brain im-

aging data without any assumptions about the predefined structure or content of the data. Nonlinear relationships and interrelationships be-

tween predictors are captured in the data. ResNet34, ResNet50, ResNeXt50, andDenseNet121 are commonly usedDL approaches, andmany

studies have verified their promisingperformance for diseaseprediction.34,35 In thepresent study,we constructedamodelbasedona3Ddeep

residual network with better classification performance, compared with the abovementioned conventional DL models.

Previous studies have reported that opioid receptor blockers injected into the core brain region of descending pain pathway could effec-

tively reduce the analgesic effects ofNSAIDs andhave further suggested thatNSAIDs act on thedescendingpainpathway via the endogenous

opioid system to produce an antinociception effect.36–38 Neuroimaging information may yield important representations in relation to treat-

ment processes and outcomes. Although limited in number, some studies based on MRI techniques have revealed that changes in activity or

morphology of the trigeminovascular system in patients with migraine were affected by different treatment modalities.39–41 A study on post-

operative analgesia with ibuprofen also suggested that increased cerebral blood flow (CBF) in the descending pain pathway is the potential

neuropathologic mechanism underlying the occurrence and development of pain and that decreased CBF in the descending pathway after

drug administration may represent the reduced activity of brain regions, thereby producing analgesic effects.40 Further, based on baseline

neuroimaging representations, some studies have described that traditionalmachine learning assessmentmodels could play a role in predict-

ing the efficacy of acupuncture treatment in patients with migraine over several weeks of follow-up.39,41 Thesemodels achieved good predic-

tion performance; however, they could not be widely implemented in clinical settings because they analyzedmany risk factors obtained from

detailed and time-consuming clinical history and neuroimaging characteristics obtained from complex postprocessing imaging methods.

In addition, classic fMRI neuroimaging with machine learningmethods requires considerable prior experience in designing feature extrac-

tors from several postprocessingmethods and transforming raw data into suitable internal representations or feature vectors, on a need basis

to help learn subsystems to detect and classify patterns. However, this methodology of identifying features may be influenced by prior expe-

rience and be sensitive to irrelevant factors. As a result, it may not be flexible enough to reveal high-level differences or predict complex brain-

behavior relationships.24 In contrast, DL approaches use minimally pre-engineered features and multiple processing layers to learn potential

representations of data with multiple abstraction levels and are highly flexible. Our model provides a method to analyze 3D structural images

of the whole brain readily obtained via MRI. The model could be applied in clinical settings to rapidly and accurately predict the efficacy of

NSAIDs inmigraine treatment. The high AUCs of the DLmodels based on abstract information from rawmedical images were similar to those

in previous DL studies, in which cartilage lesions were detected in knee MRI,42 pain progression in patients with knee osteoarthritis was pre-

dicted using knee radiographs,43 and cardiovascular risks were predicted using chest computed tomography.44 These studies further empha-

size the favorable application prospects of DL-basedmethods for evaluatingmedical images. Taken together, these findings suggest that the

DL algorithm is effective in discovering intrinsic features from high-dimensional data in high-quality medical images.

In this study, we combined brain structural images and DL algorithms to construct predictionmodels for NSAIDs efficacy in migraineman-

agement and obtained relatively good predictive effects, in terms of accuracy. The structural images have a higher level of stability to reflect

neuroimaging information,31 and the robust neuroimaging information will greatly benefit clinical practice. Moreover, DL can extract optimal

features from the raw data with better learning capabilities, compared with traditional machine learning models. Therefore, our findings sug-

gest that understanding how the intrinsic high-dimensional features of structural images are related to drug efficacy can contribute to

providing insights into pathophysiological mechanisms of migraine. However, DL models inevitably involve black box models, which remain

relatively uninterpretable when compared with conventional medical statistical methods.45 It is difficult to back-construct higher-order rep-

resentations of abstraction to the original structural dimension resulting in problems of interpreting the results, although the proposed

models have been demonstrated to be feasible. These impose substantial restrictions on the interpretation of clinical significance in DL

methods. Although these issues remain unsolved, intrinsic representative features derived from raw medical images can be automatically

learned via different procedures to improve interpretability.32 Our results suggest that feature extraction of different brain regions in com-

bination with DL may have great clinical potential to improve the efficacy evaluation of migraine and can help clinicians make more informed

decisions about therapeutic approaches for individual migraine patients.

Table 2. Classification performance of different models in testing set

Models AUC (95% CI) Accuracy Recall Precision F1-score PLR NLR Cutoff

ResNet34 0.78 (0.58, 0.97) 0.65 0.68 0.71 0.65 2.13 0.47 0.56

ResNet50 0.79 (0.58, 1.00) 0.74 0.76 0.77 0.74 3.13 0.32 0.12

ResNeXt50 0.73 (0.51, 0.95) 0.65 0.67 0.68 0.65 2.02 0.49 0.48

DenseNet121 0.68 (0.45, 0.90) 0.70 0.66 0.73 0.65 1.95 0.51 0.31

3D ResNet18 0.82 (0.64, 1.00) 0.78 0.77 0.78 0.78 3.41 0.29 0.50

Numbers in parentheses are 95% confidence intervals. AUC, area under the curve; Cis, confidence intervals; NLR, negative likelihood ratio; PLR, positive likeli-

hood ratio.
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In conclusion, we constructed a DL model that associated structural images of an individual with response to NSAIDs, facilitating the pre-

diction of individual clinical outcomes. Therefore, our study provides a potentially feasible method to improve the selection of clinical treat-

ment strategies for migraine.

Limitations of the study

The present study has some limitations that need to be addressed. First, this study used a cross-sectional design with a small sample size.

Therefore,multiple classificationmodels and larger prospective validation studies are warranted to improve prediction performance. Second,

only the structural images of patients with migraine were evaluated. Importantly, the fusion model that combined multi-sequence MRI

showed significantly higher performance in multiple classification tasks than models using a single sequence.46 This suggests that multi-

sequence MRI parameters can better understand migraine characteristics than a single sequence and can improve the identification perfor-

mance of the model. Third, this study aimed to explore the relationship between 3D-T1 images and efficacy prediction using DL networks.

Future studies should focus on integrating clinical and multimodal neuroimaging characteristics using DL and explore its capacity in

enhancing the prediction performance of migraine treatment. Finally, this is a cross-sectional study that cannot reflect the causal relationship

between structural changes and treatment response. A prospective cohort study for validating the temporal association is needed to obtain

more reliable conclusions in the future.
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Charbonneau, S., Whitehead, V., Collin, I.,
Cummings, J.L., and Chertkow, H. (2005). The
Montreal Cognitive Assessment, MoCA: a
brief screening tool for mild cognitive
impairment. J. Am. Geriatr. Soc. 53, 695–699.
https://doi.org/10.1111/j.1532-5415.2005.
53221.x.

48. Aicher, B., Peil, H., Peil, B., and Diener, H.C.
(2012). Pain measurement: Visual Analogue
Scale (VAS) and Verbal Rating Scale (VRS) in
clinical trials with OTC analgesics in
headache. Cephalalgia 32, 185–197. https://
doi.org/10.1177/03331024111430856.

49. Shin, H.E., Park, J.W., Kim, Y.I., and Lee, K.S.
(2008). Headache Impact Test-6 (HIT-6)
scores for migraine patients: Their relation to
disability as measured from a headache diary.
J. Clin. Neurol. 4, 158–163. https://doi.org/
10.3988/jcn.2008.4.4.158.

50. Bigal, M.E., Rapoport, A.M., Lipton, R.B.,
Tepper, S.J., and Sheftell, F.D. (2003).
Assessment of migraine disability using the
migraine disability assessment (MIDAS)
questionnaire: a comparison of chronic
migraine with episodic migraine. Headache
43, 336–342. https://doi.org/10.1046/j.1526-
4610.2003.03068.x.

51. Seo, J.G., and Park, S.P. (2015). Validation of
the Generalized Anxiety Disorder-7 (GAD-7)
and GAD-2 in patients with migraine.
J. Headache Pain 16, 97. https://doi.org/10.
1186/s10194-015-0583-8.

52. Seo, J.G., and Park, S.P. (2015). Validation of
the Patient Health Questionnaire-9 (PHQ-9)
and PHQ-2 in patients with migraine.
J. Headache Pain 16, 65. https://doi.org/10.
1186/s10194-015-0552-2.

53. Mollayeva, T., Thurairajah, P., Burton, K.,
Mollayeva, S., Shapiro, C.M., and Colantonio,
A. (2016). The Pittsburgh sleep quality index
as a screening tool for sleep dysfunction in
clinical and non-clinical samples: A systematic
review and meta-analysis. Sleep Med. Rev.
25, 52–73. https://doi.org/10.1016/j.smrv.
2015.01.009.

54. Cheng, J., Tian, S., Yu, L., Gao, C., Kang, X.,
Ma, X., Wu, W., Liu, S., and Lu, H. (2022).
ResGANet：Residual group attention
network for medical image classification and
segmentation. Med. Image Anal. 76, 102313.
https://doi.org/10.1016/j.media.2021.
102313.

55. Yang, R., and Yu, Y. (2021). Artificial
convolutional neural network in object
detection and semantic segmentation for
medical imaging analysis. Front. Oncol. 11,
638182. https://doi.org/10.3389/fonc.2021.
638182.

56. Abedalla, A., Abdullah, M., Al-Ayyoub, M.,
and Benkhelifa, E. (2021). Chest X-ray
pneumothorax segmentation using U-Net
with EfficientNet and ResNet architectures.
PeerJ. Comput. Sci. 7, e607. https://doi.org/
10.7717/peerj-cs.607.

57. Faul, F., Erdfelder, E., Lang, A.G., and
Buchner, A. (2007). G*Power 3: A flexible
statistical power analysis program for the
social, behavioral, and biomedical sciences.
Behav. Res. Methods 39, 175–191. https://
doi.org/10.3758/bf03193146.

58. Chen, S.Y., Feng, Z., and Yi, X. (2017). A
general introduction to adjustment for
multiple comparisons. J. Thorac. Dis. 9, 1725–
1729. https://doi.org/10.21037/jtd.2017.
05.34.

ll
OPEN ACCESS

iScience 26, 108107, November 17, 2023 7

iScience
Article

https://doi.org/10.3389/fneur.2020.00111
https://doi.org/10.3389/fneur.2020.00111
https://doi.org/10.1097/j.pain.0000000000000176
https://doi.org/10.1097/j.pain.0000000000000176
https://doi.org/10.3389/fneur.2020.588207
https://doi.org/10.3389/fneur.2020.588207
https://doi.org/10.1148/radiol.2018172986
https://doi.org/10.1148/radiol.2018172986
https://doi.org/10.1007/s00256-021-03773-0
https://doi.org/10.1007/s00256-021-03773-0
https://doi.org/10.1038/s41467-021-20966-2
https://doi.org/10.1038/s41467-021-20966-2
https://doi.org/10.3389/fnins.2018.00525
https://doi.org/10.3389/fnins.2018.00525
https://doi.org/10.1002/jmri.27909
https://doi.org/10.1002/jmri.27909
https://doi.org/10.1111/j.1532-5415.2005.53221.x
https://doi.org/10.1111/j.1532-5415.2005.53221.x
https://doi.org/10.1177/03331024111430856
https://doi.org/10.1177/03331024111430856
https://doi.org/10.3988/jcn.2008.4.4.158
https://doi.org/10.3988/jcn.2008.4.4.158
https://doi.org/10.1046/j.1526-4610.2003.03068.x
https://doi.org/10.1046/j.1526-4610.2003.03068.x
https://doi.org/10.1186/s10194-015-0583-8
https://doi.org/10.1186/s10194-015-0583-8
https://doi.org/10.1186/s10194-015-0552-2
https://doi.org/10.1186/s10194-015-0552-2
https://doi.org/10.1016/j.smrv.2015.01.009
https://doi.org/10.1016/j.smrv.2015.01.009
https://doi.org/10.1016/j.media.2021.102313
https://doi.org/10.1016/j.media.2021.102313
https://doi.org/10.3389/fonc.2021.638182
https://doi.org/10.3389/fonc.2021.638182
https://doi.org/10.7717/peerj-cs.607
https://doi.org/10.7717/peerj-cs.607
https://doi.org/10.3758/bf03193146
https://doi.org/10.3758/bf03193146
https://doi.org/10.21037/jtd.2017.05.34
https://doi.org/10.21037/jtd.2017.05.34


STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Hong Zhang

(jnyyfsk@126.com).

Materials availability

This study did not generate new unique reagents.

Data and code availability
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� All original code has been deposited at github and is publicly available as of the date of publication (https://github.com/IVisonMed/

migraine_mri_dl).
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

This study does not use experimental models.

METHOD DETAILS

Patient cohorts

In total, 111 patients who were R18 years, with a migraine duration of at least 1 year, and were diagnosed with migraine at a neurological

outpatient clinic, were prospectively and continuously enrolled in the study. The patient diagnosis was based on the International Classifica-

tion of Headache Disorders, 3rd edition (ICHD-3).1 To control potential pharmacological and physiological effects, the inclusion criteria were

as follows: (1) patients who had not taken symptomatic or prophylacticmedications for the last twoweeks before enrollment; (2) patients in the

interictal phase were headache-free for at least 3 days before and 1 day after scanning, which was ascertained via a structured telephonic

interview. The general exclusion criteria were as follows: (1) patients with comorbidities with other forms of headache and neuropsychological

or neurological disorders; (2) history of previous brain injury or psychoactive medication use; (3) history of alcohol or drug abuse; (4) patients

with cognitive impairment with theMontreal Cognitive Assessment (MoCA) scores of <2547; (5) pregnant or lactating women, and (6) any con-

traindications toMRI scanning.Written informed consent was obtained from all study patients to participate in the study. Ethical approval was

obtained from the Institutional Review Board of NanjingMedical University, Nanjing Jiangning Hospital Ethics Committee (2020-03-026-K01).

Questionnaires

All patients with migraine were asked to fill out comprehensive structured questionnaires before the scanning and were followed up via tele-

phone interviews. The information primarily collected were demographic data (e.g., age, sex, and education level), migraine characteristics

(e.g., aura symptom, family history, headache location, photophobia, phonophobia, nausea/vomiting, disease duration, frequency, attack

duration, headache intensity, impact extent, and burden on quality of life), and neuropsychiatric assessment (e.g., anxiety, depression,

and sleep disorder). The intensity, extent, and burden of headaches were assessed using the Visual Analogue Scale (VAS),48 Headache Impact

Test 6-Item (HIT-6),49 and Migraine Disability Assessment Scale (MIDAS),50 respectively. Anxiety, depression, and sleep quality symptoms

were measured using the Generalized Anxiety Disorder 7-Item (GAD7),51 Patient Health Questionnaire 9-Item (PHQ-9),52 and Pittsburgh

Sleep Quality Index (PSQI),53 respectively.

Outcomes measurement

The outcome measure chosen to assess the clinical efficacy of treatment with NSAIDs was migraine intensity. Headache intensity was eval-

uated on a scale of 0–10, with 0 indicating no pain and 10 indicating the worst pain imaginable. Patients were asked to maintain a headache

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Python (version 3.7.15) Python Software https://www.python.org

G*Power (version 3.1.9) G*Power Software https://www.psychologie.hhu.de
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diary for VAS scores before and 2 h after drug intake over the following 3 months. The evaluation criteria for therapeutic efficacy were as fol-

lows: (1) no pain after 2 h; (2) improvement of pain frommoderate to severe pain tomild or no pain (or decrease in VAS score by 50%) after 2 h;

(3) the curative effect is repeatable, with effects in at least more than two of the three attacks; and (4) no recurrence or need for medications

within 24 h after successful treatment.

Acquisition of 3D structural images

Brain images were acquired using a 3.0 Tesla scanner (Philips, Ingenia) with an 8-channel head coil. T1 images were acquired in three dimen-

sions with the following sequence: repetition time = 8.1 ms, echo time = 3.7 ms, slices = 170, thickness = 1mm, flip angle = 8�; matrix = 2563

256, field of view = 256mm3 256mm, and voxel size 1mm3 1mm3 1mm. The structural sequence was completed in 5min and 29 s. During

the MRI scan, all subjects were asked to remain conscious, keep their heads steady, and close their eyes.

Construction of the DL model

A 3D CNNwas constructed to evaluate the sensitivity of NSAIDs in patients with migraine. Three steps were implemented for preprocessing.

First, all two-dimensional DICOM slices were concatenated to a 3D pixel matrix. Second, all input images were normalized and padded to the

same size with a width3 height3 depth of 2563 2563 170 pixels. Third, image augmentations, including randomGaussian noise, rotation,

scaling, and flipping, were introduced to suppress the overfitting. The 3D ResNet18 was introduced as the classification backbone because it

has demonstrated excellent results in medical image classification,54 object detection,55 and lesion segmentation,56 effectively alleviating the

challenges of gradient disappearance and network degradation caused by an increase in network depth. It included four feature extraction

stages and one classification stage. Each feature extraction stagewas stackedwith several residual units, each of which contains a convolution

layer, pooling layer, and rectified linear unit (ReLU) activation layer. The output size in the four feature extraction stages were 56, 28, 14, and 7,

respectively. The output of the feature map from the last feature extraction stage contained high-level semantic information, which was fed

into the fully connected layer to predict the sensitivity of NSAIDs in patients with migraine (Below figure).

Setting of experimental parameters

The classificationmodel was optimizedwith AdamWand cross-entropy loss. The training batch size, learning rate, and epochs were 8, 0.0005,

and 100, respectively. Two GTX 3090 graphics processing units were used, and the operating system was Ubuntu 20.04 with CUDA version

11.3. Model implementation was performed in Python 3.7.15 using PyTorch 1.11.0.

Model evaluation

The performance of the developed DL model was evaluated via ROC curve analysis by calculating the AUC. The confidence intervals (CIs) of

the AUCs were calculated using the DeLong method. Further, the accuracy, recall, precision, F1-score, PLR, NLR, and cutoff values of all

models were calculated.

Illustration of the architecture of the deep learning model for predicting NSAIDs efficacy

BN, batch normalization; Conv, convolution; NSAIDs, non-steroidal anti-inflammatory drugs; ReLU, rectified linear unit.
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QUANTIFICATION AND STATISTICAL ANALYSIS

All analyseswere performed using SPSS software (SPSS version 24.0). Post hoc power analysis was performed usingG*Power software (version

3.1.9, effect size = 0.8, a = 0.05, two-tail).57 Data included both continuous and categorical variables. Continuous variables following normal

distribution were presented as meanG standard deviation and compared using the Student’s t test, whereas those following nonnormal dis-

tribution were presented as median (interquartile range) and compared using the Mann-Whitney U test. Categorical variables were analyzed

using the Chi-square test or Fisher’s exact test. Due to the considerable number of statistical tests conducted, we employed a Bonferroni

correction to address the issue of multiple testing.58 Therefore, the significance level p = 0.05 was divided by 18, which provides a significance

level corrected for multiple testing (p = 0.003).
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