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Juvenile-onset recurrent respiratory papillomatosis (JoRRP) is a condition characterized

by the repeated growth of benign exophytic papilloma in the respiratory tract. The course

of the disease remains unpredictable: some children experience minor symptoms, while

others require multiple interventions due to florid growth. Our study aimed to identify

histologic severity risk factors in patients with JoRRP. Forty-eight children from two

French pediatric centers were included retrospectively. Criteria for a severe disease

were: annual rate of surgical endoscopy ≥ 5, spread to the lung, carcinomatous

transformation or death. We conducted a multi-stage study with image analysis.

First, with Hematoxylin and eosin (HE) digital slides of papilloma, we searched for

morphological patterns associated with a severe JoRRP using a deep-learning algorithm.

Then, immunohistochemistry with antibody against p53 and p63 was performed

on sections of FFPE samples of laryngeal papilloma obtained between 2008 and

2018. Immunostainings were quantified according to the staining intensity through two

automated workflows: one using machine learning, the other using deep learning.

Twenty-four patients had severe disease. For the HE analysis, no significative results

were obtained with cross-validation. For immunostaining with anti-p63 antibody, we

found similar results between the two image analysis methods. Using machine learning,

we found 23.98% of stained nuclei for medium intensity for mild JoRRP vs. 36.1% for

severe JoRRP (p = 0.041); and for medium and strong intensity together, 24.14% for

mild JoRRP vs. 36.9% for severe JoRRP (p = 0.048). Using deep learning, we found

58.32% for mild JoRRP vs. 67.45% for severe JoRRP (p = 0.045) for medium and

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.596499
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.596499&domain=pdf&date_stamp=2021-03-08
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:cecile.badoual@aphp.fr
https://doi.org/10.3389/fonc.2021.596499
https://www.frontiersin.org/articles/10.3389/fonc.2021.596499/full


Lépine et al. JoRRP Potential Severity Risk Factors

strong intensity together. Regarding p53, we did not find any significant difference in

the number of nuclei stained between the two groups of patients. In conclusion, we

highlighted that immunochemistry with the anti-p63 antibody is a potential biomarker to

predict the severity of the JoRRP.

Keywords: juvenile onset recurrent respiratory papillomatosis, machine learning, deep learning, p53, p63, HPV,

immunohistochemistry

INTRODUCTION

Recurrent respiratory papillomatosis (RRP) is characterized by
the repeated growth of benign exophytic papilloma in the
respiratory tract (1, 2), primarily in the larynx (1). The age
distribution of RRP in Europe is trimodal with a peak in
children at a median age of 7 years and two other peaks
in adults at a median age of 35 and 64 years old (3).
This rare condition is referred to as Juvenile-onset Recurrent
Respiratory Papillomatosis (JoRRP) when it occurs in children.
Epidemiologic data vary depending on the country. In France,
there are no available data. In Denmark, between 1969 and 1984,
the incidence was 3.6 cases per year per 100,000 children (4).
In Canada, based on a national database, the incidence and
prevalence from 1994 to 2007 were respectively 0.24 per 100
000 children and 1.11 per children, median age at diagnosis was
4.4 years with a sex ratio close to 1:1 (5). In the United States,
data are similar (6), however incidence and prevalence seem
correlated to the socioeconomic status (7). JoRRP is caused by
an HPV infection, mostly by genotypes 6 and 11 (8). These
epidemiological data may change in countries with a strong HPV
vaccination policy: an Australian study shows a decrease in the
incidence of RRP in children under 14 years of age after the
introduction of the national HPV vaccination program in 2007.
The incidence decreased from 0.16 cases per 100,000 children in
2012 to 0.02 cases per 100,000 in 2016 (p = 0.034) (9). Three
modes of transmission are suggested: vertical transmission at
birth [HPV type concordance between mother and newborn
in different studies are however contradictory (10–12)], vertical
transmission in utero (13) and horizontal transmission via the
child’s environment (10). Whatever the transmission mode,
several studies have demonstrated that maternal condyloma at
the time of delivery was a major risk factor of developing JoRRP
(14, 15). While the prevalence of HPV 6 and 11 infection in
pregnant women is around 2%, the prevalence of JoRRP is
surprisingly low. Thus, HPV infection alone does not explain the
development of the disease and strong arguments suggest that
JoRRP is tied to immunity defects and genetic susceptibilities.
Patients with RRP are associated with HLA DRB1∗0102/0301,
DQB1∗0201/0202 (16, 17) and present a lack of KIR genes
3DS1 et 2DS1 (18). Moreover, their immune response presents
a Th2 polarization (19) which is not suitable for viral infection
control. The management of this disease is challenging because
its evolution remains unpredictable: some children experience
minor symptoms with spontaneous remission, while others
undergo multiple interventions due to florid growth. For the
most severe cases, JoRRP may lead to airway compromise, and

malignant transformation to carcinoma can occur, although it
is extremely rare [most often over pulmonary spread (20, 21)].
The standard treatment of JoRRP is a surgical excision (SE)
with cold instruments or microdebriders. Multiple endolaryngeal
procedures can lead to glottis synechia and irreversible damage
to the vocal cords as well as impaired social life (22). To
improve the surgical outcome and extend symptom-free periods,
numerous adjuvant treatments have been tried: interferon α

(23), celecoxib (24), bevacizumab (25), cidofovir (26, 27), PD-
1/PD-L1 immunotherapy (28, 29), and the quadrivalent HPV
vaccine (30). At the time of writing, none of these treatments
have been recommended for routine use by the International
Pediatric Otolaryngology Group (31). The most promising
ones are the quadrivalent HPV vaccine, bevacizumab and PD-
1/PD-L1 immunotherapies which appear to decrease relapses
(28, 29, 32, 33).

In light of the multiplication of neo-adjuvant treatments and
the impossibility to predict the evolution of the disease, we
have sought to identify severity risk factors in order to improve
the handling of these children. Although many studies have
focused on clinical severity risk factors, the only one identified
to date is the early age of onset of the disease (34, 35). To our
knowledge only one article investigated in JoRRP histological
criteria related to disease severity (such as the presence of mitosis
above the basal cell layer) but without significant results (36).
Several studies have looked for histological criteria with the help
of immunohistochemistry. Ahn et al. (37) studied the density of
cells expressing CD8, CD4, FoxP3, PD-1, or PD-L1 in papilloma
samples in a cohort of 39 patients. Only CD8+ cells density was
inversely correlated with disease severity (p = 0.01). Another
study on papilloma samples involving 12 patients found a trend
between a greater number of cells marked by the anti-p53
antibody and greater disease activity (defined by more than 3 SE
per year); however this association was not statistically significant
(p = 0.1) (38). As a reminder, TP53 is a tumor suppressor
gene, so its loss of function leads to tumor development.
The p53 protein acts as a transcription factor regulating the
expression of a large number of genes involved in the cell
cycle, apoptosis, cell differentiation, DNA repair, cell metabolism,
migration and angiogenesis (39). p53 immunohistochemistry is
used as a prognostic factor (40, 41). It is also used to distinguish
dysplastic epithelium (overexpressing p53) from epithelium with
reactive changes (presenting a wild-type staining) (42). The
p63 protein is a transcription factor belonging to the same
family as the p53 protein. p63 protein appears to play an
important role in the development of squamous epithelium
(43). Given the scarcity of data in the literature on histological
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criteria associated with JoRRP severity, we decided to conduct
this multi-stage study assisted by computerized image analysis.
From Hematoxylin and eosin (HE) digital slides of papilloma,
we first focused on morphological patterns associated with
severe JoRRP. Finding morphological predictive patterns on
HE slides could help optimize patient management. To our
knowledge, no study has yet been able to find such criteria;
and no computerized analysis was performed to determine such
morphological criteria in this pathology. Thus, we extended our
queries about potential morphological discriminative patterns
using artificial intelligence. Indeed, artificial intelligence has an
increasing impact on digital pathology as a help for decision-
making that could usher in an acceleration of clinical workflows:
several models showed a capability to recapitulate patterns that
experts had already recognized (44). Some previous works even
succeeded in predicting gene mutation on HE slides using
deep-learning algorithms (45). In parallel, we explored p53
and p63 expressions with immunohistochemistry as potential
markers of JoRRP severity, and compared quantitative results
with two automated workflows: one based on machine learning,
a second one based on deep learning. Machine learning refers to
mathematical models that are designed to learn from experience,
in order to make predictions or decisions without being explicitly
programmed to do so. A machine-learning algorithm might
require extraction of intermediate handcrafted features, for
example typical cell size, or staining intensity histogram for a
given object. The algorithm would base its prediction on these
selected features. Deep learning is a subtype of machine learning
that goes even beyond: the model learns and builds by itself
relevant features to make a final prediction, making it more
generalizable and unbiased in the way features are extracted.
Our step toward a deep-learning-based approach was supported
by the overwhelming majority of state-of-the-art architectures
that now rely on deep learning in every computer vision task.
We relied on both approaches to strengthen our conclusion and
ensure a high confidence in our final quantitative results.

MATERIALS AND METHODS

Population
This retrospective study was approved by an ethical
committee (notice number: CPP2019-02’-019a/2019-00352-
55/19.02.05.67237) and by the “Commission Nationale
Informatique et Libertés” (application number: 919150). Patients
were selected from two pediatric University Hospital Centers
(CHU) treating JoRRP: Necker-Enfants Malades Hospital and
Robert Debré Hospital (both in Paris). Patients were selected by
querying each hospital database via the laboratory management
software Diamic for samples taken between 2008 and 2017 with
the following diagnoses: juvenile papillomatosis, viral papilloma,
squamous papilloma, and papillomatosis. The single most recent
sample per patient was selected, thus allowing for the best
possible slide quality to be obtained for immunohistochemistry.
The inclusion criteria were:

- A positive HPV “low risk” DNA in situ hybridization test or a
positive PCR targeting HPV 6 and/or 11.

- Recurrence after diagnosis.

Clinical data were collected retrospectively in March 2018,
and gathered the following information: gender, exact age at
diagnosis, dates of each SE performed in the two University
Hospitals, number of SE, number of Cidofovir injections
received, potential tracheostomy in relation to the disease,
presence of surgical sequelae (defined as the appearance of
synechia of the glottis or even stenosis), location of papilloma
lesions, presence of lung involvement (proven by at least one
chest CT scan), presence of a lesion at the last flexible endoscopy,
notion of carcinomatous transformation, potential death related
to the disease.

From the dates of the SE, an average interval in days between
each SE was calculated. The number of SE per year was calculated
by dividing the total number of SE by the number of years
between the first and last SE.

HPV Typing
When the HPV type was not already known, FFPE papilloma
samples from the patient were sent to the Georges Pompidou
European Hospital’s Virology Department, where PCR were

performed with the INNO-LiPA R© kit from Innogenetics©,
targeting 28 HPV genotypes including 6 and 11.

Immunohistochemistry and Staining
Immunohistochemistry was performed on sections of FFPE
tissue samples of laryngeal papilloma with anti-p53 (Dako, DO-
7 clone, 1/50 dilution) and anti-p63 antibodies (Roche, 4A4
clone, 1/50 dilution) carried out on a LeicaTM Bond III R© automat
according to the protocols routinely used in the pathology
department of the Necker-Enfants Malades hospital.

For each patient, we also collected an HE slide of the same
laryngeal papilloma used for immunohistochemistry. Each HE
slide contained at least one and up to six levels.

Image Analysis
Each p53 and p63 immunohistochemistry was scanned with a
Vectra Polaris R© slide scanner from Akoya BiosciencesTM with a
magnification corresponding to a 10x objective. Each HE slide
was scanned with a NanoZoomer R© from Hamamatsu R© with a
magnification corresponding to a 40× objective.

Prediction of Disease Severity Using Solely
HE With a Deep Neural Network
We decided to apply a deep neural architecture to classify HE
slides into mild or severe JoRRP, and potentially unveil what
was learned by the model to highlight specific tissue regions that
activated the decision.

We designed a deep-learning architecture relying on
CHOWDER (46), an end-to-end framework that extended
WELDON (47) for Whole Slide Images (WSI) classification: the
goal of such network is to classify WSI into classes of interest
(mild and severe JoRRP). Due to the size of WSI (typically
100,000 × 100,000 pixels), it is not possible to pass an entire
digitized slide as is through a neural network due to memory
limitations. To overcome these, tissue regions are located with
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Otsu thresholding (48), and are then cut out into tiles (of size
224 × 224 pixels). A score is attributed to each of these tiles by a
convolutional neural network, then aggregated through a fully
connected network to make a final decision. The full architecture
is described in Figure 1. We also worked on unveiling which
specific tiles activated the final decision. For each evaluation
slide, we extracted the tiles to which the model was paying the
most attention and highlighted them via heatmaps, as shown in
Figure 2.

We validated our implementation by collecting 1,580 non-
Small Lung Carcinoma (NSLC) H&E slides, made publicly
available by The Cancer Genome Atlas (TCGA). The details of
the validation steps of our model and the heatmaps are described
in the Supplementary Data.

Using such a large cohort allowed us to validate our
implementation with an overall AUC of 0.966 to predict cancer
types, thus reaching high classification performance on a task
already managed by pathologists. However, our JoRRP cohort
was small by the standards of such WSI classification task in
machine-learning community (n = 48), so we tried different
approaches described below, to synthetically increase the dataset
size and to regularize the model. We used a four-fold cross-
validation procedure in all our experiments, to confirm that
our method could be generalized over an independent dataset,
and flag problems such as overfitting or selection bias. Thus,
for each experiment, the JoRRP cohort was splitted into four
subsets, and four models were trained: each one was trained
with three subsets and evaluated on the remaining one. The
performance is then reported as the average of the four models
performances. To address data scarcity, we tested different
ways to augment and regularize our training set: basic data
augmentation on tiles (flip, rotations), increasing training set size
by considering different neighboring slices as independent cases,
using bags dropout (49) by randomly sending a subset of the
input tiles in the network (90, 80, and 70% were tested out),
using a pretrained ResNet-50 feature extractor (on ImageNet and
on TCGA-lung). Additionally, we experimented with different
magnification levels for tiling (20X, 10X, and 5X), to ensure we
scanned all potentially relevant morphological structures.

Machine-Learning Approach for p53 and
p63 Immunohistochemistry
p53 and p63 quantitative analysis was performed with the
Inform R© 2.3 software from Akoya BiosciencesTM, which enables
users to fine-tune built-in quantification algorithms. The
analysis is a two-stage procedure: nuclei segmentation and
nuclei phenotyping. Nuclei segmentation was performed by
the software based on the DAB algorithm provided by the
manufacturer. Then, for nuclei phenotyping, the model, which
was based on multinomial logistic regression, needed to be
trained to perform phenotyping. We thus selected 13 regions
of interest from virtual immunohistochemistry slides of p53 (9
ROI) and p63 (4 ROI) antibodies, and had them annotated by a
pathologist. Each region of interest came from a different patient,
to foster staining expression and morphological heterogeneity
within the training set. We gathered a training set of 500

annotated nuclei in these fields, with five labels as described
in Figure 3 [weak (1+), medium (2+) and strong staining
(3+), unstained and irrelevant for non-nuclei objects]. We
manually labeled nuclei until the automatized recognition by
the Inform R© software was concordant with visual count on the
training set. Once trained, we selected at least 8 regions per
p53 and p63 virtual slide to run a full quantitative analysis.
The size of a region of interest was 0.47mm × 0.35mm. Fields
of interest were selected to contain only the entire surface
of the papilloma epithelium with as little connective tissue as
possible. They were then analyzed by the Inform R© software
trained algorithm and each region of interest analyzed was
visually verified. Viray et al. (50) found high accuracy between
the software results and manual analysis by pathologists, yet we
quantitatively assessed the algorithm performance by comparing
its predictions to a pathologist annotations. We randomly
selected six regions of interest from two different patients,
three ROI from p53 staining and three ROI from p63 staining,
containing approximately a total of 4,000 nuclei. Results show a
global positive predictive value of 0.83 and a global sensitivity
of 0.95. In details, positive predictive value/sensitivity results
per class are: unstained (0.92/0.95), weak staining (0.87/0.95),
medium staining (0.94/0.98), strong staining (0.97/0.87), and
irrelevant (0.80/0.90). At the end, data of each ROI were extracted
with R software.

Deep-Learning Approach for p53 and p63
Immunohistochemistry
For this approach, we selected a Faster R-CNN architecture
(51) to perform cell localization and classification. This is a
two-stage architecture that first tells the model where to look
(with the Region Proposal Network), and then classifies the
proposed objects among classes of interest. The model was
trained on 10 regions of interest of size 0.512mm × 0.512mm,
coming from five different slides (three p63 and two p53 slides).
Each region was fully annotated by a pathologist with point
annotations for each nuclei. Five classes were predefined: stroma,
unstained (0), weakly stained (1+), moderately stained (2+),
and strongly stained (3+). We chose to add a dedicated class
for stroma (although this is not taken into account in staining
level expression) to enforce the network to learn the distinction
between stroma cells and unmarked epithelial cells despite their
staining intensity similarities. By adding an extra class for stroma
cells, we regularized the network and fostered morphological
context learning to distinguish epithelium from stroma. The
model was trained during 10,000 iterations with a weighted cross-
entropy (weights equal to the inverse of the class frequency in
the training set), a learning rate of 10–3, and Adam optimizer
(52). As for the machine learning analysis, we randomly selected
6 regions of interest (size of 0.256mm × 0.256mm) from the
same two patients, containing approximately a total of 3,000
nuclei. We reported a global positive predictive value of 0.90
and a global sensitivity of 0.91. In details, positive predictive
value/sensitivity results per class are: unstained (0.98/0.83), weak
staining (0.84/0.88), medium staining (0.92/0.98), strong staining
(0.97/0.92), and stroma (0.84/0.91).
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FIGURE 1 | (i) WSI is thresholded with Otsu to separate foreground (tissue) from background. (ii) Selected foreground is cut out into tiles of size 224 × 224 pixels. (iii)

Tiles are fed into a convolutional feature extractor—here ResNet-50, pretrained on ImageNet—leading to a 2,048 feature vector for each tile, after the 5th ResNet

block and mean pooling. (iv) A 1-by-1 convolution is applied to get a single value per feature vector. (v) Tiles scores are sorted: R maximal scores and R minimal

scores are selected to go through a final two-layer perceptron (200 and 100 hidden units) to make a final softmax prediction of the class: either “mild” or “severe.” We

set R = 5 as suggested by CHOWDER.

Statistical Analysis
Statistical analyses were carried out using R software. For p53
and p63 immunohistochemistry, we calculated for each patient
a percentage of nuclei stained by level of intensity from raw
data, by dividing the number of nuclei in each category by
the total number of nuclei, on all regions of interest. For the
deep-learning approach, the nuclei in the stroma were not taken
into account. Qualitative variables were analyzed with a Chi2 or
Fisher test depending on sample size. Univariate analyses with
quantitative data were performed using a non-parametricMann–
Whitney test. Finally, all tests were bilateral and a p < 0.05 was
considered significant.

Outcome
Patients were classified into two groups: severe and mild. Severity
was defined by at least one of the following criteria: a number
of SE per year ≥5, death related to disease, pulmonary location
of JoRRP proven at least by a chest CT scan, carcinomatous
transformation of an JoRRP localization. One of the aims of
this work was to identify histological criteria associated with
a severe JoRRP. As there are, to our knowledge, no existing
morphological JoRRP severity criteria, we tried a hypothesis-
agnostic approach by using a deep-learning algorithm to classify
patients in each of the two groups according to the HE alone.

If validated, such algorithm could be used to extract tissue areas
on which the algorithm particularly relied to make its decision,
thus potentially highlighting discriminating histological criteria.
Given the small size of our dataset, hence limiting the potential
of such algorithm, we also planned to stain slides with anti-p53
and anti-p63 antibodies. We compared the percentage of nuclei
stained by these two antibodies between the two groups.

RESULTS

Population
Forty-eight children were included, 22 boys and 26 girls. The
average age at diagnosis was 3.8 years with a median age of 2 (age
range: 0.5–13 years). Twenty-seven percent of patients had HPV
11 infection, 65% had HPV 6 infection, and 6% had co-infection
with HPV 6 and 11. It was not possible to perform HPV typing
in one patient due to sample depletion. All patients had glottic
involvement. 73% of patients had supraglottic tumors, 68.7% had
subglottic ones and 25% and 8% had respectively tracheal and
pulmonary involvement. Patients had a median rate of 4.8 SE
per year. Regarding adjuvant treatment, 73% of patients received
at least one injection of Cidofovir. Patients received an average
of 7.1 injections of Cidofovir with a median of 3.5 injections.
Six patients (12.5%) received Cidofovir during an SE prior to
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FIGURE 2 | Heatmap analysis process: (A) global view of an HE slide with its heatmap; the yellow zones represent the areas that have impacted the classifier

(hotspots). (B) View of two heatmap hotspots. (C) HE area corresponding to the two hotspots, allowing to see the presence of viral cytopathogenic effect (red circle

corresponding to the hotspots).

the study specimen. The delay between the first and last SE was
on average 3.6 years and the median was 2 years. Moreover,
71% of patients had a lesion at the last check-up. Additionally,
a young patient in our cohort died at the age of 18 from the
malignant transformation of a pulmonary localization of her
JoRRP into bronchopulmonary squamous cell carcinoma. Her
JoRRP progressed for 17 years: 132 SE were performed, with
a mean interval between each endoscopy of 47 days. She also
received 67 injections of Cidofovir. According to our severity
criteria, 24 patients had a severe disease and 24 had a mild
disease. Characteristics of the two populations are summarized
in Table 1. The two populations were comparable: there were no
statistically significant differences in the gender of the patients,
the type of HPV, the age at diagnosis, the total number of SE,
the number of SE in the first year, the total number of injections
of Cidofovir, or post-surgical morbidity. Patients with severe
disease had a significantly shorter mean interval between each SE
compared with patients withmild disease (median 51 days vs. 213
days, p < 0.0001). Patients with severe JoRRP had a shorter delay
between first and last SE (1.0 year vs. 2.7 years, p = 0.001); and
had significantly more tracheostomies than patients with mild
JoRRP (p= 0.048).

Prediction of Disease Severity Using Solely
HE With a Deep Neural Network
We tested different approaches (as described in our “Methods”
section) to face data scarcity, which is an obstacle for such
multiple instance learning tasks. Given the small evaluation
set size for a given training (corresponding to 11–12 slides),
running a cross-validation was compulsory to properly validate
a method. Here, we systematically carried out a four-fold
cross-validation. If one configuration sometimes gave good
results on specific sets (we reached 0.83 AUC on a set
with a single slice per patient, all tiles being used at each
training iteration), we never reached significant results on cross-
validation (mean AUC of 0.57 with a non-statistically significant
p-value). Beyond evaluation metrics, we strove to understand
whether the algorithm took into account histological criteria
visible to a pathologist. To find potential histological criteria
that would allow mild/severe stratification solely with HE slides,
we randomly compared five heatmaps of patients with severe
JoRRP with five heatmaps of patients with mild disease that
had been accurately classified by the model. For each heatmap,
we noted the different locations of the hotspots (in the three
thirds of the epithelium and in the conjunctivo-vascular axis).
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FIGURE 3 | Examples of the machine-learning and deep-learning phenotyping. (A) area of an ROI from a p53 slide. (B) Deep-learning approach, labeling of the

colors: pink, stroma; green, unstained; purple, low intensity staining; red, medium intensity staining. (C) Machine-learning approach, labeling of the colors: pink,

irrelevant; green, unstained; red, low intensity staining; blue, medium intensity staining.

We also collected the presence of visible histological signs in the
hotspot area (presence of lymphocytes, neutrophil polynuclear
cells, viral cytopathogenic effect, prominent nucleoli, nuclear
hyperchromatism, and mitosis). The results are summarized
in Supplementary Table 1. Briefly, according to the heatmaps
analyzed, there was an average of 11 hotspots per patient. There
is a slightly different distribution of hotspots depending on the
severity of the disease, with more hotspots in the basal third and
in the stroma for patients with severe disease and more hotspots
in the middle third for patients with mild disease. We found 19
out of 27 hotspots with histological criteria. Some features are
only found for patients with a mild JoRRP, such as a prominent
nucleoli andmitosis. Neutrophils are only found for patients with
a severe JoRRP.

Image Analysis of p53 and p63
Immunohistochemistry
Given the small size of our dataset limiting the outcome of a WSI
classification task, we also planned to stain slides with anti-p53
and anti-p63 antibodies. An example of the nuclei phenotyping
results with each approach is shown in Figure 3.

Machine-Learning Approach

Concerning the machine-learning approach, results are
summarized in Table 2. Patients with severe disease had
statistically significant higher numbers of stained nuclei with
anti-p53 antibody for strong intensity compared with patients
with mild disease (0.14 vs. 0.08, p = 0.015). There was no
significant difference for the other intensity groups. With the p63
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TABLE 1 | Clinical characteristics of patients with mild and severe JoRRP.

Mild disease: 24

(%)

Severe disease:

24 (%)

p

Gender Boys 11 (46%) 11 (46%) 1

Girls 13 (54%) 13 (54%) 1

HPV type* HPV6 and 11 3 (12%) 0 (0%) 0.234

HPV11 4 (17%) 9 (38%) 0.194

HPV6 17 (71%) 14 (58%) 0.546

Tracheostomy 1 (4%) 7 (29%) 0.048

Sub-glottic involvement 14 (58%) 19 (79%) 0.119

Tracheal involvement 5 (21%) 7 (29%) 0.505

Postoperative morbidity 5 (21%) 5 (21%) 1

Lesion at last check-up 15 (63%) 19 (79%) 0.204

Pulmonary involvement 0 4 (17%)

Death 0 1 (4%)

Malignant transformation 0 1 (4%)

Median age at diagnosis

(year)

3 2 0.180

Median time between 1st

and last SE (years)

2.7 1 0.001

Median total number of SE 8 9.5 0.193

Median number of SE first

year after diagnosis

3.5 5 0.054

Median average interval

between each SE (days)

213 51 <0.0001

Median total number of

Cidofovir injections

3 5 0.311

*One patient could not have HPV typing due to sample depletion.

Bold value indicate statistically significant (<0.05).

antibody, patients with severe disease had statistically significant
higher numbers of stained nuclei compared with patients with
mild disease for medium intensity (36.1 vs. 23.98%, p = 0.041)
and medium and strong intensity together (36.9 vs. 24.14%, p
= 0.048).

Deep-Learning Approach

Concerning the deep-learning approach, results are summarized
in Table 3. With the p63 antibody, patients with severe disease
had statistically significant higher numbers of stained nuclei
compared to patients with mild disease for the three intensities
together (87.55 vs. 84.64%, p = 0.023) and medium and strong
intensity together (67.45 vs. 58.32%, p = 0.045). There was no
significant difference between the two populations regarding the
number of nuclei stained by the p53 antibody.

DISCUSSION

Population
Juvenile recurrent respiratory papillomatosis is a rare disease and
studies often involve small cohorts, which severely limits their
scope. In order to improve the management of these patients,
it is necessary to carry out studies to find new severity risk
factors. To our knowledge, our cohort of JoRRP is the largest ever
studied in Europe. National databases in the U.S. and Canada

TABLE 2 | Comparison of the percentage of nuclei stained by antibody against

p53 and p63 between patients with mild and severe JoRRP with the

machine-learning approach.

Staining intensity Mild

disease

(24)

Severe

disease

(24)

p

% of nuclei stained by

p53 antibody (median)

+ 61.08 62.68 0.564

++ 3.2 4.67 0.073

+++ 0.08 0.14 0.015

All of the 3 65.38 69.46 0.266

++ and +++ 3.36 4.91 0.063

% of nuclei stained by

p63 antibody (median)

+ 55.7 49.56 0.108

++ 23.98 36.1 0.041

+++ 0.14 0.74 0.122

All of the 3 82.02 86.07 0.055

++ and +++ 24.14 36.9 0.048

Bold value indicate statistically significant (<0.05).

TABLE 3 | Comparison of the percentage of nuclei stained by antibody against

p53 and p63 between patients with mild and severe JoRRP with the

deep-learning approach.

Staining intensity Mild

disease

(24)

Severe

disease

(24)

p

% of nuclei stained by

p53 antibody (median)

+ 49.51 47.97 0.951

++ 14.42 16.51 0.483

+++ 0.08 0.18 0.085

All of the 3 64.93 71.82 0.303

++ and +++ 14.59 16.94 0.483

% of nuclei stained by

p63 antibody (median)

+ 25.4 19.8 0.303

++ 53.85 57.65 0.201

+++ 0.84 3.94 0.066

All of the 3 84.64 87.55 0.023

++ and +++ 58.32 67.45 0.045

Bold value indicate statistically significant (<0.05).

have been established, covering 603 and 243 children with JoRRP
(5, 53); our population has characteristics comparable to these
two cohorts. We found a median rate of SE per year of 4.8
comparable to the U.S. cohort’s, which was of 4.3, higher than the
Canadian one of 1.5. Our median age at diagnosis was slightly
lower, 2 years old vs. 3 years old in the U.S. cohort and 4 years
old in the Canadian one. These data are also similar with a
more recent publication on an international cohort of juvenile
and adult RRP (35). Interestingly, the percentage of patients
treated with Cidofovir was much higher in our cohort than in
the Canadian cohort (respectively 73 vs. 4.7%). The differences
in terms of Cidofovir treatment could be explained by variability
in local practices. Regarding the distribution of HPV types, our
data are comparable to the literature. We found a low proportion
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of co-infection with HPV6 and 11 (6%) and a predominance
of HPV6 (65%), as described elsewhere (54, 55). One of the
main difficulties in our study was to define disease severity.
Currently, no consensual definition exists in the literature. Some
authors use composite scores incorporating criteria for disease
localization, such as the Derkay–Wiatrak score, and intervention-
related criteria, such as the number of SE per year (5, 35, 56).
Others use only intervention-related criteria. A total number of
SE greater than or equal to 10 or a number of SE/year > 3 or 4 is
frequently found as a criterion of severity (34).We were unable to
use Derkay–Wiatrak score as one of the two centers involved was
not used to performing it systematically. We chose the criteria
mainly representing the symptomatology of these two groups
of patients. Our cut-off value for the number of SE per year
seems relevant for our cohort, since patients classified as severe
presented more severe items of disease activity than patients
classified as mild. Thus, the median mean interval between each
endoscopy was 51 days for severe JoRRP and 213 days for mild
JoRRP (p < 0.001). Additionally, patients with severe disease had
statistically significantly more tracheostomies than those with
mild disease (p = 0.048). It should be noted that as 71% of
patients had a lesion at the last check-up it may be possible that
the number of SE/year would have changed until remission.

Prediction of Disease Severity Using Solely
HE With a Deep Neural Network
The principal aim of this study was to identify histological criteria
associated with disease severity. We first aimed to determine
whether we could predict JoRRP severity solely relying on HE
slides. The difficulty was twofold: the cohort was small for WSI
classification tasks with respect to machine learning community
standards, and this was a discovery task, meaning that there are
no known predictive morphological discriminative patterns that
distinguish severe from mild JoRRP for pathologists. Despite our
efforts to address data scarcity, we did not find a configuration
capable of performing well on all cross-validation sets. We
concluded that our dataset did not make it possible to extract
fromHE slides the information relevant to predict JoRRP severity
with our multiple instance learning approach. It shows that such
architecture was not able to extract extra information as for
a pathologist, at least on such small dataset. We acknowledge
that it does not imply that no such morphological pattern in
HE could be useful to predict JoRRP severity; yet, we think
that highlighting what did not work is still an informative
milestone for the community to design future projects. A larger
transnational cohort would facilitate research and statistically
strengthen the approach, given the difficulty of such discovery
tasks. The classification model for JoRRP was not sufficiently
effective to allow complete heatmaps analysis. However, it is
very easy for a pathologist to analyze the areas used by the
algorithm to classify a case. This may prove to be time-saving
for the analysis of a cohort and helpful in identifying histological
items potentially associated with the severity of the disease.
Indeed, by simply exploring 5 cases, we found a slightly different
distribution of the hotspots on the slides between the two groups
and some differences in histological criteria found below the

hotspots between mild and severe JoRRP. Even though it was not
possible to draw conclusions from these data, this kind of analysis
with secondary morphological analysis of area of interest seems
promising for pathologists.

Image Analysis of p53 and p63
Immunohistochemistry
Considering the lack of significant results on HE, we also
explored p63 and p53 immunostainings. Based on Rabah et
al. (38) results, we set out to explore the expression of p53
in these tumors, and by extension, of p63. We decided to
compare percentages of stained nuclei rather than density of
labeled cells because machine-learning analysis tends to segment
large nuclei in half, artificially increasing the number of cells
in the ROI. The contribution of automated image analysis in
this study considerably helped us save time and strengthened
the robustness of such quantitative task. For p53, we did not
find any difference in number of nuclei stained between the two
groups of patients, except for the machine-learning approach
concerning strong intensity. However, there is little difference
between the percentage of stained nuclei of the two groups
(0.08% for mild JoRRP vs. 0.14% for severe JoRRP) and it is
questionable whether this discrepancy with the deep-learning
approach is related to the fact that some stromal cells were taken
into account in the analysis with machine learning (as exposed
in Figure 3). The inability to detect these stromal areas in the
machine-learning analysis and to exclude themmay induce a bias
in the counting of stained nuclei. This is why we opted for two
distinct approaches for image analysis, deep learning allowing a
finer analysis by taking into account the tumor cells exclusively,
not the stromal cells. Indeed, our analysis with Inform R© software
did not allow distinction between these two types of cells.
Moreover, these results are consistent with other studies that
have looked at the expression of p53 in RRP. Stern et al. (57)
found an higher percentage of p53 positive cells in patient that
underwent malignant transformation than in tumors with benign
course (68.3 vs. 14.2%, p < 0.05), however only 4 had malignant
transformation over the 35 patients included and no correlation
with other aggressiveness disease criteria was found. Perdana et
al. (58) also reported no correlation between severity and the
expression of p53. With the p63 antibody, the stromal cells are
not stained but are counted as unstained cells by the algorithm.
We found similar results between the two image analysis methods
for anti-p63 antibody for medium and high intensities together,
with a greater number of nuclei stained with these intensities
in patients with severe disease. For each approach, we found
around 10% differences in labeled cells between severe JoRRP
and mild JoRRP (37 vs. 24% for machine learning and 67
vs. 58% for deep learning). These gross percentage differences
between machine-learning and deep-learning approaches could
be explained by the detection of stromal cells, which were
detected as unstained nuclei with machine-learning approach,
artificially biasing results. There may also have been a slight
variability in the pathologist’s annotation of the different classes
for each approach, since his eyes were the only judge of the
intensity of the staining. Nevertheless, the same pathologist
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made the annotations for both approaches, limiting variability.
On the other hand, the deep-learning approach seemed more
reliable since the model was trained to differentiate stromal from
epithelial cells based on morphological context regardless of
staining intensity. Obtention of similar results with the two image
analysis methods strengthened the reliability of these results.
Additionally, the positive predictive values and sensitivity of
both models are very good. The fact that patients with severe
disease had a higher percentage of cells labeled with p63 for
medium and high intensities than patients with mild disease is
a first step toward using p63 as a predictor of disease severity. A
possible confounding factor in our study is the blend of patients
treated or not treated with Cidofovir. Indeed, it is described in
the literature that in HPV-induced cancer cell lines, Cidofovir
causes an accumulation of p53 (59). However, these data concern
high-grade HPV, and the low-risk HPV proteins involved here
in JoRRP do not share the same properties. The E6 protein has a
lower affinity for p53, which does not induce p53 degradation but
retains an inhibitory activity to the p53 transcriptional activity
necessary for viral genome replication (60). It is thus difficult
to extrapolate the role of Cidofovir on the expression of p53
in JoRRP. We also analyzed our cohort in subgroups to take
into account Cidofovir treatment, results are summarized in
Supplementary Tables 2, 3. However, these results are difficult to
interpret given that the groups are very disproportionate in size,
as 73% of patients received at least one injection of Cidofovir.
Even if Cidofovir has an impact on p53 expression in JoRRP, in
our cohort the patient groups with a mild or a severe disease are
well balanced with 29 and 25% of untreated patients respectively
(7 patients out of 24 vs. 6 patients out of 24, p = 0.745). To
confirm our results, a national prospective cohort with a larger
number of patients will have to be set up with samples before and
after injection of Cidofovir to study the impact of the latter on the
expression of our markers.

CONCLUSION

In conclusion, we highlighted that patients with a severe JoRRP
presented a higher percentage of cells stained by the anti-
p63 antibody for medium and strong intensities compared to
patients with mild JoRRP. This was not found with the anti-
p53 antibody. Use of a biomarker to predict an aggressive
disease could allow to implement adjuvant treatment at the
early stage of the disease. It could also be an opportunity to
better inform patients and their parents of the potential course
of the disease. We also presented an innovative approach in
digital pathology, which consists in analyzing an area taken
into account by a deep-learning algorithm for its predictions
in an attempt to discover new histological criteria of severity
in this disease. These analyses were possible thanks to close

collaboration between pathologists and data scientists, and this

should inspire us in the future development of our profession as
pathologists. These data are a first step toward a better prediction
of severe cases and better management tailored to the severity
of JoRRP.
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