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Abstract

Summary: Identification of functional transcriptional regulators (TRs) associated with chromatin interactions is an
important problem in studies of 3-dimensional genome organization and gene regulation. Direct inference of TR
binding has been limited by the resolution of Hi-C data. Here, we present BART3D, a computational method for infer-
ring TRs associated with genome-wide differential chromatin interactions by comparing Hi-C maps from two states,
leveraging public ChIP-seq data for human and mouse. We demonstrate that BART3D can detect relevant TRs from
dynamic Hi-C profiles with TR perturbation or cell differentiation. BART3D can be a useful tool in 3D genome data
analysis and functional genomics research.

Availability and implementation: BART3D is implemented in Python and the source code is available at

https://github.com/zanglab/bart3d.
Contact: zang@virginia.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The three-dimensional (3D) organization of eukaryotic genomes
affects transcriptional gene regulation (Bonev and Cavalli, 2016;
Gorkin et al.,, 2014; Yu and Ren, 2017). Although topologically
associating domains (TADs) appear to be conserved across cell types
at the level of cell populations (Dixon et al., 2012; Rao et al., 2014;
Schmitt et al., 2016), chromatin architecture is highly dynamic dur-
ing development, cell differentiation or under experimental perturb-
ation (Dixon et al., 2015; Li et al., 2015; Zheng and Xie, 2019), and
can be disrupted in disease states (Bonev and Cavalli, 2016; Fang
et al., 2020). Transcriptional regulators (TRs), including transcrip-
tion factors and chromatin regulators, are required for the establish-
ment and maintenance of chromosomal architecture (Kim et al.,
20165 Stadhouders et al., 2018; Steensel et al., 2019). Identification
of functional TRs associated with chromatin dynamics can help un-
ravel the spatial organization of the genome and the impact of 3D
architecture on transcriptional regulation. The 3D organization of
the genome can be measured using chromosome conformation cap-
ture-based methods, such as Hi-C (Lieberman-Aiden et al., 2009)
and in situ Hi-C (Rao et al., 2014). Chromatin interaction events
can be detected by inferring loop structures from signal enrichment
in Hi-C contact maps (Doyle et al., 2014; Rao et al., 2014).
However, limited by the restriction enzyme digestion and ligation
procedure and highly dependent on the sequencing depth, the
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resolution of Hi-C maps is typically 10°~10° bp, or can be as high as
10% bp for ultra-deep in situ Hi-C (Rao et al., 2014). It is still diffi-
cult to reach the sub-nucleosomal resolution of TR binding events
(10'-10? bp). HiChIP (Mumbach et al., 2016) and PLAC-seq (Fang
et al., 2016) can reach higher resolution but require additional ex-
perimental steps to use a preselected protein factor as an anchor,
limiting the feasibility for an unbiased TR association analysis.
Computational models such as chi-CNN (Jaroszewicz and Ernst,
2020) can predict interactions at a high resolution, but require other
data types such as DNase-seq and ChIP-seq as input in additional to
Hi-C. It remains challenging to identify TR binding directly from
low-resolution Hi-C data alone for functional analysis of 3D gen-
ome data.

Most computational methods for differential Hi-C data analysis,
including diffHic (Lun and Smyth, 2015), FIND (Djekidel ef al.,
2018), HiCcompare (Stansfield et al., 2018), Selfish (Ardakany
et al., 2019) and CHESS (Galan et al., 2020), focus on detecting
changes in chromatin interaction events on the locus-to-locus level,
i.e. differential loops. Few methods can generate a genome-wide dif-
ferential interaction profile or make TR association analysis directly
from differential Hi-C data. TR inference from collected genomic
binding profiles is a more powerful approach than conventional
DNA sequence motif search (Qin ez al., 2020; Wang et al., 2018).
We previously developed BART (Wang et al., 2018), an algorithm
for inferring TRs whose binding profiles associate with a query
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genomic profile, leveraging over 13 000 human and mouse ChIP-seq
datasets collected from the public domain. Here, we present
BART3D, a new bioinformatics tool for 3D genome data analysis
and TR inference integrating Hi-C maps with public ChIP-seq data.

2 Materials and methods

The input of BART3D is Hi-C-type 3D genome contact maps from
two biological states, with or without replicates for each state.
BART3D first generates a genomic differential chromatin inter-
action (DCI) profile by comparing the contact maps, then uses the
BART algorithm (Wang et al., 2018) to identify transcriptional reg-
ulators (TRs) whose binding sites are associated with either
increased or decreased chromatin interactions (Fig. 1a). BART3D
can accept three formats of unnormalized genomic contact maps as
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Fig. 1. BART3D infers transcriptional regulators associated with differential chro-
matin interactions from Hi-C data. (a) BART3D workflow. BART3D takes Hi-C
contact matrices from two biological states (Control and Treatment) as input, scans
each chromosome to calculate the DCI score at every bin by comparing the inter-
action counts (blue dashed boxes at 45-degree angle) within a certain distance
boundary (black horizontal dashed lines) between the two conditions, and derives a
DCI profile. The BART algorithm is then applied to associate the DCI profile with a
large collection of public transcription regulator (TR) ChIP-seq data for TR infer-
ence analysis. BART3D output is two ranked lists of all TRs associated with in-
crease and decrease of chromatin interactions. (b—d) Cumulative distributions of
DCI scores for genomic regions with (red) and without (black) binding sites of KO
TRs, including Ctcf KO in cardiac myocytes (b), Rad21 KO in olfactory sensory
neurons (c¢) and Smchd1 KO in neural stem cells (d), in mouse cell samples. DCI
scores were calculated for each 5kb bin by comparing the normalized contact fre-
quencies with its =200 kb flanking regions. P-values were calculated by Wilcoxon
rank-sum test. (e-g) BART3D results on decreased (e, f) or increased (g) chromatin
interactions from corresponding Hi-C datasets in (b-d). P-value scores were calcu-
lated from rank sum using the null hypothesis under the Irwin-Hall distribution.
Top ranked TRs were labeled, and the KO TRs were marked in red. (h—j) BART3D
results on increased (h) and decreased (i) chromatin interactions comparing human
erythroid progenitors (EP) with hematopoietic stem and progenitor cells (HSPC),
and increased chromatin interactions after Srf overexpression in mouse neural pro-
genitor cells (NPCs) (j)

input: (i) raw count matrices from HiC-Pro (Servant et al., 2015),
(i1) .hic format files from Juicer (Durand et al., 2016), and (iii) .cool
format files (Abdennur and Mirny, 2020). The output includes
ranked lists of TRs associated with increased or decreased chroma-
tin interactions with a series of statistical measurements.

We first employ an innovative approach to quantify the differ-
ence between Hi-C contact matrices from the two different condi-
tions. To account for the negative correlation between intra-
chromosomal interaction frequency and genomic distance
(Supplementary Fig. S1) (Lieberman-Aiden et al., 2009) and to ex-
tract chromatin architecture information, we first normalize the
contact matrix of each chromosome using a distance-based ap-
proach, where the read count in each bin pair is normalized by the
average read count across all bin pairs at the same genomic distance
(Supplementary Fig. S2). For any region in a chromosome, we con-
sider the intra-chromosomal interactions between this region and its
flanking regions within a certain genomic distance, e.g. 200 kb,
quantified by a contact score array in the contact matrix, repre-
sented by the dashed, blue, 45-degree boxes in Figure 1a. We calcu-
late a DCI score for this region by comparing the two sets of contact
score arrays from the two conditions, i.e. treatment and control.
Specifically, we perform a paired t-test comparing each control con-
tact score array with each treatment contact score array, and use
Fisher’s method (Fisher, 1925) to calculate a combined statistic from
all t-test P-values. The DCI score is then determined as logarithm of
the P-value from the Fisher’s combined test, with the sign deter-
mined by the majority of the individual t-test statistics. Positive or
negative DCI scores represent increased or decreased chromatin
interactions, respectively, from control to treatment at this region
(See Supplementary Methods for details). In this way, we generate a
genome-wide DCI profile by scanning all chromosomes to calculate
DClI scores for all non-overlapping bins across each chromosome.

We then infer TRs whose genome-wide binding profiles are asso-
ciated with the DCI profile derived from Hi-C contact matrices. We
map the genomic DCI profile to the union DNasel hypersensitive
sites (UDHS), a curated dataset representing all putative cis-regula-
tory elements (CREs) in the genome (Wang et al., 2016), and gener-
ate a cis-regulatory profile in which the score for each candidate
CRE is set to equal the DCI score of the genomic region in which the
CRE is located. We use the BART algorithm (Wang et al., 2018) to
infer TRs that preferentially bind at CREs with a high score,
representing increased chromatin interactions. Then we flip the
cis-regulatory profile and perform BART analysis again, to infer
TRs whose binding profiles are associated with decreased chromatin
interactions (Fig. 1a).

3 Results

To demonstrate the performance of BART3D, we calculated DCI
profiles and inferred TRs for several published Hi-C experiments
comparing wild-type (WT) with DNA-associating factor knockout
(KO) models in mouse cells. The KO targets include transcription
factor Ctcf (Rosa-Garrido et al., 2017) and cohesin complex compo-
nent Rad21(Canzio et al., 2019), which are known to function co-
operatively to induce DNA looping and maintain TAD structures
(Fudenberg et al., 2016), as well as Smchd1 (Jansz et al., 2018a),
which has repressive effects on transcriptional regulation and chro-
matin architecture. As expected, genomic regions containing binding
sites of CTCF or RAD21 exhibit decreased chromatin interaction
levels after KO (Fig. 1b, c), while those containing SMCHD1 sites
associate with increased chromatin interactions after KO in their
corresponding samples (Fig. 1d). This result indicates that the DCI
profile can connect perturbed protein binding sites with differential
chromatin interaction. Indeed, the BART3D results show that the
KO factors are always among the top ranked TRs inferred to be
associated with the corresponding decreased or increased chromatin
interactions (Fig. le-g, labeled in red). These results show that
BART3D can successfully infer TRs that induce chromatin inter-
action changes from Hi-C data.

In addition to the KO factor itself, we also found other TRs high-
ly ranked in the BART3D results from the KO/WT Hi-C
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comparisons (Fig. 1le—g). For Ctcf or Rad21 KO (Fig. 1e, f), several
top inferred TRs, including SMC1A, SMC3 and STAG1 are all com-
ponents of the cohesin complex (Peters et al., 2008). For Smchd1
KO (Fig. 1g), BMI1 and SUZ12 are related to polycomb group
(PcG) factors, which have been shown to interact with SMCHD1
(Jansz et al., 2018b) and have repressive effects on transcription and
chromatin state.

Besides TR KO data, we further tested the ability of BART3D to
infer functional TRs from Hi-C data across cell types during differ-
entiation. Comparing Hi-C data between human hematopoietic
stem and progenitor cells (HSPCs) and differentiated erythroid pro-
genitors (EPs) (Zhang et al., 2020), GATA1, which is specifically
expressed in erythroid development (Leonard ez al., 1993), ranked
on the top of BART3D result on EP increased chromatin interac-
tions (Fig. 1h). The top ranked TRs associated with EP decreased
(high in HSPC) chromatin interactions (Fig. 1i) include GATA3, a
transcription factor required in the maintenance of hematopoietic
stem cells (Ku et al., 2012), and a key HSPC-associated factor
GATA2 (Zhang et al., 2020). We also compared Hi-C data in mouse
neural progenitor cells (NPCs) before and after overexpression of
Srf, a transcription factor repressing cell-type-specific genes and pro-
moting cellular reprogramming to pluripotency (Ikeda et al., 2018).
The top ranked factors associated with Srf overexpression-increased
chromatin interactions reported by BART3D include TRIM28 and
NANOG, both of which are involved with maintaining pluripotency
of stem cells (Seki et al., 2010) (Fig. 1j). These results indicate that
BART3D can identify relevant TRs from differential Hi-C analysis
and can provide functional insights into the relations between chro-
matin architecture dynamics and transcriptional regulation during
cell differentiation.

4 Discussion

We developed BART3D for differential analysis of Hi-C data and to
infer functional TRs associated with changes in chromatin interac-
tions. BART3D overcomes the relatively low resolution of Hi-C
data and connects chromatin interactions on the multi-kb to Mb
level to cis-regulatory events on the nucleosomal or base-pair level
by accounting for statistical differences in Hi-C signals within a
large distance range and using a predefined genomic CRE set.
BART3D uses a distance-based normalization approach, which can
remove cross-sample biases (Supplementary Fig. S2) and outper-
forms ICE normalization (Servant et al., 2015) in detecting local
chromatin interactions (Supplementary Fig. S3). BART3D focuses
on detecting aggregated chromatin interaction patterns between one
genomic region and many nearby regions, conceptually different
from identification of individual chromatin loops in conventional
methods such as diffHic and Selfish (Supplementary Fig. S4). We use
dynamic Hi-C datasets from TR KO experiments and cell differenti-
ation to show that BART3D can infer TRs inducing chromatin
architecture changes and other TRs with biological relevance.

In the framework of BART3D, we assume that differential chro-
matin interactions mainly associate with genomic binding of tran-
scriptional regulator proteins, which act primarily in cis. Other
events that can also result in pattern changes on Hi-C maps such as
genome rearrangements are not considered in BART3D. Under this
assumption, we focus on intra-chromosomal interactions within a
certain range of chromosomal distance and ignore inter-chromo-
somal interactions. The default genomic distance is set as 200 kb,
but users can adjust this parameter in exploratory studies for opti-
mizing discovery power, as different TRs may associate with chro-
matin interactions at different genomic ranges (Supplementary Fig.
S5). To account for potential changes in sequence read coverage in
individual genomic regions as a confounding factor of DCI calcula-
tion, an optional adjusted DCI profile can be generated using regres-
sion (See Supplementary Methods). There are not many other
tunable parameters. The bin size should be consistent with the Hi-C
contact maps under interrogation and is restricted to the Hi-C data
resolution. While replicates of Hi-C data have been accounted for in
the DCI calculation, they can also be used to generate a background
control for TR inference, i.e., TRs inferred from comparing

replicates of Hi-C data from the same biological condition are likely
due to technical variations and can be considered as false positive.
Such TRs should be discarded if they also appear in results from
cross-condition Hi-C comparisons.

Although developed for Hi-C data analysis, BART3D can also
be applied to other 3D-genome data, such as ChIA-PET (Fullwood
et al., 2009), HiChIP (Mumbach ez al., 2016) and PLAC-seq (Fang
et al., 2016). When analyzing HiChIP or PLAC-seq data using
BART3D, one may notice that the ChIP factor tends to appear on
the top of the inferred TR list. Because HiChIP/PLAC-seq signals are
always enriched at genomic binding sites of the ChIP factor regard-
less of chromatin interaction changes, the inference of a ChIP factor
and its known co-factors should be considered false positives and
removed for result interpretation. We plan to account for this effect
and develop an extended version for analyzing HiChIP/PLAC-seq
data in the future. Because of the model design, BART3D is limited
in detecting TRs that only associate with individual or a very small
number of interacting loci in the genome. The normalization proced-
ure in BART3D only accounts for the genomic distance, and should
not replace other normalization approaches when pre-processing the
data. For example, potential biases in Hi-C data such as GC content,
sequence mappability, chromatin accessibility and restriction en-
zyme cleavages can be considered using other normalization meth-
ods (Hu et al., 2012; Yaffe and Tanay, 2011). In addition, TR
inference in BART3D is limited to collected ChIP-seq data, which
currently include 918 human TRs and 565 mouse TRs but still grow
rapidly and require regular updates and maintenance. Nevertheless,
BART3D provides a framework for accurate inference of TRs asso-
ciated with differential chromatin interactions and has broad appli-
cations in making biologically meaningful inferences and generating
hypotheses from 3D genome data.
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