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ABSTRACT: Thiocyanates, versatile building blocks in organic synthesis, are
shown to be easily accessible via an interrupted Pummerer reaction of sulfoxides.
This facile dealkylative functionalization proceeds under mild conditions
through electrophilic activation of the sulfoxide partner. The resulting
thiocyanate itself can serve as a handle for diversification in a straightforward
one-pot procedure.

Thiocyanates are an important compound family widely
encountered in medicinal chemistry and natural products,

and they constitute versatile synthetic handles.1,2 Their ability
to function as electrophilic components either on sulfur or on
carbon renders them especially attractive intermediates.3

The preparation of thiocyanates mainly relies on nucleo-
philic substitution or coupling reactions using the thiocyanate
anion (Scheme 1a).4 Alternative, less common methods
include electrophilic thiocyanations, nucleophilic or electro-
philic cyanation of suitable sulfur species, or radical processes.5

In 2015, Shi and coworkers reported the union of a sulfide, a
sulfur species that possesses neither an acidic proton nor a
designated leaving group, with a modified version of Stang’s
reagent.6 The thiocyanate products are thus formed through
oxidative cyanation followed by dealkylation (Scheme 1b). In
2019, Yang et al. showed that the same transformation could be
achieved without the hypervalent iodine reagent, employing
Selectfluor as an oxidant alongside a cyanide source.7

In this context, we speculated that the use of strong oxidants
might be avoided if one were to employ a sulfoxide as a reactant
rather than its sulfide counterpart. Such a transformation
would also further expand the toolbox for sulfoxide-mediated
transformations, a field that has seen rapid development in
recent years.8 Apart from their use as directing groups9 and
ligands,10 sulfoxides are known for their propensity toward
activation with electrophilic reagents, creating highly reactive
species that can be synthetically exploited in a variety of
reactions.11,12 In several of those reports, the sulfur residue that
remains in the final products is often an afterthought from a
synthetic point of view. Herein we report an operationally
simple dealkylative conversion of sulfoxides into thiocyanates
as well as related transformations (Scheme 1c).
In an initial experiment, stoichiometric trimethylsilyl cyanide

was added to a mixture of p-tolylmethylsulfoxide 1a and triflic
anhydride (i.e., an electrophilically activated sulfoxide) at low
temperature (Scheme 2). Satisfyingly, this resulted in a clean
conversion into p-tolylthiocyanate 2a, which was isolated in
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Scheme 1. (a) Overview of Classical Thiocyanate Syntheses;
(b) Oxidative Dealkylative Thiocyanations from Sulfides
Using an Excess of Oxidants; and (c) Dealkylative
Cyanation of Sulfoxides
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91% yield. Further changes to the temperature, time of
addition, and order of addition did not improve the outcome,
leading us directly to the exploration of the generality of this
protocol with different sulfoxides.
The desired thiocyanates were generally obtained in good to

excellent yields. In particular, hindered mesitylsulfoxide 1c
allowed the isolation of the respective thiocyanate in excellent
99% yield. Different halide substitution patterns were also well
tolerated (2d−2g), and the reaction worked well with the
extended aromatic system of 2h. Electron-rich sulfoxides
furnished the respective aryl thiocyanates cleanly in high yields,
whereas aryl sulfoxides bearing electron-withdrawing groups
afforded the respective thiocyanates 2k,2l with lower efficiency.
Furthermore, it was intriguing to investigate the regioselectivity
of the dealkylation step for a dialkylsulfoxide: In this event,
octylmethylsulfoxide 1m was selectively dealkylated at the
more sterically accessible methyl substituent to give

thiocyanate 2m. Notably, the reaction also proceeded
smoothly on Methiocarb sulfoxide 1n, a pesticide metabolite,
to give the thiocyanated derivative in 73% yield. Next, we
investigated the effect of variation of the alkyl substituent. As
might be expected from a dealkylative process, lower yields are
observed with sulfoxides carrying secondary alkyl moieties, a
clear indicator of the more challenging C−S bond-breaking
event in these cases (2a′ and 2i′). Interestingly, preferential
dealkylation of the homobenzyl substituent was observed over
a methyl substituent.13 The formation of homobenzyl
thiocyanate 2o was achieved by changing the methyl for a
benzyl and a homobenzyl substitutent, leading to a 51% yield
and quantitative (88% isolated yield) formation of 2o,
respectively. Finally, the robustness and scalability of our
methodology was demonstrated by subjecting 1j to the
standard conditions, delivering 1.03 g of 2j (88%) without
the need for column chromatography.
Our proposed mechanism is outlined in Scheme 3a. After

the electrophilic activation of the sulfoxide to intermediate I1,

the addition of TMSCN forms cyanosulfonium triflate I2.
14

This species is readily dealkylated by the counteranion to
reveal thiocyanate and the alkyl triflate.6,7 To provide further
evidence of this mechanism, we subjected cyclic sulfoxide 1p
to the reaction conditions (Scheme 3b). To our delight, the
ring-opened product was obtained in almost quantitative yield,
bearing the expected triflate group on the alkyl chain.
The simple reaction setup of this transformation led us to

investigate the possibility of functionalizing the sulfoxide
directly into diverse substituents in a one-pot fashion (Scheme
4). To this end, the crude reaction mixture of the dealkylative
cyanation was exposed to a range of conditions. For instance,
the addition of a solution of lithium alkynylide in THF
smoothly afforded thioalkyne 3 in 80% isolated yield.15

Similarly, the addition of Ruppert’s reagent (TMSCF3) and
TBAF was successful to afford trifluoromethyl sulfide 4 in one
pot.16 Lastly, sulfonyl cyanide 5 could be obtained by an
oxidation protocol developed by Landais and coworkers using
a combination of hydrogen peroxide and trifluoroacetic
anhydride (TFAA) in dichloromethane.17 These transforma-
tions highlight another advantage of the method presented
herein, namely, the relatively clean formation of the
thiocyanate even before workup of the reaction mixture,

Scheme 2. Substrate Scope for the Dealkylative Cyanation
of Sulfoxidesa

aReactions were performed on a 0.1 to 0.5 mmol scale in CH2Cl2 (0.1
M). bYield determined by 1H NMR using an internal standard. n.d. =
not detected.

Scheme 3. (a) Proposed Mechanism and (b) Reaction with
Cyclic Sulfoxide
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which enables a range of useful downstream processes in cases
where the thiocyanate might not be the desired end product.
In summary, we have presented a straightforward method to

convert sulfoxides into thiocyanates with concomitant C−S
bond cleavage. This dealkylative cyanation is tolerant of a
broad range of substituents, including electron-rich and
-deficient aryl moieties as well as aliphatic sulfoxides.
Furthermore, several one-pot transformations demonstrate
the synthetic utility of the protocol. We believe this method
shall find broad applicability in thiocyanate chemistry.
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