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BACKGROUND AND PURPOSE: Small extracellular vesicles (sEVs) obtained from mesenchymal stromal cells (MSCs) were shown to 
induce ischemic neuroprotection in mice by modulating the brain infiltration of leukocytes and, specifically polymorphonuclear 
neutrophils. So far, effects of MSC-sEVs were only studied in young ischemic rodents. We herein examined the effects of 
MSC-sEVs in aged mice.

METHODS: Male and female C57Bl6/j mice (8–10 weeks or 15–24 months) were exposed to transient intraluminal middle 
cerebral artery occlusion. Vehicle or sEVs (equivalent of 2×106 MSCs) were intravenously administered. Neurological deficits, 
ischemic injury, blood-brain barrier integrity, brain leukocyte infiltration, and blood leukocyte responses were evaluated over 
up to 7 days.

RESULTS: MSC-sEV delivery reduced neurological deficits, infarct volume, brain edema, and neuronal injury in young and aged 
mice of both sexes, when delivered immediately postreperfusion or with 6 hours delay. MSC-sEVs decreased leukocyte 
and specifically polymorphonuclear neutrophil, monocyte, and macrophage infiltrates in ischemic brains of aged mice. In 
peripheral blood, the number of monocytes and activated T cells was significantly reduced by MSC-sEVs.

CONCLUSIONS: MSC-sEVs induce postischemic neuroprotection and anti-inflammation in aged mice.

GRAPHIC ABSTRACT: A graphic abstract is available for this article.
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Small extracellular vesicles (sEVs) including exo-
somes (70–150 nm) mediate complex signaling 
between cells.1 Derived from the right cell type, 

sEVs can promote neurological recovery, neuronal sur-
vival, and brain remodeling.2–5 We have shown recently 
that mesenchymal stromal cell (MSC)-derived sEVs 
induce postischemic neuroprotection by modulating 
brain leukocyte and, specifically, polymorphonuclear 

neutrophil (PMN) infiltrates in mice.6 So far, stud-
ies using MSC-sEVs have been performed in young 
rodents. Ischemic stroke mostly affects old individuals. 
The efficacy of MSC-sEVs in aged rodents was not 
explored. In a head-to-head comparison, we compared 
the effects of MSC-sEVs in young (8–10-week-old) 
and aged (15–24-month-old) mice exposed to intralu-
minal middle cerebral artery occlusion (MCAO).
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METHODS
Detailed data that support the findings of this study are avail-
able from the corresponding author upon reasonable request. 
Experiments were performed with local government approval 

in accordance to E.U. directive 2010/63/EU and local insti-
tutional guidelines. Experimental details, including sample size 
calculation, randomization, blinding, inclusion, and exclusion cri-
teria, and dropouts are reported in the Materials and Methods 
in the Supplemental Material.

MSCs were raised from healthy human bone marrow.6 sEVs 
were harvested from conditioned media using polyethylene gly-
col-6000 precipitation followed by ultracentrifugation.6 MSC-
sEVs were characterized according to International Society of 
Extracellular Vesicles recommendations.7 The sEV particle con-
centration, size, protein content, and the presence of exosome 
markers (CD9, CD63, CD81) were determined as previously 
described.6 MSC and MSC-sEV characteristics are presented 
in Figures S1 and S2 and Table S1 and S2.

Thirty minutes MCAO was induced in young (8–10 weeks) 
or aged (15–24 months) male or female C57BL6/j mice, 
as outlined in Figure S3.6 Laser Doppler flow was recorded 

Nonstandard Abbreviations and Acronyms

ICAM-1	 intercellular cell adhesion molecule-1
MCAO	 middle cerebral artery occlusion
MSC	 mesenchymal stromal cell
NeuN	 neuronal nuclear antigen
PMN	 polymorphonuclear neutrophil
sEV	 small extracellular vesicle

Figure 1. Mesenchymal stromal cell (MSC)-small extracellular vesicles (sEVs) reduce postischemic neurological deficits and 
induce neuroprotection in young and aged mice.
A, Laser Doppler flow (LDF), (B) neurological deficits, (C) infarct volume evaluated by cresyl violet staining, (D) neuronal injury in the ischemic 
striatum assessed by TUNEL/NeuN histochemistry, (E) brain edema examined by cresyl violet staining, and (F) blood-brain barrier breakdown 
determined by IgG extravasation in young and aged male mice exposed to 30 min intraluminal middle cerebral artery occlusion (MCAO). Vehicle 
or MSC-sEVs (2×106 cell equivalents) were intravenously administered immediately after reperfusion. Animals were sacrificed at 72 h post-
MCAO. Representative brain sections are shown. Note the more severe brain injury associated with reduced reperfusion and exacerbated blood-
brain barrier breakdown in aged compared with young mice. Data are means±SD (in A) or box blots with medians (lines inside boxes)/means 
(crosses inside boxes)±interquartile ranges with minimum and maximum values as whiskers (in B–F). *P<0.05/**P<0.01/***P<0.001 (n=9–11 
animals/group). Scale bars: 1 mm (in C, E, and F)/50 μm (in D).
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Figure 2.  Mesenchymal stromal cell (MSC)-small extracellular vesicles (sEVs) reduce leukocyte and specifically 
polymorphonuclear neutrophil (PMN), monocyte, and macrophage infiltrates in the ischemic brain of aged mice.
Total counts of leukocytes and leukocyte subsets in the brains of aged male mice exposed to intraluminal middle cerebral artery occlusion 
(MCAO) evaluated by flow cytometry. Vehicle or sEVs (2×106 cell equivalents) were intravenously applied immediately after reperfusion. Animals 
were sacrificed at 72 h post-MCAO. Data are box blots with medians (lines inside boxes)/means (crosses inside boxes)±interquartile ranges with 
minimum and maximum values as whiskers. *P<0.05/**P<0.01 (n=8–9 animals/group).
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above the middle cerebral artery territory.6 Immediately after 
reperfusion or with 6 hours delay, 200 µL vehicle (normal 
saline) or MSC-sEVs (equivalent of 2×106 MSCs, in normal 
saline) were intravenously administered.6 Neurological defi-
cits were evaluated using the Clark score.6 Blood samples 
were obtained by cardiac puncture. Mice were euthanized 
after 72 hours or 7 days.

Edema-corrected infarct volume and brain edema were 
determined on 20-μm-thick coronal brain sections. Sections 
from the bregma level were immunolabeled for NeuN (neu-
ronal nuclear antigen), extravasated serum IgG, the adhesion 
molecule ICAM-1 (intercellular cell adhesion molecule-1),  
the endothelial marker CD31 (cluster of differentiation-31), the 
pan-leukocyte marker CD45, the PMN marker Ly6G, and the 
T cell marker CD3 (see the Supplemental Material for details). 
NeuN stainings were processed for terminal transferase-medi-
ated dUTP-nick end labeling (TUNEL). Brains and blood sam-
ples were analyzed by flow cytometry. The antibody cocktails 
and gating strategy are summarized in Table S3 and Figure S4.

Data were analyzed by 2-way repeated measurement (longi-
tudinal analyses) or 2-way (cross-sectional analyses) ANOVA fol-
lowed by 2-tailed t tests. For statistical analysis, SPSS22.0 (IBM, 
Armonk, NY) was used. P<0.05 were considered significant.

RESULTS
Laser Doppler flow decreased to ≈10% of baseline dur-
ing MCAO in all groups, followed by laser Doppler flow 
recovery post-MCAO to 81.1±13.7% and 58.5±29.6%, 
respectively, of baseline in young and aged male vehicle-
treated mice (Figure  1A). Laser Doppler flow was not 
influenced by MSC-sEVs in both sexes (Figure 1A; Figure 
S5A). MCAO induced reproducible neurological deficits 
and brain infarcts, which were more severe in aged than 
young male mice (Figure 1B through 1D). Neurological 
deficits, infarct volume, and the number of DNA-frag-
mented (ie, irreversibly injured) TUNEL+/NeuN+ neurons 
and TUNEL+ cells in the ischemic striatum were reduced 
by MSC-sEVs in young and aged male and female mice, 
both when sEVs were administered immediately after 
reperfusion (Figure 1B through 1D; Figures S5B, S5C, 
and S6A) or with 6 hours delay (Figure SVIIB and SVIIC). 
Hence, MSC-sEVs decreased infarct volume at 3 days 
poststroke by 34.0%, 33.6%, and 36.1% in young male, 
aged male, and aged female mice, respectively, when 
sEVs were administered immediately after reperfusion. 
MSC-sEVs decreased brain edema and ICAM-1 abun-
dance, but not IgG extravasation on ischemic microves-
sels of aged male mice, which was not significant in 
young male and aged female mice (Figure 1E and 1F; 
Figure S5D and S6B). Total leukocytes, PMNs (including 
activated PMNs), monocytes (both patrolling and inter-
mediate monocytes), and macrophages were reduced by 
MSC-sEVs in ischemic brains of aged mice (Figure  2; 
Figure S8). Peripheral blood leukocytes were higher in 
young than aged vehicle-treated mice, and blood Ly6G+ 
PMNs higher in aged than young mice (Figure S9). 
MSC-sEVs reduced blood CD45+ leukocytes, which was 

significant in young mice, and decreased blood mono-
cytes and activated T cells in aged mice.

DISCUSSION
We show that MSC-sEVs very similarly induce post-
ischemic neuroprotection and functional neurological 
improvements in young and aged male and female mice, 
when administered immediately or 6 hours post-MCAO. 
Brain leukocyte, including PMN, monocyte, and macro-
phage infiltrates were reduced by MSC-sEVs in aged 
mice. Ischemic injury was more severe in aged than young 
mice. Until now, MSC-sEV effects on stroke outcome in 
rodents have been studied in middle-aged (12-month-
old) mice.8 Perhaps due to differences in experimental 
protocols or MSC properties (MSCs were raised from 
embyonic stem cells), no neuroprotective effects were 
noted.8 In good agreement with the present and our pre-
vious3,6 studies, MSC-EVs were found to modulate brain 
immune responses and to enhance fine motor recovery 
in aged (16–26-year-old) Rhesus monkeys exposed 
to cortical cold injury.9 The combined evidence of this 
previous9 and the present rodent study encourages fur-
ther proof-of-concept studies evaluating the efficacy of 
MSC-sEVs in clinic-relevant stroke settings.
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