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Abstract
Precise spatio-temporal patterns of neuronal action potentials underly e.g. sensory repre-

sentations and control of muscle activities. However, it is not known how the synaptic effica-

cies in the neuronal networks of the brain adapt such that they can reliably generate spikes

at specific points in time. Existing activity-dependent plasticity rules like Spike-Timing-

Dependent Plasticity are agnostic to the goal of learning spike times. On the other hand, the

existing formal and supervised learning algorithms perform a temporally precise compari-

son of projected activity with the target, but there is no known biologically plausible imple-

mentation of this comparison. Here, we propose a simple and local unsupervised synaptic

plasticity mechanism that is derived from the requirement of a balanced membrane poten-

tial. Since the relevant signal for synaptic change is the postsynaptic voltage rather than

spike times, we call the plasticity rule Membrane Potential Dependent Plasticity (MPDP).

Combining our plasticity mechanism with spike after-hyperpolarization causes a sensitivity

of synaptic change to pre- and postsynaptic spike times which can reproduce Hebbian

spike timing dependent plasticity for inhibitory synapses as was found in experiments. In

addition, the sensitivity of MPDP to the time course of the voltage when generating a spike

allows MPDP to distinguish between weak (spurious) and strong (teacher) spikes, which

therefore provides a neuronal basis for the comparison of actual and target activity. For spa-

tio-temporal input spike patterns our conceptually simple plasticity rule achieves a surpris-

ingly high storage capacity for spike associations. The sensitivity of the MPDP to the

subthreshold membrane potential during training allows robust memory retrieval after learn-

ing even in the presence of activity corrupted by noise. We propose that MPDP represents

a biophysically plausible mechanism to learn temporal target activity patterns.

Introduction
Precise and recurring spatio-temporal patterns of action potentials are observed in various bio-
logical neuronal networks. In zebra finches, precise sequences of activations in region HVC are
found during singing and listening to the own song [1]. Also, when spike times of sensory
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neurons are measured, the variability of latencies relative to the onset of a externally induced
stimulus is often higher than if the latencies are measured relative to other sensory neurons [2,
3]; spike times covary. Therefore, information about the stimulus is coded in spatio-temporal
spike patterns. Theoretical considerations show that in some situations spike-time coding is
superior to rate coding [4]. Xu and colleagues demonstrated that through associative training it
is possible to imprint new sequences of activations in visual cortex [5], which shows that there
are plasticity mechanisms which are used to learn precise sequences.

These observations suggest that spatio-temporal patterns of spike activities underlie coding
and processing of information in many networks of the brain. However, it is not known which
synaptic plasticity mechanisms enable neuronal networks to learn, generate, and read out pre-
cise action potential patterns. A theoretical framework to investigate this question is the chron-
otron, where the postsynaptic neuron is trained to fire a spike at predefined times relative to
the onset of a fixed input pattern [6]. A natural candidate plasticity rule for chronotron training
is Spike-Timing Dependent Plasticity (STDP) [7] in combination with a supervisor who
enforces spikes at the desired times. Legenstein and colleagues [8] investigated the capabilities
of supervised STDP in the chronotron task and identified a key problem: STDP has no means
to distinguish between desired spikes caused by the supervisor and spurious spikes resulting
from the neuronal dynamics. As a result every spike gets reinforced, and plasticity does not ter-
minate when the correct output is achieved, which eventually unlearns the desired synaptic
state. The failings of STDP hint at the requirements of a working learning algorithm. Informa-
tion about the type of a spike (desired or spurious) has to be available to each synapse, where it
modulates spike time based synaptic plasticity. Synapses evoking undesired spikes should be
weakened, synapses that contribute to desired spikes should be strengthened, but only until the
self-generated output activity matches the desired one. Plasticity should cease if the output
neurons generate the desired spikes without supervisor intervention. In other words, at the
core of a learning algorithm has to be a comparison of actual and target activity, and synaptic
changes have to be computed based on the difference between the two.

In recent years, a number of supervised learning rules have been proposed to train to fire
temporally precise output spikes in response to recurring spatio-temporal input patterns [6, 9–
11]. They compare the target spike train to the self-generated (actual) output and devise synap-
tic changes to transform the latter into the former. Another group of algorithms performs a
comparison of actual and target firing rate instead of spike times [12–15]. Because they work
with the instaneous firing rate, they do not rely on sampling of discrete spikes and therefore
the comparison is local in time. It is interesting to note that these learning algorithms are impli-
citely sensitive to the current membrane potential, of which the firing rate is a monotonous
function. These algorithms are useful to probe the capabilities of neuronal networks, but when
it comes to biological implementation, there are several open questions. Some of the algorithms
(e.g. [6, 11]) rely on explicit feedback about the error on the output and precise instructions on
how to change input weights from a supervisor of undefined nature. It is not clear how such a
supervisor could be realized, nor how it computes the error and instructions and relays them to
the neuron. Other algorithms (e.g. [10, 12, 14]) use a more implicit supervisor or teacher who
induces spike-like signals for associative learning, while trying to unlearn self-generated activ-
ity. Similarly, the nature of these signals is not clear. They can not be spikes, since those are
stereotypical signals: Spikes have no color. From these observations we can deduce the require-
ments for a biologically plausible learning rule: It should be local in the sense that it does not
need external feedback about the error on the output. Also, ideally the synapse is only sensitive
to signals that are visible in the neuronal dynamics.

In this study, we investigate the learning capabilities of a plasticity rule which relies only on
postsynaptic membrane potential and presynaptic spikes as signals. To distinguish it from
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spike times based rules, we call it Membrane Potential Dependent Plasticity (MPDP). We
derive MPDP from a homeostatic requirement on the voltage and show that in combination
with spike after-hyperpolarisation (SAHP) it is compatible with experimentally observed
STDP of inhibitory synapses [16]. Despite its Anti-Hebbian nature, MPDP combined with
SAHP can be used to train a neuron to generate desired temporally structured spiking output
in an associative manner. During learning, the supervisor or teacher induces spikes at the
desired times by a strong input. Because of the differences in the time course of the voltage, a
synapse can sense the difference between spurious spikes caused by weak inputs and teacher
spikes caused by strong inputs. As a consequence, weight changes are matched to the respective
spike type. Therefore, our learning algorithm provides a biologically plausible answer for the
open question presented above. Additionally, the sensitivity of MPDP to subthreshold voltage
leads to a noise-tolerant network after training with noise free examples. For a quantitative
analysis, we simplify the neuron model and apply our learning mechanism to train a Chrono-
tron [6]. We find that the attainable memory capacity is comparable to that of a range of exist-
ing learning rules [6, 10, 11], however the noise tolerance after training is superior in networks
trained with MPDP in comparison to those trained with the other learning algorithms.

Materials and Methods
In this section, we present the models used. We start with the simpler leaky integrate-and-fire
neuron model (LIF neuron) and use it to derive the MPDP rule. We then show howMPDP can
be applied to a more realistic conductance based integrate-and-fire neuron. Last, we describe
the Chronotron setup we use for quantitatively assessing the memory capacity of MPDP.

The LIF neuron and derivation of MPDP
We investigated plasticity processes in a simple single-layered feed-forward network with N
(presynaptic) input neurons and one (postsynaptic) output neuron (see Fig 1A). For the input
population we stochastically generate spatio-temporal spike patterns which are kept fixed
throughout training (frozen noise). We denote the time of the k-th spike of presynaptic neuron
with index i as tki .

The postsynaptic neuron is modeled as a LIF neuron. The evolution of the voltage V(t) over
time is given by

tm _V ¼ �V þ Isyn þ Iext : ð1Þ

Isyn and Iext are synaptic and external currents, respectively, and τm is the membrane time con-
stant of the neuron. If the voltage reaches the firing threshold Vthr at time tpost, the neuron gen-
erates a spike and undergoes immediate reset to the reset potential Vreset < 0. In the absence of
any input currents, the neuron relaxes to an equilibrium potential of Veq = 0. Synaptic currents
are given by

ts _I syn ¼ �Isyn þ
X

i

wi

X
k

d t � tki
� �

: ð2Þ

τs is the decay time constant of synaptic currents and wi is the synaptic weight of presynaptic
neuron i. For ease of derivation of MPDP, we reformulated the LIF model. Because of the lin-
earity of Eq 1, we can write the voltage as the sum of kernels for postsynaptic potentials (PSPs)
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Fig 1. A: The model network has a simple feed-forward structure. The top picture shows three pre- and one postsynaptic neurons, connected by synapses.
Line width in this example corresponds to synaptic strength. Bottom picture shows the postsynaptic membrane potential in response to the input.B:
Illustration of Anti-Hebbian Membrane Potential Dependent Plasticity (MPDP). A LIF neuron is presented twice with the same presynaptic input pattern.
Excitation never exceeds Vthr. MPDP changes synapses to counteract hyperpolarization and depolarization occuring in the first presentation (blue trace),
reducing (arrows) them on the second presentation (green trace).C: Homeostatic MPDP on inhibitory synapses is compatible with STDP as found in
experiments. Weight change is tested for different temporal distances between pre- and postsynaptic spiking, with the presynaptic neuron being an inhibitory
neuron. Δw here denotes the change of the increase in conductance in an inhibitory synapse upon a presynaptic spike. The resulting spike timing
characteristic is in agreement with experimental data on STDP of inhibitory synapses [16]. Note that an increase of the weight leads to a suppressive effect
on the membrane potential.

doi:10.1371/journal.pone.0148948.g001
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ε(s) and resets R(s):

VðtÞ ¼
X

i

wi

X
k

εðt � tikÞ þ
X
tpost

Rðt � tpostÞ þ
Z1

0

kðt � sÞIextðsÞds : ð3Þ

κ = exp(−(t − s)/τm) is the passive response kernel by which external currents are filtered. The
other kernels are

εðsÞ ¼ YðsÞ 1

tm � ts
ðexpð�s=tmÞ � expð�s=tsÞÞ

RðsÞ ¼ YðsÞðVreset � VthrÞexpð�s=tmÞ:
ð4Þ

Θ(s) is the Heaviside step function. This formulation is also known as the simple Spike
Response Model (SRM0, [17]).

We next derive the plasticity rule from the naive demand of a balanced membrane potential:
The neuron should not be hyperpolarized nor too strongly depolarized. This is a sensible
demand for the dynamics of a neuronal network, because it holds the neurons at sensitive
working points and keeps metabolic costs down. For the formalization of the objective, we
introduce an error function which assigns a value to the current voltage:

2EðVðtÞÞ ¼ g VðtÞ � WD½ �þ
� �2 þ WP � VðtÞ½ �þ

� �2
; ð5Þ

where ϑD, P are thresholds for plasticity, and γ is a factor that scales synaptic long-term depres-
sion (LTD) and long-term potentiation (LTP) relative to each other. [.]+ denotes the rectifying
bracket, i.e. [x]+ = x if x> 0 and zero else. Whenever V(t)> ϑD or V(t)< ϑP, the error function
is greater than zero. Therefore, to minimize the error, the voltage must stay between both
thresholds. In this study, we choose ϑP = Veq. ϑD is set between the firing threshold and Veq.
From the error function, a weight change rule can be obtained by computing the partial deriva-
tive of E(t) with respect to weight wi:

@EðVðtÞÞ
@wi

¼ g VðtÞ � WD½ �þ
@VðtÞ
@wi

� WP � VðtÞ½ �þ
@VðtÞ
@wi

¼ g VðtÞ � WD½ �þ � WP � VðtÞ½ �þ
� �X

k

ε t � tki
� �

:

ð6Þ

The MPDP rule then reads

_wi ¼ �Z
@EðVðtÞÞ

@wi

¼ Z �g VðtÞ � WD½ �þ þ WP � VðtÞ½ �þ
� �X

k

ε t � tki
� �

: ð7Þ

η is the learning rate. The weights change along the gradient of the error function, i.e. MPDP is
a gradient descent rule that minimizes the error resulting from a given input pattern.

The conductance based LIF neuron
The simple model above suffers from the fact MPDP is agnostic to the type of synapse. In prin-
ciple, MPDP can turn excitatory synapses into inhibitory ones by changing the sign of any
weight wi. Since this is a violation of Dale’s law, we present a more biologically realistic scenario
involving MPDP. We split the presynaptic population into Ne excitatory and Ni inhibitory
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neurons. The postsynaptic neuron is modeled as a conductance based LIF neuron governed by

Cm

dV
dt

¼ �gLðV � VLÞ � ðgs þ gf ÞðV � VhÞ � gexðV � VexÞ � ginðV � VinÞ ; ð8Þ

where V denotes the membrane potential, Cm the membrane capacitance, VL the resting poten-
tial, gL the leak conductance, Vi and Vex the reversal potential of inhibition and excitation,
respectively and gin and gex their respective conductances. The spike after-hyperpolarisation is
modeled to be biphasic consisting of a fast and a slow part, described by conductances gf and gs
that keep the membrane potential close to the hyperpolarisation potential Vh. When the mem-
brane potential surpasses the spiking threshhold Vthr at time tpost, a spike is registered and the
membrane potential is reset to Vreset = Vh. All conductances are modeled as step and decay
functions. The reset conductances are given by

tf ;s _g f ;s ¼ �gf ;s þ Dgf ;s
X
tpost

d t � tpost
� �

; ð9Þ

where Δgf, s is the increase of the fast and slow conductance at the time of each postsynaptic
spike, respectively. They decay back with time constants τf< τs. The input conductances gex
and gin are step and decay functions as well, that are increased by wi when presynaptic neuron i
spikes and decay with time constant τs,

ts
dgex
dt

¼ �gex þ
X
i2exc

wi

X
k

d t � tki
� �

; ð10Þ

for excitatory synapses and

ts
dgin
dt

¼ �gin þ
X
j2inh

wj

X
k

d t � tkj

� �
f ð11Þ

for inhibitory synapses. wi, j denotes the strength of synapse i, j, which can be either in the set
of excitatory synapses i 2 exc or inhibitory synapses j 2 inh.

In this model, we employ MPDP as defined by Eq 7 with the following restrictions:

• Technically, there is no fixed PSP kernel for the conductance based model, since the ampli-
tude of a single PSP depends on the current voltage. Still, we use the same rule by keeping
track of “virtual PSPs” given by the kernel ε(s), Eq 4 for each synapse that do not affect the
neuronal dynamics.

• MPDP affects only inhibitory synapses. Excitatory ones are kept fixed.

• Because inhibitory synapses have negative impact on the neuron, we exchange LTP and LTD

in the MPDP rule to account for that. Formally, we introduce thresholds WID and WIP.

As in the linear LIF neuron model, WI
D lies at the equilibrium potential VL, and an inhibitory

synapse depresses whenever it is active and VðtÞ < WI
D. Similarly, when VðtÞ > WI

P , any active
inhibitory synapse gets potentiated. Note that the qualitative effect on the membrane potential
remains unchanged to the example in Fig 1B.

Evaluation of memory capacity
The memory capacity of a typical neuronal network in a given task crucially depends on the
learning rules applied (for an example in spiking networks see [6]). Recently, it was shown that
the maximal number of spiking input-output associations learnable by a postsynaptic neuron
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lies in the range of 0.1 to 0.3 per presynaptic input neuron [11]. The exact number depends on
a parameter t ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

tm � tsp
of the neuron and the average postsynaptic firing rate. It was shown

that the HTP algorithm has optimal capacity, and for small window of tolerance FP-Learning
achieves similar capacity as the HTP method [11]. Here, we evaluate the memory capacity
attainable with MPDP and compare it with ReSuMe [10], E-Learning [6] and FP-Learning
[11]. We use the latter rule as a reference for maximal capacity, although our chosen window
of tolerance is not small. For ease of comparison, we adapt the Chronotron setting introduced
by Florian [6], use the simple neuron model of the LIF neuron and let synapses change their
sign. The definitions of input-output associations between spatio-temporal spiking patterns
and consequently the memory capacity is similar to the ones used in Tempotron and Percep-
tron training [18, 19]. We provide a short description of ReSuMe, E-Learning and FP-Learning
below.

Chronotron setting. The goal of the Chronotron is to imprint input-output associations
into the weights. One input pattern consists of spatio-temporal spiking activity of the N input
neurons with duration T = 200ms. In each pattern, each input neuron spikes exactly once, with
spike times tmi drawn i.i.d. from the interval [0, T]. μ 2 1, . . ., P indexes the patterns. For each
input pattern we draw one desired output spike time tmd i.i.d. from the interval [Δedge, T − Δedge],
with Δedge = 20ms. We reduce the length of the output interval to ensure that each output spike
in principle can be generated by the input. If the desired output spike time is too early there
might be no input spikes earlier than td, which makes it impossible for the postsynaptic neuron
to generate the desired output. After all P patterns have been generated, we keep them fixed for
the duration of network training and recall testing. Training is organized in learning trials and
learning blocks. A learning trial in MPDP consists of the presentation of one of the input pat-
terns and concurrent induction of a teacher spike at time tmd by injection of a supratheshold
delta-pulse current into the postsynaptic neuron by the supervisor. In all other learning rules,
the supervisor passively observes the output activity and changes weights afterwards based on
the actual output. A learning block consists of P learning trials, with each of the different input
patterns presented exactly once in randomized order. After each learning trial, synaptic weights
are updated. After each learning block, we present the input patterns again to test the recall
quality. Supervisor intervention and synaptic plasticity are switched off for recall trials.

Computing the capacity. We test the capacity of each learning rule (MPDP, ReSuMe,
E-Learning and FP-Learning) by training networks of different sizes, N 2 {200, 500, 1000,
2000}. Because we assume that the number of patterns or input-output associations that can be
learned scales with N [6, 11], we introduce the load parameter α with P = αN. We pick discrete
α 2 [0.01, 0.3]. For each combination of α and N, we generate 50 different realizations of P pat-
terns and N initial weights, which are drawn from a gaussian distribution with mean and stan-
dard deviation T�30mV/N. For a non-spiking neuron (i.e. Eq 1 with Vthr � 1) this would result
in an average membrane potential of 30mV before learning. As a result initially the postsynap-
tic neuron fires several spurious spikes. This way we test the ability of a learning rule to extin-
guish them.

After each learning block, the recall is tested. Recall is counted as a success if the postsynap-
tic neuron fires exactly one output spike in a window of length 4ms centered around tmd , and no
additional spike at any time. We define success loosely, because MPDP and FP-Learning do
not converge onto generating the output spike exactly at tmd .

We train each network for a fixed number of learning blocks (10000 in the case of MPDP,
20000 for the others). Because we evaluate recall after each learning block, we can check
whether the system has converged. We define capacity as the “critical load” α90, where on aver-
age 90% of the spikes are recalled after training. To approximate it, we plot the fraction of

Learning of Spikes with Membrane Potential Dependent Plasticity

PLOS ONE | DOI:10.1371/journal.pone.0148948 February 22, 2016 7 / 28



patterns correctly learned as a function of the load α. The critical load is defined as the point
where a horizontal line at 90% correct recall meets the graph.

Testing noise tolerance. The threshold for LTD, ϑD, is not only a way to impose homeo-
stasis on the synaptic weights. It is also a safeguard against spurious spikes that could be caused
by fluctuations in the input or membrane potential. The reason is that after convergence of
weight changes for known input patterns the voltage mostly stays below ϑD for all non spike
times due to the repulsion of the membrane potential away from threshold. This leaves room
for the voltage to fluctuate without causing spurious spikes.

We apply noise in two conditions. First we want to know if a trained network is able to recall
the learned input-output associations in the presence of noise, i.e. we train the network first
and apply noise only during the recall trials. Second we test if a learning rule can be used to
train the network in the presence of noise. In this condition, we test recall noise free.

We induce noise in two different ways. One way is to add a stochastic external current

IextðtÞ ¼
sinputffiffiffiffiffi
tm

p ZðtÞ : ð12Þ

η(t) is a gaussian white noise process with zero mean and unit variance. The factor makes sure
that the actual noise on the membrane potential has standard deviation σinput.

The other way is to jitter the input spike times. Instead of using presynaptic spike times tmi ,
we let the neurons spike at times

t̂mi ¼ tmi þN ð0; sjitterÞ ; ð13Þ

whereN ð0; sÞ is a random number drawn from a gaussian distribution centered at zero with
standard deviation σ.

If we apply noise only during recall, we use the weights after the final learning block and for
each noise level σinput, jitter we average the recall over 50 separate noise realizations and all train-
ing realizations.

Although both procedures lead to random fluctuations of the membrane potential in each
pattern presentation, they lead to different results. The reason is that by using jitter on the
input spike times, the statistics of the weights impact on the actual amount of fluctuations of
the voltage. This has noticable consequences for the different learning rules.

Learning algorithms used for quantitative comparison
Our goal is a quantitative analysis of the memory capacity of MPDP in the Chronotron task.
We feel this necessitates a comparison to other learning rules. We chose ReSuMe [10], which is
a prototypical learning rule for spiking output, E-Learning [6] as a powerful extension, and
FP-Learning [11], which was shown to achieve optimal memory capacity in the task. Here, we
provide a short description of all three rules.

The δ-rule, ReSuMe and the Pfister-rule. The δ-rule, also called the Widrow-Hoff-rule
[19], lies at the core of a whole class of learning rules used to teach a neuronal network some
target activity pattern. Synaptic changes are driven by the difference of desired and actual out-
put, weighted by the presynaptic activity:

DwðtÞ / fpreðtÞ f targetpost ðtÞ � f actualpost ðtÞ
� �

: ð14Þ

We denote pre- and postsynaptic firing rate with fpre, post. The target activity f
target
post ðtÞ is some

arbitrary time dependent firing rate. The actual self-generated activity f actualpost ðtÞ is given by the
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current input or voltage of the postsynaptic neuron (depending on the formulation), trans-
formed by the input-output function g(h) of the neuron.

ReSuMe (short for Remote Supervised Method) is a supervised spike-based learning rule
first proposed in 2005 [10]. It is derived from the Widrow-Hoff rule for rate-based neurons,
applied to deterministic spiking neurons. Therefore, continuous time dependent firing rates
get replaced with discrete spiking events in time, expressed as sums of delta-functions. Because
these functions have zero width in time, it is necessary to temporally spread out presynaptic
spikes by convolving the presynaptic spike train with a temporal kernel. Although the choice of
the kernel is free, usually a causal exponential kernel works best. We also used ReSuMe with a
PSP kernel to train Chronotron, but the results were worse than with the exponential kernel
(data not shown). The weight change is given by

_wðtÞ / SdðtÞ � SoðtÞ½ � ad þ
Z1

0

exp ð�s=tplasÞSiðt � sÞds
2
4

3
5 ; ð15Þ

where Sd(t) is the desired, So(t) is the self-generated and Si(t) the input spike train at synapse i.
τplas is the decay time constant of the exponential kernel. ad is a constant which makes sure that
the actual and target firing rates match; learning also works without, therefore we choose ad = 0
in our study. ReSuMe converges when both actual and desired spike lie at the same time,
because in this case the weight changes cancel exactly.

In recent years, several rules for spiking neurons have been devised which can be viewed as
an extension of the δ-rule to stochastic spiking neurons [12–15]. With the “PSP sum”

li ¼
X
k

εðt � tki Þ ; ð16Þ

the weight change takes the form

_wi / SteacherðtÞ � rðVðtÞÞ½ �f ðrðVðtÞÞÞliðtÞ : ð17Þ

Steacher(t) is a stochastic realization of a given desired time dependent target firing rate, ρ(V(t))
is the instantaneous firing rate, which depends on the current membrane potential, and f(ρ) is
a function which additionally scales the weight changes depending on the current firing rate.
This rule was first derived by Pfister and colleagues in 2006. They started from the probability
of a target spike train given the time course of the voltage and then computed the derivative of
this probability with respect to the weights, which results in the weight change rule Eq 17.

Xie and Seung [13] derived a similar rule in a reward based framework, which exploits the
correlation between fluctuations in the neuronal activity and a global reward signal. In particu-
lar, their rule uses the self-generated activity Sout(t) instead of Steacher(t) in Eq 17. Clamping the
output neuron to spike only at the desired spike times and keeping the reward positive and
constant transforms their learning rule into the Pfister-rule.

E-Learning. E-Learning was conceived as an improved learning algorithm for spike time
learning [6]. It is derived from the Victor-Pupura distance (VP distance) between spike trains
[20]. The VP-distance is used to compare the similarity between two different spike trains.
Basically, spikes can be shifted, deleted or inserted in order to transform one spike train into
the other. Each action is assigned a cost, and the VP distance is the minimum transformation
cost. The cost of shifting a spike is proportional to the distance it is shifted and weighted with a
parameter τq. If the shift is too far, it gets cheaper to delete and re-insert that spike.

E-Learning is a gradient descent on the VP distance and has smoother convergence than
ReSuMe. In this rule, first the actual output spike train is compared to the desired spike train.
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With the VP algorithm it is determined if output spikes must be shifted or erased or if some
desired output spike has no close actual spike so a new spike has to be inserted. Based on this
evaluation, actual and desired spikes are put in three categories:

• Actual output spikes are “paired” if they have a pendant, i.e. a desired spike close in time and
no other actual output spike closer (and vice versa). These spikes are put into a set S.

• Unpaired actual output spikes that need to be deleted are put into the set D.

• Unpaired desired output spike times are put into the set J, i.e. the set of spikes that have to be
inserted.

To clarify, S contains pairs of “paired” actual and desired spike times, D contains the times
of all unpaired actual spikes, and J the times of unpaired desired spike times. With the PSP sum
as above, the E-Learning rule is then

Dwi ¼ g
X
tins2J

liðtinsÞ �
X
tdel2D

liðtdelÞ þ
gr
t2q

X
ðtact ;tdesÞ2S

ðtact � tdesÞliðtactÞ
2
4

3
5 : ð18Þ

γ is the learning rate, and γr is a factor to scale spike shifting relative to deletion and insertion.
The former two terms of the rule correspond to ReSuMe, except the kernel is not a simple

exponential decay. The advantage of E-Learning is that the weight changes for spikes close to
their desired location are scaled with the distance, which improves convergence and conse-
quentially memory capacity.

FP-Learning. FP-Learning [11] was devised to remedy a central problem in learning rules
like ReSuMe and others. Any erroneous or missing spike “distorts” the time course of the
membrane potential behind it compared to the desired final state. This creates a wrong envi-
ronment for the learning rule, and weight changes can potentially be wrong. Therefore, the
FP-Learning algorithm stops the learning trial as soon as it encounters any spike output error.
Additionally, FP-Learning introduces a margin of tolerable error for the desired output spikes.
An actual output spike should be generated in the window of tolerance [td − �, td + �] with the
adjustable margin �. Weights are changed on two occasions:

1. If a spike occurs outside the window of tolerance for any td at time terr, then weights are
depressed by Δwi / − λi(terr). This also applies if the spike in question is the second one
within a given tolerance window.

2. If t = td + ε and no spike has occured in the window of tolerance, then terr = td + ε and Δwi

/ λi(terr).

In both cases, the learning trial immediately ends, to prevent that the “distorted”membrane
potential leads to spurious weight changes. Because of this property, this rule is also referred to
as “First Error Learning”.

Parameters of the simulations
Conductance based neuron. The parameters used are as follows: Cm = 0.25nF, gL = 20nS,

VL = − 70mV, Vthr = − 50 Vex = − 40mV, Vh = Vreset = Vin = − 75mV, Δgs = 0.001, Δgf = 0.04,
τf = 3ms, τs = 12.5ms, and τsyn = 3ms. The size of the neuronal populations is Ni = 142 and Ne =

571. For the MPDP rule, the parameters are: WI
D ¼ �70mV , WI

P ¼ �52mV , γ = 100, η = 5�10−8
and τm = Cm/gL = 12.5ms.

Simple LIF neuron. The neurons parameters are τs = 3ms, τm = 10ms and Vthr = 20mV.
The reset potential is Vreset = − 5mV with MPDP and Vreset = 0mV for the other learning rules.
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For MPDP we use ϑD = 18mV, ϑP = 0mV, γ = 14, and η = 5�10−4. With ReSuMe, we find τplas =
10ms, and η = {10, 4, 2, 1}�10−10 for 200, 500, 1000 and 2000 neurons as good parameters.
FP-Learning has only a single free parameter, the learning rate η = 10−9.

Numerical procedures. All networks with MPDP were numerically integrated using a
simple Euler integration scheme. The simulations for the conductance based LIF neuron were
written in Python and used a step size of 0.025 ms. The neurons parameters are set to values
that are both biologically realistic and similar to those of the quantitative analysis. For refer-
ence, we put them into the S1 Complete Code.

The simulations of the simple neuron and scripts for analysis were written in Matlab (Math-
works, Natick, MA). Here, we used a step size of 0.1 ms.

The networks that were trained with ReSuMe, E-Learning and FP-Learning were simulated
using an event-based scheme [21], since in these rules the subthreshold voltage is not important.

The parameters like learning rates and thresholds we use are set by hand for all plasticity
rules. Before doing the final simulations, we did a search in parameter space by hand to find
combinations which yield high performance in the Chronotron task.

The error we report in the figures throughout this article is the standard error of the mean
(SEM) over all realizations.

Results
In the following, we start with presenting our Membrane Potential Dependent Plasticity rule
(MPDP). We constructed a simple yet biologically plausible feed-forward network and show
that MPDP, when tested with spike pairs, is equivalent to inhibitory Hebbian STDP as reported
by Haas and colleagues [16]. We then show that with MPDP the output neuron of this example
can be trained to generate spikes at specific times. Lastly, we turn to a simplified model to eval-
uate and compare with other rules the attainable memory capacity with MPDP, as well as its
noise tolerance.

Membrane Potential Dependent Plasticity
We formulated a basic homeostatic requirement on the membrane potential of a neuron. The
neuron should stay in a sensible working regime; in other words, its voltage should be con-
fined to moderate values. We formalized this by introducing two thresholds on the voltage.
The upper threshold ϑD lies between the firing threshold and the resting potential, and the
lower threshold ϑP is equal to the resting potential. They define the bounds on the postsynap-
tic membrane potential V(t). Using these thresholds, we introduce an error function to mea-
sure the deviation of the membrane potential, see Eq 5 in Methods. Using a simple LIF
neuron model with linear dynamics below the firing threshold, we computed an update rule
for the weights:

_wi ¼ Z �g VðtÞ � WD½ �þ þ WP � VðtÞ½ �þ
� �X

k

ε t � tki
� �

; ð19Þ

where η is the learning rate, γ is a factor that scales depression relative to potentation, ε(s) is
the kernel of the postsynaptic potentials, and tki is the time of the kth spike in input neuron i.
Weight changes with this rule “bend” the voltage at the times of non-zero error towards the
region between the two thresholds. Fig 1B shows how MPDP affects the voltage for recurring
input activity.
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Homeostatic MPDP on inhibitory synapses is compatible with STDP
We first investigated the biological plausibility of a network with MPDP. Experimental studies
on plasticity of cortical excitatory neurons often find Hebbian plasticity rules like Hebbian
Spike Timing Dependent Plasticity (STDP; see [22–26] for examples). Reports on Anti-Heb-
bian plasticity or sensitivity to subthreshold voltage in excitatory cortical neurons are scarce
[27–30]. However, it has been reported that plasticity in (certain) inhibitory synapses onto
excitatory cells has a Hebbian characteristic [16], i.e. synapses active before a postsynaptic
spike become stronger, those active after the spike become weaker. The net effect of this rule
on the postsynaptic neuron is Anti-Hebbian, because weight increases tend to suppress output
spikes. There are few other reports on inhibitory STDP [31], especially with a symmetric Heb-
bian window [32], which is implied to play a role in balancing excitation and inhibition in cor-
tex [33].

In experimental investigations of STDP, neurons are tested with pairs of pre- and postsyn-
aptic spikes. We mimicked this procedure in a simple network consisting of one pre- and one
postsynaptic neuron, and one “experimentator neuron”. The postsynaptic neuron was modeled
as a conductance based LIF neuron. The experimentator neuron has a fixed strong excitatory
synaptic weight onto the postsynaptic neuron, so that a spike of the experimentator neuron
causes a postsynaptic spike. We used it to control the postsynaptic spike times. The presynaptic
neuron is inhibitory and its weight is small compared to the experimentator, so that it has neg-
ligible influence on the postsynaptic spike time. We probed synaptic plasticity by inducing a
pair of a pre- and a postsynaptic spike at times tpre and tpost, and vary tpre while keeping tpost
fixed. The resulting weight change of the inhibitory synapse as a function of timing difference
is shown in Fig 1C. The shape of the function is in qualitative agreement with experimental
results [16].

It is necessary to assume the presence of an “experimentator neuron”. The reason is that the
shape of the STDP curve explicitely depends on the specifics of spike induction since the
MPDP rule is sensitive only to subthreshold voltage. For example, using a delta-shaped input
current would lead to a LTD-only STDP curve, since the time the voltage needs to cross the fir-
ing threshold starting from equilibrium is infinitely short.

Homeostatic MPDP allows associative learning
At first glance, it might seem unlikely that a homeostatic plasticity mechanism can implement
associative learning. If the membrane potential is close to firing threshold, implicating a high
probability for spiking, inhibitory synapses get potentiated, suppressing the membrane poten-
tial if the input occurs again. If the membrane potential is below the resting state, which means
that the neuron is quiescent, inhibitory synapses get depressed. Because of the effect on the
membrane potential, we refer to this type of plasticity as “Anti-Hebbian” [28], since it seems to
be opposed to Hebbian learning which states “those who fire together, wire together”. How-
ever, the neuronal dynamics shows somewhat stereotypic behavior before, during and after
each spike. To induce a spike, the neuron needs to be depolarized up to Vthr, where active feed-
back processes kick in. These processes cause a very short and strong depolarization and a sub-
sequent undershoot of the membrane potential (hyperpolarization), from where it relaxes back
to equilibrium [34].

To demonstrate the capability of MPDP for learning of exact spike times, we constructed a
simple yet plausible feed-forward network of Ni inhibitory and Ne excitatory neurons. Synaptic
weights were initialized randomly. Both populations projected onto one conductance based
LIF neuron. We presented this network frozen poissonian noise as the sole presynaptic firing
pattern (Fig 2, top). Excitatory synapses were kept fixed and inhibitory synapses changed
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Fig 2. Hebbian learning with homeostatic MPDP on inhibitory synapses. A conductance based
integrate-and-fire neuron is repeatedly presented with a fixed input pattern of activity in presynaptic inhibitory
or excitatory neuron populations (top row—blue dots are excitatory, red dots are inhibitory spike times). The
number of input neurons is Ni = 142 for the inhibitory population andNe = 571 for the excitatory population.
Second row shows the membrane potential before learning. The upper red line is the threshold for
potentation of inhibitory synapses WI

P, lower red line is resting potential and threshold for depression WI
D. The

third row shows the voltage as before with added teacher input by an additional population of excitatory
neurons; this input induces a spike at t = 100ms. The fourth row shows the voltage after 100 learning steps
with MPDP on inhibitory synapses only, with teacher input, the next row shows the recall without teacher. The
spike is almost at the same position in the recall case. The last row shows the voltage after 1000 recall trials
during which the inhibitory synapses were allowed to change under the MPDP rule. Despite this, the output
spike is still close to the desired time, which shows that the output is approximately stable.

doi:10.1371/journal.pone.0148948.g002
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according to MPDP. First we let the network learn to balance all inputs from the excitatory

population such that the membrane potential mostly stays between the upper threshold WI
P and

the lower threshold WI
D. We then introduced the teacher input as a strong synaptic input from a

different source (e.g. a different neuron population, Fig 2, second to top). Balancing the volt-
ages before actual training improves the reliability of spike generation by the teacher and there-
fore facilitates learning. After repeated presentations of the input pattern with the teacher
input, inhibition around the teacher spike is released such that after learning the output neuron
will spike close to the desired spike time even without the teacher input (Fig 2, third and fourth
to top). Due to the sterotypical shape of the membrane potential around the teacher spike, a
homeostatic learning rule is able to perform associative learning by release of inhibition.

To further investigate the learning process, we simplified the setup. Instead of only inhibi-
tory synapses being subject to plasticity, from now on all synapses were subject to MPDP.
Therefore, crossing of the upper threshold ϑD induces a decrease of synaptic weights, while
hyperpolarization below the threshold ϑP induces potentation of synaptic weights. All weights
are allowed to change their sign. A population of N presynaptic neurons fires one spike in each
neuron at equidistant times. They project onto a single postsynaptic LIF neuron and all weights
are zero initially. In each training trial an external delta-shaped suprathreshold current is
induced at the postsynaptic neuron at a fixed time relative to the onset of the input pattern
(teacher spike). The postsynaptic neuron reaches its firing threshold instantaneously, spikes
and undergoes reset into a hyperpolarized state (blue trace on the left in Fig 3). This is mathe-
matically equivalent to adding a reset kernel at the time of the external current [11]. Because
we set ϑP = Veq = 0, potentiation is induced in all synapses which have temporal overlap of
their PSP-kernel with the hyperpolarization. If the input pattern is presented a second time
without the external spike the membrane potential shows a small bump around the time of the
teacher spike. We continued to present the same input pattern, alternating between teaching
trials (with teacher spike) and recall trials without teacher and with synaptic plasticity switched
off. Plasticity is Hebbian until the weights are strong enough such that there is considerable
depolarization before the teacher spike, inducing synaptic depression. Also, spike after-hyper-
polarization is partially compensated by excitation, which reduces the window for potentiation.
Continuation of learning after the spike association has been achieved (second to right plot)
shrinks the windows for depression and potentiation, until they are very narrow and very close
to each other in time. Because synaptic plasticity is determined by the integral over the normal-
ized PSP during periods of depolarization and hyperpolarization, depression and potentiation
become very similar in magnitude for each synapse and synaptic plasticity slows down nearly
to a stop. Furthermore, the output spike has become stable. The time course of the membrane
potential during teaching and recall trials is almost the same (Fig 3 right).

Quantitative evaluation of MPDP
In the following, we perform a quantitative assessment of the properties of MPDP, especially
memory capacity and recall behavior under input noise. For comparison, we perform the same
assessment using a broad range of contemporary supervised learning rules (ReSuMe, E-Learn-
ing and FP-Learning, see Methods). We find moderately decreased memory capacity but
enhanced noise robustness with MPDP compared to the other learning rules.

Memory capacity. We numerically evaluated the capacity of MPDP to train a network to
produce precise spike times using the simplified feed-forward network described above. To
simplify comparing results, we constructed input patterns and desired output spike times using
what we call the the Chronotron framework [6]. Input patterns have length T = 200ms, with
one spike in each of the N input neurons. Spike times are uniformly distributed over the
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interval and drawn independently for each presynaptic neuron. The time of the one desired
output spike is also drawn from a uniform distribution. To test the capacity, we generate net-
works of different sizes N, and train the networks with different loads α = P/N, where P is the
number of input-output associations to be learned. We introduce the load parameter α, since
the memory capacity usually scales with N [6, 11]. Networks are trained in semi-batch mode.
In a learning trial, one of the P patterns is presented concurrently with the teacher signal and
the weights are updated immediately afterwards. A learning block consists of the presentation
of all P patterns in randomized order. After convergence of training, we define the capacity as
the load α90 where still 90% of patterns are recalled without error (i.e. failing to generate the
desired spike or additional spurious spikes).

During training, we monitored the success of recall over time. The network of size N = 1000
generates the desired output spikes within the window of tolerance after 600 learning blocks
(Fig 4A). However, weights are still changed by training, and continuation of it reduces the dif-
ference of actual and desired output spike time (see Fig 4B). After around 2000 learning blocks
the average temporal error of all recalled spikes stays constant for the remainder of training.
For α� 0.1 the self-generated output spike is on average less than 0.5 ms away from the desired
time. The final fraction of recalled spikes and average distance are shown in Fig 4C and 4D.
The smallest network (N = 200) never reaches perfect recall, but has a capacity of α90 = 0.095.
All other networks achieve perfect recall up to a load of α = 0.1 and a capacity of α90 � 0.135.
The average distance of spikes from teacher grows with the load, but stays below 0.5 ms.

We also checked if the memory capacity in terms of the length of learnable patterns with
constant output spike rate is the same, compared to the simpler Chronotron setting. For the
input neurons we generated poissonian spike trains with rate rin of length T = (αN)/rout, where
αN = P is the number of output spikes we want to imprint, and rout = 5Hz = rin is the average
output firing rate. We then generated a target spike train with exactly P spike times by succes-
sively inserting spike times, while ensuring a minimal distance of 20ms between target spike

Fig 3. Hebbian learning with homeostatic MPDP. A postsynaptic neuron is presented the same input pattern multiple times, alternating between teaching
trials with teacher spike (blue trace) and recall trials (green trace) to test the output. Initially, all weights are zero (left). The green area between the voltage
and threshold for potentiation WP signifies the total amount of potentiation, similarly the red area between voltage and WD for depression; the latter is only
visible in the second to right panel. Learning is Hebbian initially until strong depolarization occurs (second to left). When the spike first appears during recall, it
is still not at the exact location of the teacher spike (second to right). Continued learning moves it closer to the desired location. Also, the time windows of the
voltage being above WD and below WP shrink and move closer in time (right). Synaptic plasticity almost stops. The number of learning trials before each state
is 1, 16, 53, and 1600 from left to right.

doi:10.1371/journal.pone.0148948.g003
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Fig 4. Capacity of networks with MPDP. A: Fraction of pattern where the network generates an output spike within 2 ms distance of target time tmd , and no
spurious spikes. Network size is N = 1000. The desired spikes are learned within� 600 steps.B: Average distance of output spikes to target for the same
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times. We trained and checked success the same as above, and found no significant difference
between the capacities in both conditions (data not shown).

To put these results into perspective, we trained Chronotrons again using three other learn-
ing rules, ReSume [10], E-Learning [6], and FP-Learning [11], and computed the respective
memory capacity. Fig 4 shows the capacity of all plasticity rules. The upper bound established
by FP-Learning is α90 � 0.26. MPDP is capable of storing half of the maximal possible number
of associations in the weights.

Training and recall with noise on the membrane potential. Next, we turned to an evalu-
ation of memory under the influence of noise. Having a noise free network is a highly idealized
situation and neurons in the brain are more likely to be subject to noise, be it because of inher-
ent stochasticity of spike generation or the fact that sensory inputs are almost never “pure”, but
likely to arrive with additional more or less random inputs. First, we tested training and recall
of spike times using an additional random input current of a given variance σ on the postsyn-
aptic neuron. The random input is a gaussian white noise process with zero mean, and because
inputs decay with the membrane time constant, this results in a additional random walk with a
restoring force. We chose the variance of the input current to result in a random walk on the
membrane potential with width σinput 2 {0, 0.2, 0.5, 1, 2, 5}mV. The width is the standard devia-
tion of the random walk after time τm. Afterwards, we evaluated the critical load of networks of
size N = 200, 500, 1000 depending on the noise level during training and during recall. The
results are shown in Fig 5.

With MPDP, the network trained without noise can perfectly recall patterns up to a load of
α = 0.1 even with additional noise input of σinput = 0.5mV (Fig 5A). Adding noise during train-
ing decreases the capacity, but at the same time recall robustness against noise is improved (Fig
5B). This is contrasted by the network trained with FP-Learning. Here as well with ReSuMe
(not shown), noise-free training results in a network with imperfect recall under noise (Fig 6).
However, noise during training alleviates this problem. Training with a given noise width σinput
makes recall with the same and less noise width perfect. One interesting observation is that
unlike with MPDP, with FP-Learning the memory capacity for noise-free recall stays constant
regardless of noise during training (Fig 5C and 5D). This is explained by the variance of the
weights after training. With FP-Learning, the variance increases approximately linearly with
noise width, while the mean of the weights decreases linearly into negative values (Fig 5F).
The resulting membrane potential is strongly biased towards hyperpolarized states. What
FP-Learning effectively does during training is to scale up the weights, which scales down the
noise in comparison. This reduces the influence of noise, but also leads to a membrane poten-
tial that stays below resting potential most of the time during input activity. Because of the
threshold for LTP, MPDP can not scale the weights freely, therefore it suffers from a declining
memory capacity.

Training and recall with input spike time jitter. As a second noise condition we tested
training and recall in the case that the input spike times are not fixed. In each pattern presenta-
tion, we added to each presynaptic spike time some random number drawn from a gaussian
distribution with mean zero and some given variance. The input is not frozen noise anymore,

network size. Training continues even though the desired spikes are generated; however, they are pushed closer to the desired time.C: Average fraction of
recalled spikes after 10000 learning blocks for all network sizes as a function of the load. Networks with N = 200 have a high probability to not be able to recall
all spikes even for low loads. Otherwise, recall gets better with network size. The thin black line lies at fraction of recall equal to 90%. The critical load α90 is
the point where the graph crosses this line. D: Average distance of recalled spikes as a function of the load. The lower the loads, the closer the output spike
are to their desired location. E: Critical load as a function of network size for all four learning rules. MPDP reaches approximately half of the maximal capacity.

doi:10.1371/journal.pone.0148948.g004
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Fig 5. Capacity of networks under input noise. All network are of size N = 1000.A: Recall as a function of the load for different levels of noise during recall.
Noise is imposed as an additional stochstastic external current. Networks were trained with MPDP. Up to a noise level σinput = 1mV during recall, there is
almost no degradation of capacity.B: Same as A, but with stochastic input noise of width 0.5mV during network training. The capacity is slightly reduced, but
resistance against noise is slightly better.C andD: Same as A and B, but the network was trained with FP-Learning. The capacity is doubled. However, the
network trained without noise shows an immediate degradation of recall with noise. If the network is trained with noisy examples (D, σinput = 0.5mV), also
recall with noise of the samemagnitude is perfect. E: Comparison of capacity of networks trained with MPDP and FP-Learning depending on input noise
during training and recall. Solid lines: MPDP, dashed lines: FP-Learning. Lines that are cut off indicate that the network failed to reach 90% recall for higher
noise. x-axis is noise level during recall. Different colors indicate noise level during training. Curiously, although FP-Learning suffers more from higher noise
during recall than during training, the capacity drops less than with MPDP. F: Comparison of weight statistics of MPDP (solid lines) and FP-Learning (dashed
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but a jittered version of the underlying input pattern ftmi g. Similarly to the condition of a sto-
chastic input current, we tested the capacity of the network if during recall the input pattern
are jittered or if during training the input is jittered (but noise free during recall).

Fig 7A (N = 1000) and B (N = 2000) show the recall of networks trained noise free with
MPDP if during recall the spike times of the input patterns are jittered. For jitter with a small
variance (σjitter< 0.5ms), the recall is almost unaffected. For stronger jitter, recall deteriorates.
A rather strange feature of the recall is that for intermediate loads α� 0.05 the recall is worse
than for loads close to the maximal capacity (α90 � 0.125). This observation is counter-intui-
tive and calls for explanation, because recall usually becomes worse for memory systems if
their load is close to the capacity. In our particular case, fluctations of the membrane potential
due to jitter in the input spike times are scaled by the weights. This separates this noise condi-
tion from the one with stochastic input current. A comparison of the weight statistics of net-
works trained with MPDP after training shows that the slump in the recall covaries with the
weight variance (Fig 7C and 7D). For N = 1000 the minimum of the slump lies at α = 0.06,
which coincides with the maximum of the weight variance. For N = 2000, both lie at α = 0.04
instead. The mean of the weights does have little to no influence on that; it stays almost con-
stant as a function of load. E-Learning and FP-Learning do not have the same characteristics
(data not shown). For example, with FP-Learning weight average and variance stay basically

lines) after learning. Left plot is the mean, right plot is the standard deviation. With MPDP, the weigths stay within a bounded regime, the mean is independent
of noise or load during training; the cyan line for α = 0.1 occludes the others. FP-Learning rescales the weights during training with noise: The mean becomes
negative, and the standard deviation grows approximately linearly with noise level. This effectively scales down the noise by stochastic input.

doi:10.1371/journal.pone.0148948.g005

Fig 6. Fraction of recalled spikes under input noise. This plot shows the fraction of recalled spikes after
learning as a function of the input noise during recall for load α = 0.04 and network sizeN = 1000. The
network trained with MPDP perfectly recalls up to σinput = 0.5mV, and with a slight drop for σinput = 1mV. With
the network trained with FP-Learning, there is a drop of the fraction of recalled spikes even with slight noise.

doi:10.1371/journal.pone.0148948.g006
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Fig 7. Recall and capacity with input jitter. A: Recall of networks trained noise-free with MPDP if during recall the input patterns are jittered (N = 1000). The
black line lies on top of the blue and red ones (same in B). Up to σjitter = 0.5ms, the recall is unhindered. A curious feature is a “slump” in the recall for strong
input jitter and intermediate loads. This slump is even more visible for the larger network withN = 2000 (B). The slump strongly correlates with the variance of
the weights as a function of network load (C for N = 1000,D for N = 2000). The mean of the weights stays almost constant. E: Critical load as a function of
input jitter during recall. The networks are trained noise free with different learning rules. Solid lines showN = 2000, dashed lines N = 1000. Crosses show
sampling points. If a line is discontinued, this means that for this input jitter the networks do not reach 90% recall anymore. Recall for MPDP stays almost
constant until σjitter = 0.5, while for the other learning rules a considerable drop-off of recall is visible. F:Noise free recall of networks trained with noisy input.
For MPFP, E-Learning and FP-Learning alike the capacity drops with increasing training noise. The exception is ReSuMe. Here, the capacity strongly
increases if the noise is small.

doi:10.1371/journal.pone.0148948.g007
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constant until a load of α� 0.2, rather close to the capacity. Only then the mean decreases and
variance increases (see for example Fig 5F, right plot for σinput = 0 during training).

Networks trained without noise and tested with jittered input show a similar behavior to
noise induced by an external stochastic current (Fig 5E, blue lines, versus Fig 7E). Networks
trained with MPDP tolerate noise up to a certain degree without showing a deterioration of
recall. With the other learning rules, the recall gets worse with arbitrary small noise levels. On
the other hand, training a network with FP-Learning while injecting stochastic currents (the
previous noise condition) led to almost unharmed capacity. The reason is that FP-Learning
“downscales” the noise by scaling up the weight variance. This is not a viable path for jitter of
input spike times. Therefore, E-Learning and FP-Learning as well as MPDP show a decrease of
capacity if during training the input spike times are jittered. An interesting outlier is ReSuMe.
The networks trained noise free with ReSuMe have low capacity and unstable recall. Even with
slight jitter the recall does not reach 90% anymore. Therefore, we do not include ReSuMe in
Fig 7E. However, training the network with jitter leads to an increase of capacity (Fig 7F).

Discussion
Our goal was to develop a synaptic plasticity rule that can be used to train a neuron to generate
temporally structured output in a biophysically plausible way. Specifically, we wanted to find
a plasticity mechanism that does not need any supervisory error signal providing specific
instructions on the necessary weight changes. Instead, we aimed for a teacher that tells the neu-
ron when to spike, using a manipulation of the neuron with a clear biophysical interpretation,
namely inducing strong suprathreshold currents. Additionally, the plasticity rule should be
rooted in experimental findings. To this end we introduced a synaptic plasticity mechanism
that is based on the requirement to balance the membrane potential and therefore uses the
postsynaptic membrane potential rather than postsynaptic spike times as the relevant signal
for synaptic changes (Membrane Potential Dependent Plasticity, MPDP). We have shown that
this simple rule allows the somewhat paradoxical temporal association of enforced output
spikes with arbitrary frozen noise input spike patterns (Chronotron). Before, this task could
only be achieved with supervised learning rules that provided knowledge not only about the
desired spike times, but also about the type of each postsynaptic spike (desired or spurious).
With MPDP, the supervisor only has to provide the desired spike, while the synapse endowed
with MPDP distinguishes between desired and spurios spikes exploiting the time course of the
voltage around the spike. Additionally, the sensitivity of MPDP to subthreshold membrane
potential allows for robustness against noise.

Biological plausibility of MPDP
Spike-Timing-Dependent Plasticity (STDP) is experimentally well established and simple to
formalize, which made it a widely used plasticity mechanism in modelling. It is therefore
important to note that MPDP is compatible with certain experimental results on STDP, in par-
ticular with those of causal Hebbian STDP on inhibitory synapses [16]. The reason is that
spikes come with a stereotypic trace in the membrane potential. The voltage rises to the thresh-
old, the spike itself is a short and strong depolarization, and afterwards the neuron undergoes
reset, all of which are signals for MPDP. Pairing a postsynaptic spike with presynaptic spikes at
different timings gives rise to a plasticity window which shares its main features with the STDP
window: The magnitude of weight change drops with the temporal distance between both
spikes and the sign switches close to concurrent spiking.

It is known that the somatic membrane potential plays a role in synaptic plasticity. A few
studies investigated the effect of prolonged voltage deflections by clamping the voltage for an
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extended time while repeatedly exciting presynaptic neurons (e.g. see [35]). However, MPDP
predicts that synaptic plasticity is sensitive to the exact time course of the membrane potential,
as well as the timing of presynaptic spikes. This necessitates that dendrites and spines repro-
duce the time course of somatic voltage without substantial attenuation. Morphologically the
dendritic spines form a compartement separated from the dendrite, which, for example, keeps
calcium localized in the spine. It has been a topic under investigation whether the spine neck
dampens invading currents. Despite experimental difficulties in measuring spine voltage,
recent studies found that backpropagating action potentials indeed invade spines almost
unhindered [36]. Furthermore, independently of spine morphology and proximity to soma,
the time course of a somatic hyperpolarizing current step is well reproduced in dendrites [37]
and spines [38]. This shows that at least in principle the somatic voltage trace can be available
at the synapse. In turn, voltage-dependent calcium channels can transform subthreshold volt-
age deflections into an influx of calcium, the major messenger for synaptic plasticity. A few
studies found that short depolarization events act as signals for synaptic plasticity [27, 29], with
a dependence of sign and magnitude of weight change on the timing of presynaptic spikes.

Another important point is the sign of synaptic change. “Membrane Potential Dependent
Plasticity” per se is a very general term which potentially could include many different rules
[39, 40]. In this study, MPDP serves as a mechanism that keeps the membrane potential
bounded. For inhibitory synapses this requirement results in a Hebbian plasticity rule, which
has been reported previously [16]. Inhibitory neurons in cortex have been implied to precisely
balance excitatory inputs [41]. MPDP on excitatory synapses is necessarily “Anti-Hebbian”.
Lamsa et al. [28] found that pairing presynaptic spikes with postsynaptic hyperpolarization can
lead to synaptic potentiation, albeit on excitatory synapses onto inhibitory interneurons. This
was caused by calcium permeable AMPA receptors (CP-AMPARs) present in these synapses.
However, Anti-Hebbian plasticity does not rely on CP-AMPARs alone. Verhoog et al. [30]
found Anti-Hebbian STDP in human cortex in excitatory synapses, which depends on den-
dritic voltage-dependent calcium channels. Taken together, these findings demonstrate the
existence of cellular machinery which could implement homeostatic MPDP, either on excit-
atory or inhibitory synapses.

Properties and capabilities of Homeostatic MPDP
We derived homeostatic MPDP from a balance requirement: Synapses change in order to pre-
vent hyperpolarization and strong depolarization for recurring input activity. This kind of
balance reduces metabolic costs of a neuron and keeps it at a sensible and sensitive point of
operation [42]. The resulting plasticity rule is Anti-Hebbian in nature because synapses change
to decrease net input when the postsynaptic neuron is excited and to increase net input when it
is inhibited. However, spike after-hyperpolarization turns homeostatic MPDP effectively into
Hebbian plasticity. Every postsynaptic spike causes a voltage reset into a hyperpolarized state.
Therefore synapses of presynaptic neurons which fired close in time to the postsynaptic spike
will change to increase net input if the same spatio-temporal input pattern re-occurs. The total
change summed over all synapses depends on the duration and magnitude of hyperpolariza-
tion. Because the induced synaptic change reduces this duration, total synaptic change is also
reduced. The same is true for total synaptic change to decrease net input, which depends on

the duration where the membrane potential stays above ϑD (resp. WI
P for inhibitory synapses)

and which reduces this duration in future occurances. If the rise time of the voltage before the
spike and residual spike after-hyperpolarization are both short and close in time, potentiation
and depression will approximately cancel around a spike.
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In this view, synaptic plasticity or “learning” is the consequence of imbalance. A spike is sta-
ble if the time course of the voltage in its proximity leads to balanced weight changes. This
means, if input is just sufficient to cause a spike, the voltage slope just before the spike is shal-
low and synaptic depression outweighs potentiation. On the other end of the scale, the delta-
pulse shaped currents used to excite the postsynaptic neuron during Chronotron training are
very strong inputs. They are not unlearned. Instead, the weights potentiate until the membrane
potential is in a balanced state, and the neuron fires the teacher spike on its own when left
alone.

Yet a different view is that the output neuron with MPDP achieves associative learning. In
this setting, the teacher is an input channel that elicits a certain response, namely an output
spike at a specific time. This response is transferred to another input channel, in our case the
population of presynaptic neurons. This is the basic principle of associative learning as cap-
tured in theoretical models (e.g. ISO learning [43]).

Lastly, an interesting aspect of MPDP is the emergence of robustness against noise. Most
obviously, with the choice of the threshold for depression the neuron sets a minimal distance
of the voltage to the firing threshold for known input patterns. This allows to have perfect recall
in the case of noisy input in the Chronotron. The second effect of the depression threshold is
more subtle. Not only does it prevent spurious spikes, but through learning the slope of the
membrane potential just before the desired spike tends to become steep. This is necessary to
prevent spike extinction by noise. To see how this influences noise robustness, consider an out-
put spike with a flat slope of the voltage. Increasing the voltage slightly around the spike time
moves the intersection of the voltage with the firing threshold forward in time by a proportion-
ally large margin. Decreasing voltage moves it backwards in time or could even extinguish the
spike; a flat slope implies a low peak of the “virtual”membrane potential. MPDP in contrast
achieves a state which is robust against spike extinction as well as the generation of spurious
spikes. On the downside, keeping the voltage away from the firing threshold as well as impos-
ing steepness on the slope just before spikes puts additional constraints on the weights. Robust-
ness comes at the cost of capacity.

Relation of MPDP to other plasticity rules
Voltage dependent plasticity rules. The idea of making a plasticity rule at least partially

dependent on the voltage is not new. The plasticity rule devised by Shouval and colleagues is
inspired by the BCM rule and makes use of the depolarization dependent unblocking of
NMDA receptors to mechanistically retrieve the well-known Hebbian STDP window [40].
This plasticity rule is very complex involving many interactions between different quantities at
the synapse and has little similarity to MPDP. In another plasticity rule developed by Clopath
et al. [39], synaptic depression is computed at the time of presynaptic spikes, and its magnitude
is given by ½ �V ðtÞ � y��þ, where θ− is a threshold on the voltage and �V is a low-pass filtered ver-
sion of the membrane potential. This term is very similar to how depression is computed in
our MPDP rule. Synaptic potentiation is basically Hebbian, i.e. it depends on the correlation of
presynaptic spiking and postsynaptic depolarization. The interplay of both contributions lead
to a stabilization of weight changes in the network given some input activity. An interesting
rule is the Convallis rule by Yger and Harris [44]. The Convallis rule and MPDP are derived
from a similar objective but with opposite sign. Yger and Harris postulate the objective that the
distribution of voltages should have peaks at extreme values, that means the neuron is preferra-
bly hyperpolarized or close to (and above) the firing threshold. The resulting plasticity rule is a
Hebbian MPDP rule which reinforces synapses that are active during postsynaptic depolariza-
tion and weakens those active during hyperpolarization. To maintain network stability, they
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have to introduce weight scaling. A network endowed with the Convallis rule in an unsuper-
vised manner learns firing rate representations of input stimuli which can be read out by a lin-
ear classifier.

Supervised learning rules. There are many supervised learning algorithms that are used
to train neuronal networks to generate desired spatio-temporal activity patterns. They either
involve an explicit comparison of the self-generated output to the desired target activity, or rely
on spike-like signals that do not impact the neuronal dynamics. Based on different characteris-
tics, we broadly put them into three different classes. E-Learning and FP-Learning [6, 11] are
examples of algorithms of the first class which are used to train a neuron to generate spikes at
exactly defined times. They first observe the complete output and then evaluate it against the
target. E-Learning performs a gradient descent on the Victor-Purpura distance [20] between
both spike trains. This means that the weight changes associated with one particular spike
(actual or desired) can depend on distant output spikes. This non-locality in time is hard to
implement in a biological neuron, since at some instance (supervisor or directly at the synapse)
past spike times have to be temporarily stored for comparison with future spike times. In
FP-Learning, the training trial is interrupted if the algorithm encounters an output error. Sub-
sequent spikes are not evaluated anymore. This necessitates an external supervisor shutting
down plasticity after an error. While more plausible than E-Learning, such a mechanism might
be difficult to realize in a biological neuron.

Another class of learning algorithms emerged recently with the examples PBSNLR([45], but
see also [46]) and HTP [11]. They take an entirely different route. The postsynaptic membrane
potential is treated as a static sum of PSP kernels weighted by the respective synaptic weight,
similar to the Spike Response Model of the LIF neuron (see Methods, [17]). In PBSNLR, the
membrane potential is sampled on a discrete set of points in time, including the desired spike
times. Then, the weights are learned using the perceptron learning rule to ensure that the mem-
brane potential stays below the firing threshold for non-spike times and above for desired spike
times. HTP is a more sophisticated algorithm also employing the perceptron learning rule. The
weights are projected into a subspace of the weight space to ensure threshold crossing from
below at the desired times. Then, the algorithm dynamically samples the membrane potential
at several points in time to ensure that the voltage stays below the firing threshold for non-
spike times (also those that are not part of the sampled set). HTP has guaranteed convergence
in finite time if a solution exists; this property is the basis to evaluate the maximal capacity in
the spike time learning task [11]. These algorithms were devised as technical solutions and are
very artificial. However, MPDP bears some similarity to the described procedure: Except close
to teacher inputs, at every point in time recently active synapses get depressed if the voltage is
above the threshold for depression. This is comparable to a perceptron classification on a con-
tinuous set of points.

A third class of algorithms compares actual and target activity locally in time. In contrast to
the algorithms mentioned above, they are usually not used to learn exact spike times, but rather
continuous time dependent firing rates. The ur-example is the Widrow-Hoff rule [10, 19].
More recently, similar rules were developed by Pfister et al. [12], Brea et al. [14] and Urbanzcik
and Senn [15]. In the following, we call them the “Pfister-rule” in short. In contrast to the
Widrow-Hoff rule, the Pfister-rule is defined for spiking LIF neurons with a “soft” firing
threshold, i.e. spike generation is stochastic and the probability of firing a spike is a monoto-
nous function of the current voltage. In the Pfister-rule, at every point in time the synaptic
change is proportional to the difference of the current firing rate and a target firing rate
specified by an external supervisor. When it comes to biological implementation, the central
problem of this rule is the comparison of self-generated and target activity. It is derived
from the abstract goal to imprint the target activity into the network. This target needs to be
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communicated to the neuron and synaptic plasticity has to be sensitive to the difference of the
neurons’ own current acticity state (implicitely represented by its membrane potential) and the
desired target activity. Usually, no plausible biological implementation for this comparison is
given. The combination of homeostatic MPDP, hyperpolarization and a teacher now offers a
solution to both problems. The teacher provides information about the target activity through
temporally confined, strong input currents which cause a spike. Spike after-hyperpolarization
allows to compare the actual input to the target without inducing spurious spikes detrimental
to learning. The more spike after-hyperpolarization is compensated by synaptic inputs, the
closer the self-generated activity is to the target and the less synapses need to be potentiated.
This is implemented naturally in MPDP, where potentiation is proportional to the magnitude
and duration of hyperpolarization. On the other hand, strong subthreshold depolarization
implies that self-generated spurious spikes are highly probable, and weights need to be
depressed to prevent spurious spikes in future presentations of this input activity.

A further solution for the problem of how information about the target is provided was given
by Urbanczik and Senn [15]. Here, the neuron is modeled with soma and dendrite as separate
compartements instead of point neurons as used in this study. The teacher is emulated by syn-
aptic input projecting directly onto the soma, which causes a specific time course of the somatic
membrane potential. The voltage in the dendrite is determined by a different set of synaptic
inputs, but not influenced by the somatic voltage; however, the soma gets input from the den-
drites. The weight change rule then acts to minimize the difference of somatic (teacher) spiking
and the activity as it would be caused by the current dendritic voltage. This model represents a
natural way to introduce an otherwise abstract teacher into the neuron. Nonetheless, the neuron
still has to estimate a firing rate from its current dendritic voltage, for which no explicit synaptic
mechanism is provided. Also, it is worth noting that the model of Urbanczik and Senn requires
a one-way barrier to prevent somatic voltage invading the dendrites; in contrast, MPDP requires
a strong two-way coupling between somatic and dendritic/synaptic voltage.

Another putative mechanism for a biological implementation of the δ-rule was provided by
D’Souza et al. [47]. In this model, a neuron receives early auditory and late visual input. By the
combination of spike frequency adaptation (SFA) and STDP, the visual input acts as the
teacher that imprints the desired response to a given auditory input in an associative manner.
However, the model is quite specific to the barn owl setting; for example, parameters have to be
tuned to the delay between auditory and visual input.

Applying the Pfister-rule type to fully deterministic neurons can lead to unsatisfactory
results. ReSuMe is an example of such a rule [10]. Its memory capacity is low, but it increases
sharply if the input is noisy during training (see Fig 6). The explanation is that in a fully deter-
ministic setting, the actual spike times do not allow a good estimation of the expected activity.
This sounds paradoxial. But if we consider a deterministic neuron with noise-free inputs the
membrane potential can be arbitrarily close to the firing threshold without crossing it. But
even the slightest perturbation can cause spurious spikes at those times. This leads to bad con-
vergence in Chronotron training, since the perturbations caused by weight changes for one pat-
tern can easily destroy previously learned correct output for another pattern [11]. The problem
of these rules is the sensing of the activity via the instantaneous firing rate. Therefore, the
explicit sensitivity to subthreshold voltages of MPDP is advantageous if training examples are
noise free.

Conclusion
We propose Membrane Potential Dependent Plasticity as a viable mechanism for spike time
learning in biological spiking neuronal networks. As we have shown, there already are several
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learning rules which achieve this goal. However, the existing learning rules in one way or
another lack a plausible biological implementation regarding the signalling of the desired activ-
ity to the synapse by the supervisor and/or the computation of the error between desired and
actual output activity. The main advantage of MPDP over the previous rules is the clear biolog-
ical interpretation of the learning mechanism. The synaptic plasticity rule is founded on physi-
ological findings, and it is geared with the teacher that induces strong currents to signal desired
spike times.

It is often the case that including biolgical considerations worsens quantitative behavior like
memory capacities of modelled systems, as it softens the mathematical rigor of technical learn-
ing rules that have been designed with optimality in mind [6, 18]. To show that MPDP is useful
as a learning rule, we compared it with ReSuMe, E-Learning and FP-Learning. This compari-
son revealed the drawbacks of MPDP: The memory capacity is roughly half of the maximum
and output spikes lag by a short period of time to the desired times. Also, switching associa-
tions after training a network is difficult. With a rule like FP-Learning, after training the desired
output spikes can freely be redefined and subsequently learned, while output spikes learned
with MPDP tend to stay fixed. On the other hand, using MPDP leads to networks that a robust
against input noise even if training was noise-free, a feature that is unique to it. Taken together,
the membrane potential dependent plasticity proposed here is a neurobiologically plausible
mechanism that might explain abilities of neuronal networks in the brain to process temporally
precise neuronal codes.

Supporting Information
S1 Complete Code. Zip-file containing scripts generating data and figures. In the support-
ing material, embedded in the appropriate folder structure we include our scripts written in
Python and Matlab that generate the data used in the figures in this article. Further instructions
are included within Readme.txt inside the zip-file.
(ZIP)
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