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Abstract
Bone tumours and tumour-like lesions are frequently encoun-
tered by radiologists. Although radiographs are the primary
screening technique, magnetic resonance imaging (MRI) can
help narrow the differential or make a specific diagnosis when
a lesion is indeterminate or shows signs of aggressiveness.
MRI can extend the diagnostic evaluation by demonstrating
several tissue components. Even when a specific diagnosis
cannot be made, the differential diagnosis can be narrowed.
MRI is superior to the other imaging modalities in detecting
bone marrow lesions and tumoral tissue (faint lytic/sclerotic
bone lesions can be difficult to visualise using only radio-
graphs). Contrast-enhanced MRI can reveal the most
vascularised parts of the tumour and MRI guidance makes it
possible to avoid biopsing necrotic areas. MRI is very helpful
in local staging and surgical planning by assessing the degree
of intramedullary extension and invasion of the adjacent
physeal plates, joints, muscle compartments and
neurovascular bundles. It can be used in assessing response
to neoadjuvant therapy and further restaging. The post-
therapeutic follow-up should also be done usingMRI. Despite

the high quality ofMRI, there are a few pitfalls and limitations
of which one should be aware. Applications of MRI in bone
tumours will probably continue to grow as new sequences are
further studied.

Teaching Points
• When a lesion is indeterminate or shows signs of
aggressiveness, MRI is indicated.

• When MRI does not lead to a diagnosis, biopsy is indicated.
• MRI is superior to the other imaging modalities in detecting
bone marrow lesions.

• MRI is very helpful in local staging and surgical planning.
• MRI is used in assessing the response to neoadjuvant
therapy, restaging and post-therapeutic follow-up.
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Introduction

Radiographs are the primary screening technique used for
bone tumours and tumour-like lesions [1]. When a lesion is
indeterminate or shows signs of aggressiveness, magnetic
resonance imaging (MRI) is indicated for further characteri-
sation [1]. It can extend the diagnostic evaluation by demon-
strating components such as cartilage, vascular tissue, fat,
liquid and haemosiderin. Even when a specific diagnosis
cannot be made, MRI can help by narrowing the differential
diagnosis. These are the reasons whyMRI has changed from a
single study-based diagnosis (solely based on radiographs) to
a multimodal imaging approach (which now includes MRI).

Faint lytic/sclerotic bone lesions can be difficult to visual-
ise using only radiographs. MRI is superior to the other
imaging modalities in detecting bone marrow lesions [2].
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Aggressive indeterminate cases will require histological
confirmation before proceeding to staging and establishing a
therapeutic approach. The high percentage of biopsy tract
contamination [3] indicates that this track should be included
in the surgically removed area. Contrast-enhanced MRI
(CEMRI) can reveal the most vascularised parts of the tumour
and MRI guidance makes it possible to avoid biopsing necrot-
ic areas [2].

MRI is very helpful in local staging and surgical plan-
ning because it assesses the degree of intramedullary
extension (and dimensions) and invasion of the adjacent
physeal plates, joints, muscle compartments and
neurovascular bundles.

Restaging after neoadjuvant therapy and the post-
therapeutic follow-up should also be done using MRI.

Our purposes are: (1) to discuss MRI features that can
help narrow the differential or make a specific diagnosis

of bone tumours and tumour-like lesions; (2) explain why
MRI is the optimal imaging method for sensitive detection
of tumoral tissue, local staging, preoperative evaluation,
assessing the response to neoadjuvant therapy, restaging
and follow-up, and (3) to discuss potential pitfalls and
limitations.

MR imaging sequences and protocol optimisation

In musculoskeletal (MSK) MRI, the T1 signal intensity
is described by comparison to that of muscle. Although
many argue that muscle should also be the standard
reference for T2-weighted imaging, using fat as the
reference can be helpful, particularly in anatomic re-
gions where there is relatively little muscle (e.g. fingers
and toes).

Fig. 1 This femoral lesion
showing high signal in T2FS WI
(a) could be solid (fibrous
dysplasia) or liquid (solitary bone
cyst). T1FS gadolinium-based
contrast medium-enhanced
sequence (b) showed peripheral
enhancement, typical of liquid
content, favouring the diagnosis
of a solitary bone cyst

Fig. 2 T1WI (a), T2FSWI (b) and CEMRI (c) images of a Ewing’s sarcoma involving the talus and calcaneus. Non-enhancing components (arrows in
c) are related to areas of necrosis

420 Insights Imaging (2014) 5:419–440



T1-weighted imaging (T1WI)

T1WI is very important in the evaluation of bone marrow.
Most bone tumours will be evident as lesions with low signal
against a background of surrounding fatty marrow [4].

T1WI also provides excellent contrast among the cortical,
marrow and surrounding tissues [4].

Fat suppression, T2WI and STIR

The use of fat suppression (FS) in MRI can confirm
or exclude the presence of fat in a lesion (this is

particularly useful for diagnosing haemangioma and
lipoma).

Water shows higher signal than fat on T2WI, but
suppressing the fat signal can allow an even better eval-
uation of the extent of oedema.

Suppressing the fat signal in T1WI after injection of
gadolinium-based contrast medium increases the conspicu-
ousness when assessing tumour vascularisation.

Short tau inversion recovery (STIR) sequences effec-
tively and homogeneously suppress all fat signal but
cause tissues with T1 signal similar to or greater than
that of water to show hyperintensity. This can lead to

Fig. 3 Osteosarcoma of the tibia: coronal T1WI (a) shows a large
hypointense lesion in the proximal tibia, which breaks through the bony
cortex and invades the adjacent soft tissue. Corresponding DWI (b=
700 s/mm2) (b) reveals restricted proton diffusion, consistent with

malignancy. Tumoral necrosis (in the centre of the tumour) displays a
less hyperintense signal. (Images published by Markus U., Reichardt W.
and Kontny U. in MRI: New Developments in Bone Tumor Imaging.
Magnetom Flash 2/2011© used with permission of Prof. U. Markus)

Fig. 4 Patient with chronic left knee pain. Radiographs were obtained (a - normal frontal radiograph). Subsequent MRI study showed abnormal signal
intensity in the bone: low T1WI signal (b) and T2FS WI hyperintense lesion (c) related to a bone lymphoma
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overestimation of the tumoral extension and compromise
its characterisation [4].

Chemical shift imaging

Chemical shift-based fat suppression can help evaluate bone
marrow infiltration [5]: it increases the sensitivity for detection
of metastases and myeloma lesions and may be used to
improve specificity when equivocal marrow changes are seen

on MRI [6]. Tumoral tissue will not show signal loss in
opposed-phase images, in contrast to normal fatty or
haematopoietic red marrow.

Using intravenous gadolinium-based contrast medium

Most bone tumours and tumour-like lesions have a significant
amount of cartilaginous tissue (hyperintense on T2WI).
CEMRI can be used in the differentiation between solid
hyperintense and fluid-containing lesions. Solid, non-
necrotic areas will show diffuse enhancement while liquid
will not (Fig. 1).

Gadolinium-based contrast medium also helps dis-
tinguish oedema from viable tumour (Fig. 2) and
allows an accurate determination of the degree of
vascularisation.

Fast acquisition techniques after gadolinium-based
contrast medium injection allow contrast-enhanced dy-
namic imaging. Time to peak, maximum enhancement,
slope (degree of enhancement during the first pass),
washout rate and the shape of the signal enhancement-
time curve can be determined. Contrast-enhanced dy-
namic imaging is said to be approximately 80 % accu-
rate in differentiating benign tumours from malignant
ones [7].

Fig. 5 A 28-year-old patient with a testicular neoplasm and spinal
metastases. T1FS WI showed abnormal signal in the superior sacral
elements (arrow in a). CEMRI showed diffuse enhancement of the

superior sacral elements (arrow in b) with spinal cord extension and focal
lesions in the lumbar vertebrae

Fig. 6 Coronal T1WI (a) and sagittal T2WI (b) show a well-
circumscribed vertebral lesion, with signal intensity similar to that of
the subcutaneous fat: vertebral haemangioma
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Fig. 7 Patient with a humeral lipoma (arrows in a, b and c): frontal radiograph shows a lytic lesion in the head of the humerus. This lesion showed signal
intensity similar to that of fat on T1WI (b). The signal was suppressed in T2FS WI (c)

Fig. 8 Associated soft tissue
component and cortical break-
through in different cases of
Ewing Sarcoma

Fig. 9 Typical enchondroma:
small lesion located in the distal
femur with low/intermediate
signal on T1WI and hyperintense
on T2WI, containing
calcifications, with no associated
soft tissue component or adjacent
oedema
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The basic principle that viable active tumoral tissue
shows a higher degree of enhancement than nontumoral/
necrotic areas can also be applied to directing biopsies
to viable cellular areas and noninvasive assessment of
response to therapies such as radiotherapy and chemo-
therapy. The most reliable indication of necrosis in MRI
is probably still simple: a visible lack of enhancement
after the administration of gadolinium-based contrast
medium.

Diffusion-weighted imaging (DWI)

DWI shows restriction to the diffusion of water molecules in
malignant tumours [4] (Fig. 3). A favourable therapeutic re-
sponse is associated with a decrease in the signal intensity in
high b values [8]. Apparent diffusion coefficient (ADC) ratios
may also be used for assessing the response to neoadjuvant
therapy [9]. The use of DWI however is still not included in
the guidelines for routine evaluation of malignant tumours [10].

MR spectroscopy imaging

Wang et al. [11] showed elevation of the choline peak
in the majority (18 of 19 patients) of malignant bone

tumours and also concluded that spectroscopy can help
differentiate malignant from benign tumours by reveal-
ing the presence or absence of water-soluble choline
metabolites. Further investigation is needed [1], but
MR spectroscopy seems to show great potential in dif-
ferentiating benign from malignant lesions.

Establishing appropriate protocols

Every institution should have established protocols for the
MSK imaging evaluation of different anatomic locations
(which should include proper imaging planes for the specific
region studied).

An important issue relates to the fact that most insti-
tutions do not routinely use contrast in general MSK
studies (a significant number of lesions are detected
incidentally). Some even consider that the routine use
of gadolinium in the initial MRI evaluation of a possi-
ble primary MSK neoplasm is not justified [12]. We
however recommend using CEMRI whenever the radio-
graphs and conventional (T1 and T2FS) MR sequences
do not provide an obvious specific benign diagnosis.
Even when a specific diagnosis is reached, all lesions
raising suspicion for malignancy should still be evalu-
ated after gadolinium-based contrast medium injection in
order to optimise the border characterisation and sepa-
rate oedema from active tumour.

MRI findings should always be correlated with a radio-
graphic study. If there are none available, they should be
obtained before giving a final report.

Fig. 10 This patient had chronic lower thigh pain. The radiograph (a)
showed an area of bone destruction with central calcification. Coronal
T1WI (b) clearly showed a hypointense lesion extending beyond the
disrupted cortical tissue. This lesion was a chondrosarcoma

Table 1 List of clinical and imaging features used in the differential
diagnosis between enchondroma and chondrosarcoma

Enchondroma Chondrosarcoma

More common in extremities More common in the axial skeleton

No pain (only if associated with
fracture)

Can cause pain

No periostitis Can have associated periostitis

No growth beyond skeletal maturity Rapid growth, regardless of the
skeletal maturity

No soft tissue component Associated focal cortical thickening

Absence of bone oedema Different patterns of signal intensity

Size usually≤4 cm Bone destruction

Loss of calcifications on follow-up

Soft tissue component

Bone marrow oedema

Size usually>4 cm
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Applying MRI in tumour detection and diagnosis

(1) Accurate lesion detection

Faint lytic/sclerotic bone lesions can be difficult to
identify using only radiographs. MRI is superior to the
other imaging modalities in detecting primary and sec-
ondary bone lesions [2] because it can conspicuously show
areas of abnormal signal intensity within a bone that should
contain normal fatty marrow [13] (Figs. 4 and 5).

In suspected cases of pathological fractures,MRI should be
used to evaluate the existence of an underlying lesion [1].

(2) MRI evaluation: aspects favouring benignancy or
malignancy

Both benign and malignant tumours usually have
inferior signal intensity to the normal marrow signal in
T1WI [13]. This is why MRI does not allow accurate
prediction of the malignancy or benignancy of a lesion

based solely on its signal intensity [13]. There are
however some features that, if present, can be highly
predictive of a benign etiology, such as the presence of
normal fatty marrow [14] or fat within a bone lesion (a
common feature in vertebral haemangioma (Fig. 6) and
in lipoma (Fig. 7).

MRI can also confirm the presence of fatty or
haematopoietic marrow in areas of normally sparse trabeculae
(e.g. greater tuberosity of the proximal humerus), which can
simulate lytic lesions on radiographs or CT [15].

Typically, benign lesions are well defined and sharply
demarcated from the surrounding healthy tissue. Malig-
nant lesions are usually extensive and involve surround-
ing tissue to a greater extent.

Benign fibrous or expansive lesions can give the false
impression of cortical destruction in radiographs (e.g.
aneurysmal bone cys t , g ian t ce l l tumour and
chondroblastoma). The opposite can occur with malig-
nant lesions. MRI can help exclude true cortical destruc-
tion (Fig. 8).

Fig. 11 Anteroposterior radiograph (a) and corresponding MRI study
(coronal T1 (b), coronal T2FS (c) and coronal (d) and axial post-Gd
T1WI (e) of a broad-base osteochondroma of the ulna. T1WI shows
normal bone marrow signal intensity inside the lesion, and T2FSWI

shows adjacent effusion and oedema of the adjacent soft tissues. The
flexor carpi ulnaris tendon is compressed and displaced (arrows in b). The
axial post-Gd T1WI (e) shows no compression of the adjacent
neurovascular structures
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The presence of an associated soft tissue component
is one of the most important imaging malignancy pre-
dictors in bone tumours. It can point to a malignant
degeneration of enchondroma, osteochondroma, previous
irradiated areas and Paget’s disease. This is usually a
prominent feature in Ewing’s sarcoma (Fig. 8) and
osteosarcoma.

Although osteomyelitis can have an aggressive per-
meative aspect in radiographs, it usually does not have

an associated solid soft-tissue mass [16]: MRI can help
distinguish it from true permeative neoplasms such as
Ewing’s sarcoma.

The absolute value of tumour-associated oedema in the
diagnosis is limited, as its degree often does not correlate with
the degree of malignancy or tumour aggressiveness [17].

In some cases, differentiating an enchondroma (Fig. 9)
from a low-grade chondrosarcoma (Fig. 10) can be a difficult
task for both radiologists and pathologists. Many important
suspicious imaging features can be assessed using MRI
(Table 1).

MRI can also make a difference when evaluating lesions
located in the bone surface by determining whether they
penetrate the cortical and invade the medullary region [16].

Osteochondromas show an uninterrupted medullary and
cortical continuity with the parent bone (Fig. 11). Radiographs
often do not allow an accurate evaluation of these features,
which is why they should be assessed using CTor MRI. Their
presence is helpful in excluding other less common tumours
and tumour-like conditions (e.g. osteoma, periosteal
chondroma, juxtacortical and soft tissue osteosarcomas and
myositis ossificans) [16]. A cartilage cap is often demonstrat-
ed, which has low to intermediate SI on T1WI and is hyper-
intense on T2WI. Several complications can occur in
osteochondroma, including osseous deformity, fractures (of
the lesion or of adjacent bones), compression of adjacent
structures (tendons [Figs. 11 and 12], vessels and nerves),
bursitis and rarely [18] malignant degeneration (Table 2;
Fig. 13). MRI represents the most valuable imaging modality
in symptomatic cases because it can demonstrate typical fea-
tures of associated soft tissue pathology [18, 19]. The cap
thickness is the best predictor of malignant change [17].
The normal upper limit for the cartilagineous cap thick-
ness in MRI is usually considered to be 1 cm [16]

Fig. 12 Young female with ankle pain. This axial T2FSWI shows a small
pedunculate osteochondroma of the right calcaneus (arrow) compressing
the adjacent fibular tendons

Table 2 List of clinical and imaging features used in the differential
diagnosis between osteochondroma and secondary chondrosarcoma

Benign osteochondroma Secondary chondrosarcoma

No pain (only for fracture, bursitis or
compression of adjacent
structures)

Can cause pain

No growth beyond skeletal
maturity

Rapid growth, suspicious especially
if after skeletal maturity

Presence of calcifications (signal
voids) beyond the stalk

No associated soft tissue mass Presence of an associated soft
tissue mass

Thin cartilagineous cap (≤1 cm) Thick cartilagineous cap (>1 cm
[16]) Fig. 13 Axial T2FS WI shows a voluminous lesion with a thick

cartilagineous cap: a secondary chondrosarcoma of the left distal tibia
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although younger patients in active growth can reach a
width of 3 cm [19].

Flow voids have been demonstrated in vascular tumours
(e.g. haemangioma and haemangioendothelioma), renal
cell and hepatocellular carcinoma metastases and are un-
common in other tumours [17]. They can therefore be

regarded as an additional diagnostic feature but do not
have a prominente role in the differentiation of benignancy
vs malignancy.

Fig. 14 ABC of the left femur:
coronal (a) and axial (b) T2FS
WI: Typical fluid-fluid levels are
seen, with no intervening soft
tissue or thick septations. The
cortical is expanded but not
disrupted

Fig. 15 Axial T2WI (a) and
sagittal post-contrast T1WI (b)
show typical features of
telangiectatic osteosarcoma: a
very large large lesion, with a
solid component in the posterior
dependent part (arrow in a) and
extension beyond the disrupted
cortical (b)

Table 3 MRI features that favour the diagnosis of telangiectatic osteo-
sarcoma as opposed to ABC

Solid tissue components surrounding or associated with the cystic/
haemorrhagic spaces (better depicted after gadolinium-based contrast
medium injection) [24]

Focal solid protrusions through the cortical area or cortical destruction
with an associated soft tissue mass [4]

Table 4 Primary bone tumours and tumour-like lesions with low signal
T2WI

Giant cell tumour Predominantly hyperintense in T2WI but, in
63 % of the cases, will show low signal areas
that occupy≥20 % of the lesion size [19]
(Fig. 16)

Chondroblastoma 86 % lesions have T2 hypointense areas,
entirely or partly [23] (Fig. 17)

Natural involution of
some lesions

Nonossifying fibroma (Fig. 18)
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(3) MRI evaluation of fluid-fluid levels (FFLs)

FFLs result from separation of two fluids of differing densi-
ties within aneurysmally dilated cavities and generally are most
conspicuous on T2WI. They are most common in aneurysmal
bone cysts (ABCs) (37– 87 %), but are also frequent in osteo-
sarcomas, giant cell tumours and chondroblastomas [20]. They
occur less frequently in lesions such as fibrous dysplasia,
osteoblastomas, simple bone cysts and brown tumours [20,
21]. FFL cannot be considered diagnostic of any particular type
of tumour, and the diagnosis should be made on the basis of
other radiological and clinical findings [21]. The most impor-
tant differential diagnosis of bone lesions with FFLs is ABC
(Fig. 14) vs. telangiectatic osteosarcoma (Fig. 15), because
while the former is the most common cause of FFLs, the latter
is a high-grade malignant lesion (see Table 3 for MRI aspects
useful in the differential diagnosis).

(4) Primary lesions with low signal in T2WI

Most bone tumours and tumour-like lesions have a signif-
icant chondroid/cartilaginous or liquid component, which is
associated with high signal intensity on T2WI. There are
however primary lesions that can show partial or entire low
signal intensity in T2WI because of an immature chondroid
matrix, haemosiderin and calcifications [23]. This feature can
be used for making the specific diagnosis (Table 4; Figs. 16,
17and 18).

(5) Evaluation of patients with haematopoietic malignancies
and premalignant gammopathies

Fig. 16 Giant cell tumour of the
proximal femur in a 36-year-old
patient: the coronal T2WI (b)
shows a predominantly
hyperintense lesion containing
areas of low signal intensity;
corresponding radiograph in (a)

Fig. 17 Axial T2FSWI of a chondroblastoma with partial hypointense
content (arrow). There is extensive oedema in the adjacent bone, which is
typical of these lesions

Fig. 18 Sagittal STIR image of the knee shows a partial sclerotic com-
ponent (low signal intensity) within a nonossifying fibroma
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For patients with Hodgkin’s lymphoma and high-grade
non-Hodgkin’s lymphoma, FDG-PET has been established
as the imaging modality of choice for staging and moni-
toring treatment. MRI, however, should be considered in
cases with high risk of bone marrow involvement and
equivocal findings on PET or extracompartmental tumour
growth as well as in patients with potential treatment
complications [24].

MRI is a noninvasive technique that can complement bone
marrow aspirations (the iliac crest biopsy may be false negative
when bone marrow infiltration is focal rather than diffuse) [25].

Radiologic skeletal surveys are still part of the recommend-
ed baseline evaluation in multiple myeloma (MM), despite
their limitations (they only depict lytic lesions after the loss of
over 30 % of the bone mineral density, poorly show anatomic
areas such as the ribs, pelvis and spine and are not accurate for
the evaluation of diffuse medullary extension) [26]. In several
studies, MRI showed a higher sensitivity than skeletal surveys
for the detection of focal bone marrow lesions [27, 28]. MRI’s
increased diagnostic accuracy led to revising the tradi-
tional Durie-Salmon staging system (which only includ-
ed radiographs in the imaging approach). The newer
Durie-Salmon PLUS staging system includes MRI in
the evaluation of the spine (summarised in Table 5).
Staging and treatment can potentially change in 15–
25 % of patients [29].

The possibility of extending the spinal MRI evaluation to a
whole-bodyMRI (WBMRI) evaluation of the skeleton inMM
is under active investigation because a significant percentage
of lesions occur outside the axial skeleton [30].

MRI is now widely used in MM not only for assessing the
bulk of disease in patients with osteopaenia or uncertain
staging (Fig. 19), but also to document the extent of bone
marrow infiltration and cord or root compression in patients
with pain syndromes [31]. It may also be used to select
appropriate biopsy sites [25].

Monoclonal gammopathy of undetermined significance
(MGUS) and smouldering multiple myeloma (SMM) are
asymptomatic, pre-malignant disorders that can progress
to MM. The Durie-Salmon PLUS staging system includes
features that allow a clear distinction between MGUS and
MM. The MRI findings in SMM are still currently under
investigation [8]. In patients with asymptomatic or smol-
dering myeloma, MRI findings have shown a correlation
with the likelihood of transition to MM [29].

Patients with MGUS and SMM require indefinite follow-
up given their lifelong risk of progression to MM or related
malignancy [32]. A skeletal survey should be repeated at least
once every year for SMM [32], but MRI may be better suited
for the imaging follow-up.

Despite the improvements that MRI brought to the imaging
evaluation of haematopoietic malignancies, there are still lim-
itations regarding sensitivity and specificity. An infiltration
with less than 20 % neoplastic cells cannot be distinguished
from normal marrow with standard MR pulse sequences
[24]. Several authors reported a normal bone marrow
MR signal in patients with leukaemia, in patients with
early stages of bone marrow invasion by lymphoprolif-
erative diseases and even in up to one-quarter of pa-
tients with stage III MM [24, 33]. MRI specificity of
signal alterations of bone marrow is low, which is why
the findings need to be correlated with clinical and
laboratory findings.

Coronal T1 and STIR images of the entire skeleton
(WBMRI) can be acquired quickly and provide good mor-
phological evaluation of the extent of the disease. Func-
tional imaging with contrast-enhanced dynamic imaging
can provide information regarding disease activity [34].
The future role of these techniques in oncohaematological
diseases still needs to be defined, but WBMRI will
probably become the bone marrow imaging method of
choice.

Staging malignant bone tumours using MRI

The American Joint Committee on Cancer (AJCC) staging
system (Table 6) is currently the most used for malignant
bone tumours. It separates stages I and II according to the
tumour size (whether ≤ or > 8 cm) and defines stage III

Table 5 New imaging techniques in the Durie-Salmon PLUS staging
system [22]

Durie-Salmon PLUS staging system

Classification New imaging (MRI and/or FDG PET)

MGUS All negative (normal marrow)

Stage IA
(Smouldering or indolent)

Can have single plasmacytoma and/or
Limited disease (definition evolving)

Multiple myeloma

IB <5 focal lesions; mild diffuse disease

IIA/B 5-20 focal lesions; moderate diffuse disease

IIIA/B >20 focal lesions; severe diffuse disease

MGUS: Monoclonal gammopathy of undetermined significance

A: serum creatinine<2.0 mg/dl; no extramedullary disease (EMD)

B: serum creatinine>2.0 mg/dl; extramedullary disease (EMD)

Mild difuse disease: micronodular pattern; moderate disease: diffuse low
signal intensity on T1WI, but contrast between the bone marrow and disk
remains; severe disease: contrast between bone marrow and disk is lost or
inverted (bone marrow shows a signal intensity equal or inferior to that of
the disk on T1WI)
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for cases with “skip metastasis” (discontinuous tumours in
the primary bone site). Stage IV is subdivided according
to the presence or absence of metastases in locations other
than the lung.

Local staging and preoperative assessment

Both CT and MRI can provide preoperative planning and
staging, but existing data suggest that MRI should be the
preferred technique [1, 35].

T1WI and CEMRI can accurately depict the extension
of the primary lesion. Its exact location should be clearly
stated in the report (e.g. measuring the distance of the
lesion to an anatomic reference will help planning surgical
procedures).

The distinction between tumour and oedema can be diffi-
cult, but is essential for local staging and guiding biopsy.
Tumoral tissue has a more heterogeneous signal than that of
associated oedema. Contrast-enhanced dynamic imaging can
also be used (the oedema will show a slope 20 % or less than
the tumour itself) [17].

Fig. 19 A 76-year-old female patient with MM: Frontal (a) and lateral
(b) radiographs of the lumbar spine and sagittal (c) and axial (d) T1WI of
the lumbosacral spine. The radiographic study showed diffuse
osteopaenia of the lumbar vertebrae, which could solely be related to

primary osteoporosis given the patients’ gender and age. The MRI study
however showed innumerous focal lesions, consistent with the diagnosis
of MM. Note: The small cone-shaped device present in the radiographs is
an inferior vena cava filter
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Osteosarcoma and Ewing’s tumour are more common
in paediatric ages. Though the physeal plate was tradi-
tionally thought to be a significant barrier for tumoral
spread, it is now known that 75-88 % of osteosarcomas
show extension to the epiphysis in children [19].
Physeal and epiphyseal involvement (Fig. 20) need to
be assessed in order to determine whether joint-sparing
surgery can be performed. This should be done using
T1WI and T2FS WI/STIR. Abnormal physeal signal
intensity, especially when contiguous with and
isointense to the primary tumour, is the most important
feature [4].

Direct visualisation of a tumour extending into the
articular cavity through a destroyed cortical region is
the most obvious sign of joint involvement (Figs. 21
and 22). Joint effusion alone is not sufficient for its
diagnosis but its absence can help exclude it with a
high degree of certainty [4].

Muscular invasion should preferentially be assessed in the
axial plane using T1WI and T2FS/PD FS WI [4].

MRI is superior to CT and conventional angiography
in the evaluation of neurovascular involvement [4]. The

Table 6 AJCC staging system (adapted from the AJCC Cancer Staging Forms, 7th Edition)

American Joint Committee on Cancer(AJCC) staging system

Stage Primary tumour (T) Regional lymph nodes (N) Distant metastasis (M) Histologic grade (G)

Stage IA T1 N0 M0 G1, 2 (low grade)

Stage IB T2
T3

N0
N0

M0
N0

G1, 2 (low grade)

Stage IIA T1 N0 M0 G3, 4 (high grade)

Stage IIB T2 N0 M0 G3, 4 (high grade)

Stage III T3 N0 M0 G3, 4 (high grade)

Stage IVA Any T N0 M1a Any G

Stage IVB Any T
Any T

N1
Any N

Any M
M1b

Any G
Any G

Fig. 20 T1W sagittal image of an osteosarcoma of the distal femur
showing extension beyond the physeal plate

Fig. 21 T1W coronal image of an osteosarcoma of the ulna showing
extension into the elbow joint with an associated effusion (arrows)
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best predictors are loss of the perivascular/perineural fat
and encasement (especially with associated stenosis).
They should be assessed in the axial plane using
T2FS/PD FSWI and CEMRI (Fig. 23).

Use of MRI in evaluating distant extension

Skip metastases (Fig. 24) are considered rare (less than 5 % of
osteosarcomas [19]); however, their presence automatically
determines an AJCC stage≥III and is considered a poor prog-
nostic sign [36].

Transarticular skips should be considered stage IV disease
(distant metastasis) because aggressive chemotheraphy (used
for typical skip metastases, stage III) does not improve
diseased-free survival in these patients [37].

MRI has no role in assessing lymph node or lung involve-
ment. It is currently under active investigation as an alternative
to bone scan or FDG-PET in the assessment of bony
metastasis.

Assessing response to neoadjuvant therapy with MRI

Chemotherapy has an important role in the treatment of MM,
osteosarcoma, Ewing sarcoma’s and lymphoma.

Most bone tumours are resistant to radiotherapy [28]: its
role is limited to local treatment of Ewing’s sarcoma [38],
some cases of conventional osteosarcoma (when marginal
resection is required for functionality [19]) and chordoma
[16].

Chondrosarcomas and malignant fibrous histiocytoma are
usually resistant to both chemotherapy and radiotherapy [16,
38].

Expected post-radiation MRI changes in successful
cases are a decrease in tumour size and an increase in
its T2 signal intensity (due to fatty transformation of the
bone marrow).

Fig. 23 Gadolinium-based contrast medium-enhanced T1Waxial image:
osteosarcoma of the right tibia invading the adjacent soft tissues (includ-
ing the vasculature)

Fig. 22 T2FS sagittal image of an osteosarcoma of the proximal tibia:
there is muscular invasion (lower arrow) and intra-articular extension
(upper arrow)

Fig. 24 Coronal T1 image of an osteosarcoma of the distal femur with an
associated proximal skip lesion (arrow)
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Fig. 25 Ewing’s sarcoma before
(a) and after (b) chemotherapy: a
decrease in the size of the soft-
tissue component and presence of
a circumferential hypointense rim
are features suggestive of good
response

Fig. 27 This patient had resection of the distal femur due to a chondrosarcoma. MRI showed a suspicious area of high signal near the distal prosthesis (a
and arrow in b), which showed peripheral enhancing lobulations (arrow in c): a local recurrence of chondrosarcoma

Fig. 26 MRI applied in the diagnosis and follow-up of a patient with
chordoma: this patient had a voluminous lesion destroying the distal part
of the sacrum (a). He had radiotherapy and surgery and was re-evaluated
4months later:MRI showed a posterior subcutaneous fluid collection and
a localised area with high T2WI signal (arrow in b) and contrast

enhancement (arrow in c) in the inferior spine, which could be due to
either residual tumoral tissue or radiotherapy. Posterior follow-up how-
ever showed a localised round area of persistant enhancement, which
proved to be local recurrent/residual tumour (arrow in d)

Insights Imaging (2014) 5:419–440 433



Table 7 Mimickers

Condition Explanation Distinguishing features/recommendations

Osteomyelitis
(Figs. 28 and 29)

Aggressive aspect Usually involves the metaphysis in children
Small/absent soft tissue component
Penumbra sign*
Fistulous tracts
Clinical features**

Eosinophilic granuloma (EG) Aggressive aspect Can be very difficult or even impossible to
distinguish from malignant lesions in young
patients

EG of the spine shows preservation of terminal
end plates, disks and posterior elements
(Fig. 30)

Stress lesions
(Figs. 31 and 32)

Elderly patients with insufficiency fractures
Fatigue fractures

Hypointense line extending from the
cortex into the medullary area on
T1- and T2WI

Surrounding oedema [15]
Absence of focal lesion or soft tissue mass [15]

Bone infarcts and osteonecrosis Early osteonecrosis may result in a poorly
defined region of lucency simulating a tumour
in radiographs

Calcifications can simulate those of
chondroid lesions

Usually manifests as a well-defined linear
serpentine rim of low signal intensity on
T1WI. On T2WI the rim may have low
signal intensity, high signal intensity or
both (“double line” sign)

Chondroid lesions show peripheral lobulations
with T2 hyperintensity

Myositis ossificans
(Fig. 33)

Can have a disorganised amorphous bone
formation similar to osteosarcoma [19, 44]

Usually separated from the cortex
Evolves to mature ossification

Haematopoietic marrow
(Fig. 34)

Axial skeleton, thoracic grid, pelvis and
extremities of long bones can maintain areas of
haematopoietic marrow even after skeletal
maturity [15] (this can simulate marrow
infiltration in T1WI and cause high signal
on STIR)

Signal intensity>than that of muscle on T1WI
Presence of microscopic fat (>50 % drop in
signal in opposed-phase) [15]

Aggressive osteoporosis Sudden immobilisation can cause
bone demineralisation, with oedema
mimicking diffuse tumoral infiltration

Preferential locations: subchondral bone,
tendon and ligamentar insertions

*The “penumbra sign” on MRI is a rim with higher signal intensity than that of the main abscess on T1WI. It is helpful in distinguishing between
subacute osteomyelitis from other osseous lesions [45]

**Rapid onset of fever, localised pain and oedema; 50 % of cases show positive blood cultures

Table 8 Pitfalls

Pitfall Explanation Distinguishing features/ recommendations

Very infiltrative lesions (e.g. MM) Can preserve bone marrow fat [15] (normal
signal on T1WI and signal drop in out of
phase)

Can be undetectable

Anaemia, rebound following
chemotherapy or treatment with
colony-stimulating factor

(Figs. 35 and 36)

Marked haematopoiesis increases the amount
of red marrow, resembling recurrent
tumoral disease

Usually bilateral and symmetric
Signal intensity>than that of muscle on T1WI
USPIO-enhanced MRI can differentiate these from tumour
deposits (RES cells are present in the reconverted marrow but
not present/substantially reduced in tumour deposits [24]

Post-chemotherapy osteosarcoma
“size increase”

Sometimes even in “good responders” the
primary lesion does not diminish in size or
appears to enlarge

Therapy has low impact on the mineralised matrix of osteogenic
sarcoma

Matrix maturation/ossification (presence of fatty marrow)

Benign GCT may show elevated
choline levels on proton MR
spectroscopy [46]

May be related to the degree of their local
aggressiveness

Use radiographs and conventional MRI for diagnosis

USPIO: ultra-small superparamagnetic iron oxide particles

RES: reticuloendothelial system
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Response to preoperative chemotherapy in bone sarcomas
can be classified as good (≥90 % tumour necrosis) or poor
(<90 % tumour necrosis) [39]. Decreasing extent of marrow
invasion, reduction of tumour volume and a decrease in the
amount of associated oedema are favourable conventional
MRI indicators (Fig. 25). Quantitative dynamic MRI can
estimate the amount of necrosis in bone tumours (viable
tumour enhances faster than nonviable tumour and post-
treatment changes [40]). If confirmed to be of clinically pre-
dictive value, the post-processing software needed for
performing this technique would likely become more avail-
able [4]. Favourable indicators in dynamic CEMRI are reduc-
tion in the slope of the time intensity curve, of the maximum

enhancement and in the washout rate. These can change the
type of signal enhancement time curve [4].

Necrotic tumour does not restrict the movement of
water molecules (this translates into low signal intensity
in high b values and a high ADC in DWI) as opposed to
viable tumour.

MRI applied in follow-up

Evaluation for osseous metastatic disease should only be done
in symptomatic patients [10]. Coronal whole-body and sagit-
tal spine MRI using T1WI and STIR were shown to be

Fig. 28 L4-L5 spondylodiscitis:
Sagittal T2 (a) and sagittal
CEMRI (b) show intervertebral
disk and body endplate
destruction (arrows in a and b),
oedema of the paraspinal
musculature and a large liquid
collection inferiorly. The infection
extends posteriorly into the spinal
canal. Primary bone lesions
usually do not contiguously
involve adjacent vertebrae

Fig. 29 Acute osteomyelitis radiographic findings (a) can be aggressive
and similar to those of Ewing’s sarcoma (permeating lesion with perios-
teal reaction, arrow in a). MRI however shows diffuse soft-tissue

swelling, with no well-defined soft tissue mass (b axial T1WI; c sagittal
T1WI; d contrast-enhanced T1WI)
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superior to FDG-PET/CT for this purpose [41]. The combined
use of radiographs and MRI is strongly recommended for the
surveillance for local recurrences [10]. Baseline imaging
should be obtained within 3-6 months of definite resection
using MRI [19]. Recommended imaging follow-up intervals
vary according to whether the tumour is low or high risk [10].

Detection of recurrences and distinction
from posttherapeutic changes

Rooser et al. [42] demonstrated marginal excision, tumour
necrosis and extracompartmental extension to be the most
important risk factors for local recurrences.

Recurrences should be suspected when residual bone
changes occur, such as marrow replacement, cortical

disruption and osseous destruction. When performing an
MRI follow-up study, lesions should first be evaluated accord-
ing to their T2 signal intensity: if it shows low signal intensity
on T2, it generally does not represent recurrent tumour (sen-
sitivity 96 %) [10]. If it shows high signal on T2 and surgery
was the only treatment performed, the likelihood of recurrence
is high. When radiotherapy was also carried out, the high
signal on T2 is nonspecific for distinguishing recurrence or
radiation-induced inflammation [43].

Postoperative fluid collections (haematoma and seroma)
can be distinguished from residual tumour or inflammation
by means of CEMRI (Figs. 26 and 27): the former will show
only thin linear peripheral enhancement.

Chronic, post-therapeutic changes usually lack high signal
intensity on T2WI. The presence of vascularised granulation
tissue, neovascularity in necrotic areas or reactive hyperaemia
can cause gadolinium-based contrast medium enhancement.
However, because of its greater vascularisation, tumour tissue
normally enhances more.

Dynamic CEMRI may be beneficial by demonstrating
early enhancement in tumour tissue that is not seen in post-
therapeutic changes or inflammation.

Important diagnostic differentials and mistakes that
should be avoided

There are many nontumoral (e.g. infectious and trau-
matic) conditions that can look like primary bone tu-
mours (“mimickers”). There is also a group of situa-
tions that can lead to errors in staging or incorrect

Fig. 30 Sagittal T1- and T2WI of
a typical eosinophilic granuloma
of the spine (vertebra plana):
preservation of terminal end
plates, disks and posterior
elements

Fig. 31 Sagittal T2WI: typical benign insufficiency vertebral fracture
with a visible fracture line (blue arrow), areas of normal marrow (yellow
arrow), and no focal lesion or associated mass
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Fig. 32 Stress fracture of the
calcaneus: sagittal and axial STIR
shows an area of localised
marrow oedema (arrow in a) and
the hypointense fracture line
(arrow in b) extending from the
cortical to the medullary area

Fig. 33 Acute/intermediate
justacortical myositis ossificans
of the right thigh: axial STIR (a)
shows a localised high signal
intensity area with associated
oedema. Contrast-enhanced
T1WI (b) demonstrates
enhancement, which is typical of
active lesions. This lesion does
not disrupt the cortical area

Fig. 34 Normal haematopoietic
marrow in the proximal humerus
(arrows in a and b). In children,
the normal bone marrow is highly
cellular (low signal on T1WI and
high signal T2 FS WI). With
increasing age, a gradual
conversion from this highly
cellular marrow to fatty marrow
occurs (with an increase in the
bone marrow signal on T1WI and
a decline on T2 FS WI). In long
bones, this conversion first
involves the epiphyses, then the
diaphyses and finally the
metaphyses [24]
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Fig. 35 A patient with a history
of lung cancer: coronal STIR (a)
showed several suspicious areas
on both tibial bones (arrows in a),
which could be misinterpreted as
distant recurrence if not noticed to
show higher T1 (arrows in b and
c) signal than adjacent muscle.
Posterior follow-up (d) showed
complete resolution of these
areas. This reconversion occurs in
a reverse fashion compared to the
conversion from haematopoietic
marrow to fatty marrow (i.e. the
reconversion progresses from the
central skeleton to the periphery)
[24]
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diagnosis of recurrence (and thus can be regarded as
pitfalls). Although their detailed discussion is beyond
the scope of this work, some of them should be men-
tioned and are briefly discussed in Tables 7 and 8 and
(Figs. 28, 29, 30, 31, 32, 33, 34, 35, and 36) [15, 19,
24, 44–46].

Limitations

General MRI contraindications also apply to the evaluation of
bone tumours and tumour-like conditions (e.g. patient size,
clinical status, cardiac pacemaker).

Low-risk Gd-based contrast agents [47] should only be
used if they can provide essential diagnostic information in

patients with a glomerular filtration rate <30 ml/min and in
pregnant women [47].

Tumour recurrence may be hard to detect when orthopae-
dic implants are in close proximity to tumour sites because of
susceptibility artefacts.

MRI is limited in evaluating calcifications. CT plays a
further role in the characterisation of sclerotic or mixed (lyt-
ic/sclerotic) lesions and is superior to MRI in the evaluation of
osteoid osteoma [10, 35].

Conclusion

A good knowledge of the characteristic MRI findings of
benign and malignant osseous conditions and their role in
staging, therapeutic planning and follow-up in the setting of
malignancy is essential for optimal patient care.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
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