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Autophagy removes both functional and damaged intracellular macromolecules
from cells via lysosomal degradation. Three autophagic mechanisms, namely
macroautophagy, chaperone-mediated autophagy (CMA), and microautophagy, have
been described in mammals. Studies in experimental systems have found
macroautophagy and CMA to decrease with normal aging, despite the fact that
oxidative stress, which can activate both processes, increases with normal aging.
Whether autophagic mechanisms decrease in the human brain during normal aging
is unclear. The primary objective of this study was to examine the association of a
major autophagy protein, lysosome-associated membrane glycoprotein (lamp2), with
age in cerebrospinal fluid (CSF) samples from healthy subjects. Lamp2 consists of
three isoforms, lamp2a, 2b and 2c, all of which participate in autophagy. Lamp2’s
CSF concentration decreases in Parkinson’s disease (PD) and increases in Alzheimer’s
disease (AD), but whether its CSF concentration changes during normal aging has
not been investigated. Our secondary objectives were to examine the associations
of lamp2’s CSF concentration with CSF levels of the molecular chaperone heat
shock 70-kDa protein (HSPA8), which interacts with lamp2a in CMA, and oxidative
stress markers 8-hydroxy-2′-deoxyguanosine (8-OHdG), 8-isoprostane (8-ISO) and
Total Antioxidant Capacity (TAC) in healthy subjects. We found lamp2’s observed
associations with these variables to be weak, with all Kendall’s tau-b absolute values
≤0.20. These results suggest that CSF lamp2 concentration changes little during normal
aging and does not appear to be associated with HSPA8 or oxidative stress. Further
studies are indicated to determine the relationship between CSF lamp2 concentration
and brain autophagic processes.
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INTRODUCTION

Proteostasis involves regulation of protein transcription, translation, folding, trafficking,
processing, assembly/disassembly, localization, and degradation (Douglas and Dillin, 2010).
Cells attempt to maintain proteostasis via the autophagy-lysosomal pathway and the
ubiquitin-proteasome system (Xilouri and Stefanis, 2016). Three autophagic processes, namely
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macroautophagy, chaperone-mediated autophagy (CMA) and
microautophagy have been described in mammals (Cuervo,
2004). Based on studies in rat livers and human fibroblast
cultures, macroautophagy and CMA are thought to decrease
with normal aging (Cuervo and Dice, 2000; Del Roso et al.,
2003). If these processes decrease in the brain during normal
aging, this could contribute to aging being a primary risk
factor for the two most prevalent neurodegenerative disorders,
Alzheimer’s disease (AD) and Parkinson’s disease (PD; Jeppesen
et al., 2011; Xilouri and Stefanis, 2016). The few investigations
of age-related changes in brain autophagy have produced
conflicting results. Genome-wide analyses of human brain
specimens found downregulation of a key macroautophagy
protein, beclin-1 (Shibata et al., 2006), and of major autophagy
genes including Atg5 and Atg7 (Lipinski et al., 2010b); the latter
study also found upregulation of genes involved in regulation
and mediation of the mitogen-activated protein (MAP) kinase
pathway, which was predicted in an earlier study (Lipinski et al.,
2010a) to result in suppression of autophagy. Conversely, a
proteomics study of human cerebrospinal fluid (CSF) found
that three proteins with the gene ontology classification of
‘‘autophagy’’ namely myoglobin, MMP8 and HMW kininogen
(none of which is a major autophagy protein), increased with age
(Baird et al., 2012). An age-related increase in macroautophagy
in the rat brain has also been reported (Gamerdinger et al.,
2009).

There are no established biomarkers in cerebrospinal fluid
(CSF) for monitoring brain autophagy. Beclin-1, p62 and LC3-II
have been suggested as macroautophagy biomarkers (Karim
et al., 2007; Pattingre et al., 2008; Li et al., 2015; Au et al.,
2017) but, to our knowledge, age-related changes in these
proteins have not been examined in CSF. We recently reported
(Loeffler et al., 2016) that the CSF concentration of heat shock
70-kDa protein (HSPA8, also known as hsc70 and hsc73), a
molecular chaperone involved in CMA, decreases with aging,
but whether changes in CSF HSPA8 levels reflect changes in
brain CMA is unknown. In the present study we explored
changes in the CSF concentration of another autophagy protein,
lysosome-associated membrane glycoprotein 2 (lamp2), during
normal aging. Lamp2 has three isoforms, lamp2a, 2b and 2c,
which are generated by alternative splicing of the LAMP2
gene and differ in their C-terminus sequences (Gough et al.,
1995). All three isoforms participate in autophagy; lamp2a’s
binding by the substrate protein—heat shock 70-kDa protein
(HSPA8) complex is rate-limiting for CMA (Cuervo and Dice,
1996), lamp2b is involved in macroautophagy (and may be
required for autophagosome-lysosome fusion; Nishino et al.,
2000; Rowland et al., 2016), and lamp2c is a receptor for
autophagic degradation of DNA and RNA (Fujiwara et al., 2015).
Lamp2’s CSF concentration has been reported to decrease in
PD (Boman et al., 2016; Klaver et al., 2018) and to increase
in AD (Armstrong et al., 2014), in accordance with reports
of decreased lamp2a and HSPA8 (referred to in that study
as hsc70) in PD brain specimens (Alvarez-Erviti et al., 2010)
and increased transcription of positive regulatory genes for
autophagy in AD brain specimens (Lipinski et al., 2010b).
Lamp2’s gene expression in human leukocytes decreases with

normal aging (Huang et al., 2012), but whether its CSF
concentration changes during normal aging is unknown. Our
primary objective in this study was to examine this issue. Our
secondary objectives were to examine lamp2’s correlations, in
CSF from healthy subjects, with HSPA8 and with markers
of oxidative stress (8-hydroxy-2′-deoxyguanosine [8-OHdG],
8-isoprostane [8-ISO], and Total Antioxidant Capacity [TAC]).
TAC includes nonenzymatic low molecular weight antioxidants
such as ascorbic acid and glutathione (Alho et al., 1998; Bartosz,
2003); because a decrease in TAC could result in elevated
oxidative stress, it may be an indirect marker for oxidative stress
(Mandrioli et al., 2006). Oxidative stress increases in the aged
brain (Navarro et al., 2002; Vanguilder and Freeman, 2011) and
can activate both CMA and macroautophagy (Kiffin et al., 2004;
Kaushik et al., 2010). In a previous study with these samples
(Loeffler et al., 2016), we found the CSF concentration of the
oxidative stress marker 8-OHdG to increase with age (Spearman
rho = 0.61).

MATERIALS AND METHODS

Study Subjects
Details of the subjects whose CSF samples were used in this
study were reported previously (Loeffler et al., 2016). The
subjects were recruited by neurologist Jan Aasly, at St. Olav’s
Hospital, Trondheim, Norway. They were tested for and lacked
known PD-related mutations in the LRRK2, PARK2, PARK7,
PINK1 and SNCA genes, and had no detectable cognitive or
neurological impairments. All procedures involving the study
subjects, including obtaining of written informed consent,
were performed at St. Olav’s Hospital in accordance with the
Declaration of Helsinki of 1975 and its subsequent amendments.
The study was approved by the Regional Committee for Medical
Research Ethics, Central Norway, for the procedures performed
at St. Olav’s Hospital. Lumbar CSF samples were obtained
using Parkinson’s Progression Markers Initiative (PPMI)
biospecimen collection procedures (Parkinson’s Progression
Markers Initiative, 2014). The study was given exempt status
from the Institutional Review Board of Beaumont Health
(Royal Oak, MI, USA) for the procedures performed in the
Neurology Research Laboratory at Beaumont Hospital-Royal
Oak (MI, USA), where lamp2 was measured in de-identified CSF
samples.

Lamp2 Measurements
Lamp2 was measured using the ELISA Kit for Lysosomal
Associated Membrane Protein 2 (LAMP2; cat. # SEB464Hu)
from Cloud-Clone Corp. (Katy, TX, USA). The lower limit
of detection for lamp2 in the ELISA kit was stated by
the manufacturer to be 26.2 pg/mL. The standard curve
in the assay ranged from 62.5 pg/mL to 4000 pg/mL.
The lamp2 concentration of each sample was measured in
duplicate after diluting the sample with an equal volume
of 0.01 M PBS buffer, pH 7.2; the lamp2 concentrations
used in statistical analyses were the means of these duplicate
measurements. The standard curve was generated using Softmax
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Pro software (version 3.0; Molecular Devices Corp., Sunnyvale,
CA, USA) using the log-log function as recommended by
the manufacturer, and the concentration of lamp2 in each
sample was calculated by Softmax. One sample produced a
mean optical density value which was below the value for the
lowest point on the standard curve; for statistical purposes,
the sample was assigned a concentration of 26.2 pg/mL, the
lower limit of sensitivity for the assay. After accounting for the
dilution factor, the concentration of the sample was listed as
52.4 pg/mL.

Statistics
Measures were summarized with means ± SDs for variables
which were normally distributed, and with medians and ranges
for variables which were not normally distributed. Lamp2 values
were distributed abnormally (strongly skewed right with extreme
outliers); natural-log transformation produced a reasonably
normal distribution. Kendall’s rank-correlation coefficient
(Kendall’s tau-b) with associated 95% confidence intervals
(CI), and scatterplots with best-fit regression lines and locally
weighted scatterplot smoother (LOWESS) curves were used
to examine lamp2’s associations with age, HSPA8, 8-OHdG,
8-ISO and TAC. Differences for lamp2 concentrations between
male and female subjects were examined with t-tests. Original
(non-transformed) lamp2 values were used for Kendall’s
tau-b calculations, while log-transformed lamp2 values were
used for scatterplots and gender comparisons. Statistical
analysis used The SAS System for Windows version 9.3
(SAS Institute Inc., Cary, NC, USA) and Minitab Release
14 (Minitab Inc., State College, PA, USA) was used for
graphs.

RESULTS

Associations of CSF Lamp2 Concentration
With Other Variables
Numeric summaries for age and lamp2, HSPA8, 8-OHdG, 8-ISO,
and TAC concentrations are shown in Table 1, and lamp2’s
associations with the other variables are shown in Table 2.
Lamp2 was poorly correlated with age (Kendall’s tau-b = 0.16;
95% CI for tau-b = [−0.08, 0.40]) and with the other variables
(all Kendall’s tau-b absolute values ≤ 0.20). The 95% CIs for
lamp2’s associations with age [−0.08, 0.40] and with 8-OHdG
[−0.01, 0.41] do not rule out the possibility of moderate positive
associations.

The scatterplot of log-transformed lamp2 vs. age (Figure 1)
indicated that the LOWESS curve closely followed the regression
line, suggesting that the weak positive relationship that we
observed between lamp2 and age was no more complex
than linear. Conversely, in the scatterplot for log-transformed
lamp2 vs. 8-OHdG (Figure 2), the LOWESS curve was steeper
than the regression line to an 8-OHdG concentration of
approximately 900 pg/mL, suggesting that lamp2 might increase
with 8-OHdG to this 8-OHdG concentration, then level off
or decrease. Scatterplots of log-transformed lamp2 vs. 8-ISO,

TABLE 1 | Age and cerebrospinal fluid (CSF) lysosome-associated membrane
glycoprotein 2 (lamp2), heat shock 70-kDa protein (HSPA8), 8-OHdG, 8-ISO and
TAC concentrations in study subjects.

Variable Summary measure

Age (years)—median, range 55.5 (20–75)
lamp2 (pg/mL)—median, range 350.8 (52.4–10,561)
HSPA8 (ng/mL)—mean ± SD 0.5 ± 0.2
8-OHdG (pg/mL)—mean ± SD 811.3 ± 160.8
8-ISO (pg/mL)—median, range 6.5 (3.2–16.7)
TAC (mM)—median, range 0.4 (0.2–0.6)

Study subjects were 18 males and 16 females. The data for HSPA8, 8-OHdG,
8-ISO and TAC were taken from our previous study with these samples (Loeffler
et al., 2016). 8-OHdG, 8-hydroxy-2′-deoxyguanosine; 8-ISO, 8-isoprostane; TAC,
Total Antioxidant Capacity.

TABLE 2 | Kendall’s rank-correlation coefficients of CSF lamp2 concentrations
with age, HSPA8 and oxidative stress measures in study subjects.

Variable Kendall’s Tau-b 95% CI for Kendall’s Tau-b

Age 0.16 (−0.08, 0.40)
HSPA8 −0.15 (−0.39, 0.09)
8-OHdG 0.20 (−0.01, 0.41)
8-ISO −0.13 (−0.33, 0.07)
TAC 0.09 (−0.17, 0.34)

CSF lamp2 concentration was weakly correlated with the other variables. HSPA8,
heat shock 70-kDa protein 8; 8-OHdG, 8-hydroxy-2′-deoxyguanosine; 8-ISO,
8-isoprostane; TAC, Total Antioxidant Capacity.

FIGURE 1 | Distribution of cerebrospinal fluid (CSF) log-transformed
lamp2 concentrations as a function of age in study subjects. A best-fit
regression line and locally weighted scatterplot smoother (LOWESS) curve are
shown; the LOWESS curve closely followed the regression line.

TAC, and HSPA8 (not shown) did not suggest an association of
lamp2 with any of these variables.

Gender Differences in CSF Lamp2
Concentration
No significant differences were found for CSF
lamp2 concentration between genders (p = 0.80). Because
the male study subjects tended to be younger than the female
study subjects, the gender comparison was limited to subjects
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FIGURE 2 | Distribution of CSF log-transformed lamp2 concentrations as a
function of 8-hydroxy-2′-deoxyguanosine (8-OHdG) concentrations in study
subjects. A best-fit regression line and LOWESS curve are shown. The
LOWESS curve suggested that log-transformed lamp2 may increase with
8-OHdG to approximately 900 pg/mL; after that point it may level off or
decrease.

≥40 years old, namely 16 females (mean age 60.3) and nine males
(mean age 60.1).

DISCUSSION

The main finding in this study was that the association
between CSF lamp2 concentration and age appeared to be
weak in healthy subjects. The scatter plot for the distribution
of log-transformed lamp2 vs. age (Figure 1) indicated large
variability in lamp2 concentrations among similar-aged
individuals. Age could explain, at best, only a small proportion
of this variability (adjusted R2 = 1.4%). Whether the lack of
age-related changes in CSF lamp2 reflects a similar lack of
change in brain lamp2 and/or brain autophagic processes during
normal aging is unknown; such a determination would require
measurement of lamp2 on lysosomal membranes, as well as
assessment of CMA and macroautophagy activities, in normal
brain specimens across a wide age range.

Because the concentration of lamp2 is the sum of the
concentrations of all three lamp2 isoforms, the lack of change
that we found in CSF lamp2 concentration during normal
aging does not necessarily indicate a lack of change in the
concentrations of its isoforms. A study measuring mRNA
for lamp2’s isoforms in normal human anterior cingulate
and occipital cortex (Murphy et al., 2015) found that only
5% of lamp2 mRNA encoded for lamp2a, whereas 85%
encoded for lamp2c. Whether lamp2’s isoforms are similarly
distributed in CSF is unknown. If lamp2a accounts for only
5% of lamp2’s CSF concentration, then it may be difficult to
detect by standard techniques such as ELISA or western blot.
No commercial ELISAs are available for measuring lamp2’s
isoforms.

The correlation between lamp2 and HSPA8 was −0.15. It is
unclear if a stronger association between these proteins should
have been expected. Activation of CMA is often mediated

by increases in the lysosomal levels of both lamp2a and
HSPA8 (Agarraberes et al., 1997), but as discussed above,
changes in lamp2’s CSF concentration may not reflect those
of lamp2a. HSPA8 is the main housekeeping member of
the heat shock protein 70 family and is involved in many
other processes in addition to CMA (Stricher et al., 2013),
so its concentration in CSF may not reflect brain CMA
activity.

Lamp2’s correlations with the oxidative stress markers were
also weak. This suggests that lamp2 CSF concentration in
healthy individuals may not be associated with, and may not
be influenced by, oxidative stress. Although the LOWESS curve
in Figure 2 suggested that lamp2 might increase with 8-OHdG
to approximately 900 pg/mL 8-OHdG, this finding requires
confirmation.

The number of subjects in this study was sufficient
for investigating lamp2’s associations with age, HSPA8,
and oxidative stress markers. Although the CI for lamp2’s
associations with age and 8-OHdG do not rule out the possibility
of moderate positive associations, they suggest that negative
associations between these variables are unlikely. This was a
cross-sectional study which measured CSF lamp2 at a single age
in each subject; a study measuring each subject’s CSF lamp2 at
multiple time points (e.g., over multiple decades) might have
increased our ability to detect age-related changes in lamp2.

Recent studies have indicated a relationship between
autophagic processes and lipid metabolism. In experimental
models, lipid loading exerts inhibitory effects on both
macroautophagy and CMA in hepatocytes (Koga et al.,
2010; Rodriguez-Navarro et al., 2012). In the latter study,
the inhibitory effects of lipid challenge on CMA were ascribed
to decreased stability of lamp2a at lysosomal membranes,
which resulted in lowering of its concentration there. Whether
increased lipid intake similarly causes changes in the lamp2a
and/or total lamp2 concentrations in the CNS is unknown. All
of our subjects had similar basal metabolic index classifications,
and we were not aware of differences in their eating habits.
However, because the basal metabolic rate decreases each decade
after age 20 by 1%–2% (Manini, 2010), we cannot rule out
the possibility that this could have influenced the correlation
(which was weak) that we found between CSF lamp2 and
subject age.

We conclude that CSF lamp2 concentration appears to change
little during normal aging, and it appears to be poorly associated
with CSF concentrations of HSPA8 and of oxidative stress
markers. Further studies are indicated to clarify the effects of
aging on autophagic processes in the human brain and to identify
CSF biomarkers for these processes.
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