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a b s t r a c t 

Amyotrophic lateral sclerosis (ALS) characterized by progressive degeneration of motor neurons 

is a debilitating disease, posing substantial challenges in both prognosis and daily life assistance. 

However, with the advancement of machine learning (ML) which is renowned for tackling many 

real-world settings, it can offer unprecedented opportunities in prognostic studies and facilitate in- 

dividuals with ALS in motor-imagery tasks. ML models, such as random forests (RF), have emerged 

as the most common and effective algorithms for predicting disease progression and survival time 

in ALS. The findings revealed that RF models had an excellent predictive performance for ALS, 

with a testing R2 of 0.524 and minimal treatment effects of 0.0717 for patient survival time. 

Despite significant limitations in sample size, with a maximum of 18 participants, which may not 

adequately reflect the population diversity being studied, ML approaches have been effectively 

applied to ALS datasets, and numerous prognostic models have been tested using neuroimaging 

data, longitudinal datasets, and core clinical variables. In many literatures, the constraints of ML 

models are seldom explicitly enunciated. Therefore, the main objective of this research is to pro- 

vide a review of the most significant studies on the usage of ML models for analyzing ALS. This 

review covers a variation of ML algorithms involved in applications in ALS prognosis besides, 

leveraging ML to improve the efficacy of brain-computer interfaces (BCIs) for ALS individuals in 

later stages with restricted voluntary muscular control. The key future advances in individualized 

care and ALS prognosis may include the advancement of more personalized care aids that enable 

real-time input and ongoing validation of ML in diverse healthcare contexts. 
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Specifications Table 

Subject area: Selected from MEX categories . 

More specific subject area: Machine learning, brain-computer interface (BCI) 

Name of the reviewed methodology: Systematic review methodology 

Keywords: Amyotrophic lateral sclerosis (ALS), machine learning (ML), prognosis, individualized, treatment 

Resource availability: Google Scholar, Springer, PubMed, Scopus, Web of Science, IEEE Xplore, and ScienceDirect 

Review question: How is machine learning used in the detecting and predicting the prognosis of individuals with ALS? 

How is brain-computer interface used in providing individualized care strategies for individuals with ALS? 

What is the current status, limitation, and future direction of machine learning application in ALS prognosis? 

Background 

Motor neuron diseases (MNDs) are a class of neurological illnesses distinguished by the increasing dysfunction of the motor

neurons (MNs). Even by neuronal standards, MNs are massive cells with exceptionally long axons that may reach lengths of up to

1 m in an adult individual, making them distinct from other types of neurons. Based on the location, these motor neurons can be

classified into two: lower motor neurons and upper motor neurons within the central nervous system. While the upper MNs reside

in the motor cortex, the lower MNs are situated in the spinal cord and brainstem [28] . Motor neurons play a role in innervating the

skeleton muscle fibres which govern muscle contraction. When degeneration of the motor nerve axon occurs, the innervated muscle 

fibres would cease to function properly. 

In 2019, 1034,606 disability-adjusted motor neuron diseases (DALYs) were lost to motor neuron diseases which resulted in 39,081

fatalities worldwide [26] . According to 2016 Global Burden of Diseases (GBD) estimates, the all-age incidence rates for MNDs were

0.78 per 100,000 person-years [7] . However, among all MNDs, amyotrophic lateral sclerosis (ALS) is the most prevalent, with a

mean incidence of 1.8 per 100,000 in North America and 2.8 per 100,000 in Europe [19] . The majority of the cases are sporadic,

and characterized by hyperreflexia, muscle weakness, and stiffness. ALS, formerly referred to as Lou Gehrig’s disease, is a progressive

neurological disease affecting motor neurons, resulting in the degeneration of nerve cells in the brain and spinal cord that regulate

breathing and voluntary muscle movement. The impairment of respiratory muscles in ALS individuals has often restricted survival to

2–5 years after illness onset in ALS, which frequently has a localized origin before spreading to various body parts [20] . Overall, the

decreased survival rate in ALS individuals has been confirmed as a result of respiratory muscle deficiency, and different assistance

methods have varying degrees of effectiveness or success rates in alleviating the effects of this condition. 

To lessen the worldwide burden that ALS represents, the prognosis and management techniques need to be enhanced by providing

the best treatment at the best possible time. Early prognosis is an extremely crucial yet difficult endeavor in the plight of an effective

treatment for ALS. Due to the gradual onset of symptoms and the resemblance of ALS to other neurological disorders, better diagnostic

definitions that allow relevant disease categorizations prognostically are required. It has come to an understanding that ALS has 

emerged as a heterogeneous clinical population and not a single disease entity [16] . These variables may lead to diagnostic delays

which may last from 9 to 27 months. Additionally, the uncertainties during ALS detection might predispose an individual to unneeded

interventions, resulting in an accelerated disease progression [6] . In the context of this, an artificial intelligence (AI) model can come

in handy and make significant strides in prognosis, enabling precise disease stratification and shortening detection times. 

Recently, there have been widespread applications of AI-based technologies in healthcare facilities and various AI algorithms 

have been used by researchers to detect vast sets of diseases. One of the applications that has benefitted from AI is the progressive

prediction of bulbar palsy and polytopic paralysis via a neuro-machine learning model [34] . It is recognized that both bulbar palsy

and polytopic paralysis are associated with ALS in one way or another. Bulbar palsy is often regarded as a subtype of ALS, and

whenever ALS predominantly affects the bulbar area, the manifestation of bulbar palsy may occur. On the other hand, polytopic

paralysis is a characteristic feature of the progressive stages of ALS, as it involves widespread motor impairments, similar to what

is observed in ALS. Furthermore, AI-based technology has been applied in detecting and distinguishing between cerebral palsy and

hereditary spastic paraplegia through the Bayesian additive regression tree (BART) approach using data from clinical gait analysis 

[4] . Numerous algorithms have demonstrated their value in improving the detection procedures for different medical pathologies. 

Therefore, the aim of this research is to provide a review of certain well-known AI algorithms and their existing clinical applications

in prognosis, detecting, and assisting ALS. 

Method details 

In this review, a systematic and critical methodology was conducted, which allowed for the synthesis of findings from the selected

articles. Through this approach, meaningful inferences about the efficiency of machine learning (ML) and brain-computer interface 

(BCI) in enhancing the quality of life for ALS individuals can be derived. Additionally, it helps to address the review questions and

offers an insightful understanding of the present state of this research field. A summarised flowchart is illustrated in Fig. 1 . 

Literature search strategy 

A comprehensive literature search was performed using databases, such as Google Scholar, Springer, PubMed, Scopus, Web of 

Science, IEEE Xplore, and ScienceDirect, to identify studies that report the use of machine learning (ML) and brain-computer interface

(BCI) approaches in the prognosis of individuals with amyotrophic lateral sclerosis (ALS) and individualized care strategies for them.
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Fig. 1. Study search and selection flow. 
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A wide variety of search terms: “machine learning ”, “amyotrophic lateral sclerosis ”, “prognosis ”, “brain-computer interface ”, and

“individualized care ” were used in the search strategy to ensure thorough coverage of existing literature. To create a more precise

and extensive search result, the Medical Subject Headings (MeSH) terms were employed. Apart from the preliminary database search, 

the reference lists of the retrieved articles were manually searched to identify additional articles. To determine the relevance and

suitability of the articles, both titles and abstracts were carefully screened. Those that appeared relevant were retrieved for further

evaluation. 

Inclusion and exclusion criteria 

Studies were only included when the searched articles focused on using ML and BCI approaches for ALS prognosis and person-

alized care. This covers articles discussing ALS disease prediction and progression, as well as advanced assistive devices aiding in

motor imagery tasks and communication. Meanwhile, conference proceedings, systematic reviews, and meta-analyses are excluded. 

Only journal articles written in English and published within the last 10 years were included. Overall, this review did not require

ethical approval because data were analyzed and synthesized from previously released articles. Any discrepancies were resolved by 

consensual judgment among reviewers. 

Data extraction and analysis 

A 2-tiered eligibility review was conducted by the reviewers. Initially, the article abstracts were screened and assessed; studies 

that did not meet all the predefined inclusion criteria or any exclusion criteria were excluded. This preliminary evaluation was carried

out for quick exclusion of articles that are not in line with the objectives of this study. In cases where the abstract was insufficient to

assess for eligibility, the full article was reviewed. Data from eligible journals were then synthesized, analyzed, and cross-checked. In

general, relevant information was extracted from the chosen articles using a standardized form known as the data extraction form.

Various data were extracted, including participant characteristics (sample size), datasets (origin and type), interventions (both ML 

and BCI approaches involved), and main findings related to prognosis and individualized care for ALS patients. Out of the original

655 studies identified, 485 studies were removed due to duplications and irrelevancy. The remaining 170 articles were evaluated; 54

met the eligibility criteria. Eventually, 28 studies were excluded since the data was inadequate or not available in full text. Hence,

only 26 articles were included for analysis. 

Results and discussion 

Machine learning in amyotrophic lateral sclerosis prognosis 

Early prognosis is extremely challenging due to variability in symptoms and progressive nature. It is also a challenge when

conducting a direct performance of model performance in ML studies focused on ALS because of the factors of substantial differences

in sample sizes, performance metrics, prediction goals, and study design across the numerous findings. For this, merely relying on

clinical features or clinical data supplemented with other input data types to improve model performance is not well-supported by

the evidence at hand. Nonetheless, machine learning holds great promise for identifying complex ALS-associated diseases. The key 

aim of prognosis and prediction for any kind of disease is to reduce the likelihood of an illness becoming more severe or deadly by

optimizing interventions. While typical conventional statistical approaches have historically been used for predicting ALS prognosis 

[17 , 29 , 30] , ML models can offer hitherto unheard-of prospects for discovering new prognostic indicators [1 , 2 , 12 , 18 , 25 , 27 , 32 , 38 , 41] .

Prognosis can typically be conceptualized as a regression problem with a predefined duration of survival or a classification problem

with specified categories. Frequently, the classification approach is classified as either survival (life expectancy) [27 , 32] disease phase

(stage or progression of disease) [1] , or functional decline (alterations in health) [18 , 24] . Meanwhile, as observed in some current

studies, the regression approach utilized is geared toward predicting specific outcomes for instance, functional decline [12 , 37] ,

survival rates [2 , 38] or respiratory function [15] . Numerous existing literature in this domain have showcased its performance in

clinical settings, whether the prognostic modeling, is approached as a classification problem or regression problem. One of the most

accurate classification techniques was observed at a 66 % accuracy rate [18] whereas, the regression method with the highest accuracy

has a Root Mean Squared Error (RMSE) of 0.52 [12] , both using RF algorithm. In terms of outcome prediction as a classification

problem, the best performance was attained through the multivariate Royston-Parmar model, with 78 % accuracy. On the other hand,

for outcome prediction as a regression problem on functional decline and survival, the result could be yielded by the innovative RF

approach [33] . Table 1 summarised the studies applied machine learning in amyotrophic lateral sclerosis prognosis. 

Prediction of disease progression in ALS individuals 

There are present findings that have developed prognostic models by adopting Pooled Resource Open-Access ALS Clinical Trials 

(PRO-ACT) data [25 , 33] . As presented by Pancotti et al. [25] , the combination of different architectures namely, feed-forward neural

network (FFNN), and recurrent neural network (RNN) with the PRO-ACT datasets were employed to predict ALS disease trajectory. In

this context, PRO-ACT dataset which is recognized as one of the most renowned repositories consisting of ALS clinical trial data was

merely used. Nevertheless, owing to its sources collection or patient population, it might contain some inherent biases or limitations

that could affect the model’s generalizability and accurate predictions. This is a result of temporal or spatial variability in PRO-ACT
4
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Table 1 

Overview of the research on machine learning in amyotrophic lateral sclerosis prognosis. 

Reference Dataset(s) origin Dataset(s) type ML approach Application Effectiveness 

Beaulieu-Jones & 

Greene, [2] 

Electronic Health 

Records (EHRs) from 

patient interactions with 

healthcare providers 

Real-life data Semi-supervised 

learning; Random forests 

(RF) 

Improvement for 

classification; survival 

prediction in the context 

of ALS 

The hidden layer of the 

deionizing autoencoder (DA) had 

a higher effectiveness basis for 

ALS patient survival prediction 

Pfohl et al., [27] Data from 801 deceased 

ALS patients 

Clinical metrics Generalized linear model 

(GLM); RF model 

Identification of the 

“best ” survival 

predictors; 

comprehension of how 

their predictive 

capability alters with 

disease progression 

GLM demonstrated a mixing 

parameter of 𝛼 of 0.01 and a 

regularization parameter 𝜆 of 

6.629; RF model exhibited a 

testing R2 of 0.524, suggesting a 

considerably strong predictive 

performance 

van der Burgh, [38] The dataset originated 

from 135 ALS patients 

Real-life data Deep learning; artificial 

neural networks (ANNs) 

Prediction of the survival 

categories (short, 

medium, or long 

survivors) 

Correct predicted survival 

category in 68.8 % of cases; deep 

learning prediction accuracy 

increased to 84.4 % 

Schuster et al., [32] The dataset originated 

from 60 ALS patients and 

69 healthy controls 

Real-life data Binary logistic ridge 

regressions 

Prediction of 18-month 

survival ALS patients 

A combination of both MRI and 

clinical data had an improved 

accuracy of survival predictions, 

reaching up to 79.17 % 

Pancotti, et al., [25] Pooled Resource 

Open-Access ALS Clinical 

Trials (PRO-ACT) 

repository 

Clinical trial 

dataset 

Deep learning; 

feed-forward neural 

network (FFNN); 

recurrent neural network 

(RNN) 

Prediction of disease 

progression, measured 

through the slope of the 

ALSFRS score between 3 

and 12 months 

Experimental ALSFRS slope 

possessed a weak Pearson 

Correlation Coefficient (PCC) of 

0.2 with the time-to-death; 

log-rank test p-value was lower 

than 0.005, indicative of 

robustness for the observed 

survival differences 

Seibold et al., [33] Data derived from 

PRO-ACT database 

Clinical trial 

data 

Model-based RF Prediction of treatment 

effects for patients with 

ALS 

For the survival time, the 

minimum predicted treatment 

effect was 0.0717 

Bandini et al., [1] Data from 192 

recordings from 64 

patients with ALS 

Real-life data Feature selection and 

classification algorithm 

Prediction of the disease 

progression 

High accuracy of 87 % in 

differentiating differences 

between presymptomatic and 

symptomatic phases of bulbar 

decline 

Ko et al., [18] PRO-ACT repository Real-life data RF Classifier Prediction of the 

progression of ALS 

Accuracy of 66 % in the 

prediction of the ALS progression 

Ong et al., [24] PRO-ACT repository; 

de-identified records 

from ALS sufferers 

Clinical trial 

data 

Boosting algorithm Prediction of ALS disease 

course (fast or slow 

progression) 

Predicted functional decline class 

(fast or slow) had a fair accuracy 

(area under the curve 

(AUC) = 0.82)) 

Taylor et al., [37] PRO-ACT ALS database Clinical trial 

dataset 

RF model Prediction of ALS disease 

progression 

RF model outperformed the 

pre-slope model at the initial time 

points; RF model performance 

was similar to a GLM model in 

the aspects of root-mean-square 

deviation; RF model outcome was 

the greatest when reaching the 

later time points 

Hothorn & Jung, [12] PRO-ACT database; 1197 

ALS patients 

Real-life data RF algorithm Prediction of disease 

progression in ALS 

patients 

This method ranked third best in 

terms of prediction accuracy; the 

variance of the random slope 

(individual variability) was ∼0.23 

Jahandideh et al., [15] PRO-ACT database; over 

10,000 ALS patient 

records 

Real-life; clinical 

trial data 

Gradient boosting 

machine (GBM); RF 

model 

Longitudinal prediction 

of vital capacity in ALS 

patients 

All models showed similar 

accuracy for predicting support 

vector machine (SVM) 

Huang, et al., [13] PRO-ACT ALS database Clinical trial 

data 

RF regression model Survival prediction; 

non-parametric ranking 

of patients’ survival data 

Higher accurate ranking 

predictions were observed on the 

PRO-ACT ALS dataset in 

comparison to the Cox 

proportional hazard model 

Gomeni & Fava, [8] PRO-ACT ALS database Clinical trial 

data 

Non-linear Weibull 

model 

Prediction of disease 

progression; estimation 

of clusters of trajectories 

in ALS progression over 

12 months of treatment 

Identified two clusters of 

trajectories; 46 % of patients with 

slow disease progression; and 

54 % of patients with fast disease 

progression 

( continued on next page ) 
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Table 1 ( continued ) 

Reference Dataset(s) origin Dataset(s) type ML approach Application Effectiveness 

Westeneng et al., [41] Data obtained from 14 

specialized ALS centers 

Clinical trial 

data 

Multivariable 

Royston-Parmar model 

Prediction of a composite 

survival endpoint 

The model revealed remarkable 

external predictive accuracy (c 

statistic: 0.78) and calibration 

(calibration slope: 1.01) 

Likhachov et al., (2021) Vocal data from the 

Republican Research and 

Clinical Center of 

Neurology and 

Neurosurgery 

Real-life data Linear discriminant 

analysis (LDA) 

Prediction of disease 

progression based on the 

acoustic analysis of the 

voice 

Identified various parameters, for 

example, shimmer, jitter, degree 

of vibrato pathology, and many 

more, which can be pathological 

and serve as a sign of the 

progress of ALS 

Imamura et al., [14] Data from induced 

pluripotent stem cells 

(iPSCs) of both healthy 

control and ALS patients 

Real-life data Deep learning algorithm; 

convolutional neural 

network (CNN) 

Classification of 

individuals into healthy 

control and ALS 

categories 

Exceptional AUC of 0.97 for the 

classification between healthy 

control and ALS 

Greco et al., [9] 692 blood data Clinical dataset SVM with Recursive 

feature elimination 

(SVM-RFE) 

Differential prognosis of 

ALS 

Average accuracy of 94 % using 

blood data, exclusively 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

repository due to differences in ALS disease progression rates across varying periods. In the study of Seibold et al., [33] , the reliance

on PRO-ACT data with a model-based RF approach to predict treatment effects in ALS has added credibility to its finding because of

extensive datasets involved for validation but could be further strengthened by delving into a wider range of patient characteristics. 

The most commonly employed prognostic model in ALS was identified to be RF to assess variable importance due to its pre-

dictive power, adaptability, and robustness in handling high-dimensional datasets, as featured in numerous existing bodies of work 

[2 , 13 , 15 , 27 , 37] . Moreover, it is proven among the best-performing techniques [2 , 13 , 27 , 37] . In training RF algorithms to predict the

course of ALS disease progression, multiple analyses can be observed utilizing the electronic clinical record data including, medical

history, and demographics as presented by Ko et al., [18] ; Hothorn & Jung, [12] ; and Taylor et al., [37] . The study by Ko et al.,

[18] implemented a cloud computing system with an RF classifier of Apache Mahout capable of rapid and precise prediction of ALS

progress. The resulting model was able to predict the course of ALS with a prediction accuracy of 66 % but, this level of accuracy

might be deemed as modest and may not be sufficiently reliable for clinical use. In this context, the inclusion of more comprehensive

ALS individual records is crucial to enhance the predictive accuracy power of the model in several ways including, improved model

generalization and better refined individual stratification. 

Furthermore, the work by Hothorn & Jung, [12] suggested that in terms of prediction accuracy measured by the ALS functional

rating scale (ALSFRS) with RF algorithm, where past disease progression would be an ideal marker of future disease risk and severity.

Essentially, there is a close association between more rapid future progression of diseases and higher initial ALSFRS score fluctuation.

Despite that, the ability of the model to predict the development of ALS over a longer time could be compromised by its short-term (3

months) prediction, which may not account for prolonged-term or more complicated disease trajectories. For a more comprehensive 

understanding of ALS disease progression patterns, incorporating time-series analysis methods or adjusting the architecture of the 

ML model that handles extended durations are some of the strategies for tackling the shortcomings of the first three-month interval

of prediction. In essence, RF may offer a far superior prediction than the pre-slope model. The discovery by [37] explained that an

RF model employing baseline data could potentially predict illness development accurately for both populations receiving medical 

attention at a tertiary care clinic and with the clinical trial dataset. A lot of referral centers generate predictive models making use

of local datasets [32 , 38] rather than population-based data since they are more accessible. Furthermore, using datasets that are

specific to the local context could provide a more representative of the disease progression patterns observed within the particular

ALS individual cohort. However, the accessibility of population-based data is growing because of the regional [31] , national [36] ,

and international consortia registries [22] . 

The study by Imamura et al., [14] demonstrated the benefits of using deep convolutional neural network (CNN) in predicting ALS

by making use of the induced pluripotent stem cells (iPSCs)-derived motor neuron images. The model sought to distinguish between

ALS individuals with healthy controls through the image analysis of spinal motor neurons produced by iPSCs. As illustrated by its

excellent area under the curve (AUC) of 0.97 results, this CNN algorithm performed exceptionally well, indicating high accuracy in

the differentiation between different groups of motor neurons. Although promising, further validation would be helpful for a better

transition of an algorithm from iPSC-derived neuronal images to actual clinical settings. To develop a comprehensive diagnostic 

solution, augmenting imaging results with clinical information, for example, genetic data, medical history, and diagnostic markers 

is considered necessary. Moreover, as described by Greco et al., [9] , a support vector machine (SVM) integrated with a recursive

feature elimination (RFE) algorithm with the usage of blood data to identify whether the ALS individual has a fast or slow disease

progression. Through this architecture, the accuracy level can be maximized while simultaneously lowering the dimension of the 

dataset. With blood data alone, it was found that significant mean accuracy rates of as high as 94 % were attained in predicting ALS

prognosis. While the study identified potential biomarkers via the use of blood samples, validation using other analytical techniques 

or longitudinal investigations could be useful to support the importance and practicality of these biomarkers in prognosis prediction.
6
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Survival prediction in ALS individuals 

Recent literature demonstrated examples of ML algorithms that exhibit potentiality in predicting and improving the survival out- 

comes of individuals affected by ALS [2 , 27] . A finding by Beaulieu-Jones & Greene, [2] revealed the use of a semi-supervised learning

approach for the extraction of Electronic Health Record (EHR) phenotype with denoising autoencoders, allowing the model to lever- 

age both labeled and unlabeled data. In this study, although the survival prediction in ALS clinical trial data was enhanced by the

application of denoising autoencoders incorporated with random forests (RF) however since it dealt with only limited high-quality 

phenotype samples, further validation on more diverse and larger datasets is required otherwise, there may be a tendency of inaccu-

racies or biases during the phenotype extraction thereby, affecting the downstream analyses. Comparatively, the generalized linear 

regression model constructed by Pfohl et al., [27] too focuses on a large dataset of deceased ALS individuals, but the incorporation

of various metrics for instance, demographic factors, muscle assessments, respiratory functions, and Amyotrophic Lateral Sclerosis 

Functional Rating Scale (ALSFRS-R) scores have made an extensive evaluation of survival predictors possible. While this study has 

identified the key predictors, it could also have investigated other factors that might have affected ALS survival span, for instance,

environmental impacts or genetic markers to further improve the predictive model. 

Often, prognosis in ALS is determined by clinical characteristics in prognostic models however, two recent studies use imaging

measures to enrich their clinical data [32 , 38] . Based on van der Burgh, [38] , artificial neural networks (ANNs) were trained to predict

the survival time of ALS individuals by utilizing clinical characteristics and advanced magnetic resonance imaging (MRI) metrics. 

By employing ANN, the subtle correlations among various predictors can be captured for predicting ALS survival times with higher

accuracy. Not only can this amalgamation with MRI metrics be able to improve the predictive accuracy of ALS also, it can lead to

a more reliable prognostic assessment, providing a holistic view of the disease. Similarly, Schuster et al., [32] studied an 18-month

ALS survival prediction via binary logistic ridge regression that makes use of the diffusion tensor white matter and surface-based

morphometric parameters. The relevance of MRI metrics combined with clinical measures utilized in this study has the capability

of providing insights into neurodegeneration patterns and potentially improving the predictive power with an accuracy of 79.17 %. 

However, the generalizability of the findings may be affected due to the small sample size where only 60 ALS individuals were

involved. Moreover, the study’s scope was constrained to predicting survival outcomes within an 18-month timeframe, which could 

be expanded for the exploration of additional nuances, patterns, or shifts observed in ALS disease progression. Table 2 summarised

the studies on machine learning to assist ALS individuals. 

Model performance has been assessed using a range of metrics. The mean absolute error, RMSE, and Pearson correlations between

actual and projected values are commonly reported for regression techniques. In ALS, regression models including generalized linear 

models [13 , 27] , non-linear Weibull models [8] and Royston-Parmar models [41] have also been widely implemented since their

versatile framework enables capturing of the complex and multifaceted nature of ALS conditions. Despite their restrictive assumptions, 

regression models offer a lot of promise for use in therapeutic settings [41] . On top of that, RF regression can potentially be selected

as the survival prediction model with the ability to outperform the Cox model, 40 times out of all 40 rounds of tests based on the

finding of Huang et al., [13] . 

ML algorithms to assist ALS individuals 

Thus far, ALS remains without a cure or effective treatment, however, machine learning has been harnessed in aiding individuals

affected by ALS. It is essential for one to bear that ALS is characterized by progressive muscular paralysis indicative of motor neuron

degeneration, and gradual spasticity that can frequently lead ALS individuals to enter into a locked-in condition where the subject

is unable to move independently. Therefore, here comes the brain-computer interfaces (BCIs), sometimes referred to as the direct 

neural interface, which is helpful in such circumstances. This type of interface is envisioned to provide channels of communication

that are independent of muscle activity by enabling the use of brain activity to operate an external assistive device. The BCI typically

transforms brain activity into computer commands, allowing users to perform tasks like choosing letters to compose words on a digital

keyboard. An ALS individual will then be able to restore their voice function by vocalizing these phrases artificially [39] . 

Numerous studies have been conducted, examining the application of BCI and its effectiveness for ALS individuals 

[3 , 5 , 10 , 11 , 21 , 23 , 35 , 40] . In the clinical study of Guy et al., [10] , 20 ALS individuals were involved for the evaluation of the vi-

sual BCI device by integrating electroencephalography (EEG). These EEG signals are efficiently processed and analyzed in real time

via machine learning algorithms. The ML-based algorithms are combined with both the flashing sequence optimization and the opti-

mum stopping of flashes to improve information transmission efficiency. Through learning from user behavior over time, ML models 

has the ability to continuously adapt and enhance the accuracy of word predictions. The system was effective in that 65 % of partici-

pants selected the correct symbols with a 95 % accuracy. However, despite its effectiveness, this study involved a limited participant

pool, necessitating a bigger sample size to validate and generalize the usability of the system. 

Furthermore, Sorbello et al., [35] also proposed the usage of EEG-BCI with biofeedback factor (Bf) generated from users’ intention,

attention, and focus. In this context, the architecture incorporates ML algorithms in recognizing the mental states of the user and

extracting patterns of interest from EEG. This information is further utilized to initiate customized responses in a humanoid robot,

thereby creating a more responsive and personalized interaction. The outcome demonstrated a 96.67 % success of ALS subjects 

completing the tasks, with a Bf of 81.20 %. Among certain ALS patients during tasks, there is an exclusion of one ALS patient due to

low general attention. Undoubtedly, this can affect overall engagement with the EEG-BCI system. Hence, to maintain focus throughout

tasks, it is recommended to implement real-time feedback mechanisms within the system wherein, the users are alerted when their

attention levels drop. In relation to this, a finding by Wang et al., [40] demonstrated the detection of the user’s attention levels and
7
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Table 2 

Overview of research on ML algorithms to assist ALS individuals. 

References Sample size ML optimization Functions Features Main Findings 

Guy et al., (2017) 20 patients with ALS Efficiently analyze EEG 

signals; improve the 

information transmission 

rate; enhance word 

prediction accuracy 

EEG acquisition; real-time 

processing; spelling tasks 

Optimal stopping of 

flashes; word prediction 

65 % selected > 95 % of 

correct symbols; the 

average number of 

correct symbols selected 

per minute ranged from 

3.6 (without word 

prediction) to 5.04 (with 

word prediction) 

Sorbello et al. [35] 4 ALS patients in a near 

locked-in status; 4 

healthy control subjects 

Recognize the mental 

states of the user; extract 

desired patterns from 

EEG 

Facilitate human-humanoid 

interaction; recognize users’ 

mental states through 

biofeedback factor (Bf); elicit 

customized behaviors from a 

humanoid robot 

Real-time recognition of 

users’ mental states; Bf 

calculation 

3 out of 4 ALS patients 

completed the task with 

96.67 % success; healthy 

controls achieved 100 % 

success; ALS subjects had 

a higher Bf (81.20 %) 

compared to healthy 

controls (76.77 %) 

Wang et al., [40] 10 participants Recognize target objects; 

interpret user’s 

intentions into 

actionable commands 

Detection of user’s attention 

levels; track user’s gaze 

points; recognize target 

objects based on intention 

information 

Single-channel EEG 

recorder; eye-tracking 

glasses; You Only Look 

Once v5 (YOLOv5) 

model 

Experimental results 

showed a high success 

rate of 89.3 % 

Okahara et al., [23] 3 late-stage ALS patients Recognize distinguished 

neural patterns; allows 

users to maintain 

consistent control over 

BCI 

Evaluation of ALS patient’s 

ability to control neural 

prostheses 

Steady-state visual 

evoked brain potentials; 

flickering green and blue 

light-emitting diodes 

All individuals reliably 

operated the system with 

a median accuracy of 

83.3 % over 27 months 

Borgheai et al., [3] 6 participants of ALS Enable selection of ideal 

channels and 

hemodynamic features 

from fNIRS data 

Select optimal channels and 

analyze hemodynamic 

features 

fNRIS-VM; P3S; 

statistical parametric 

mapping; linear 

discriminant analysis 

(LDA) 

The fNIRS-VM protocol 

indicated a mean 

accuracy of 

81.3 % ± 5.7 %; fNIRS-VM 

was far superior to the 

P3S (74.0 % ± 8.9 %) 

within short times ( < 

4 s); fNIRS-VM has 

greater accuracy 

(73.2 % ± 2.0 %) over the 

P3S (61.8 % ± 1.5 %) in 

longitudinal data, 

especially when the 

subjects were in the late 

locked-in state 

Miao et al., [21] 18 ALS patients Optimize BCI display 

approach; reduce errors 

caused by flashing 

adjacent stimuli 

Validate an alternate 

ERP-based BCI display 

approach for communication 

Conventional matrix 

speller paradigm 

(Matrix-P); new speller 

paradigm with 

peripherally distributed 

stimuli (Peripheral-P) 

12 subjects demonstrated 

> 80 % feedback 

accuracy during online 

performance; 7 of these 

subjects secured 90 % 

higher accuracy 

de Oliveira Junior 

et al., (2018) 

10 volunteers Enhance real-time 

processing of brainwave 

signals 

Communication between 

smart devices; assist ALS 

patients with predefined 

tasks 

Digital assistant 

brainwave sensors; 

Internet of Things (IoT); 

Internet of Health Things 

(IoHT) 

The experienced group 

had a mean of 66.67 % 

correct responses; the 

group without 

experience achieved a 

mean of 48.89 % 

Hosni et al., [11] 8 patients with ALS Evaluate the distinct 

spatial activation 

patterns 

Quantification of 

subject-specific 

spatio-temporal 

characteristics of ALS 

patients’ hemodynamic 

responses during 

motor-imagery tasks 

Generalized linear model 

(GLM); linear support 

vector machine (SVM) 

The average 

classification accuracy 

achieved was 

85.4 % ± 9.8 % 

 

 

 

 

gaze points with the aid of BCI using a single-channel EEG. By leveraging ML, the system is better able to recognize target objects and

translate user’s intentions into executable commands, attained by training on relevant data. In experimental trials, a high success rate

of 89.30 % was obtained, which attested to its reliability and effectiveness as a useful assistive technology that caters to the specific

needs of ALS individuals. Notwithstanding, given that the system depends on eye-tracking glasses and a single-channel EEG recorder, 

it may impact the accuracy of interpreting the user’s intentions. Therefore, one plausible solution is to supplement the information
8
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from eye-tracking glasses and EEG recorders with data acquired from additional modalities and sensors, for example, muscle signals

or facial expressions. 

The study of Okahara et al., [23] revealed the utilization of BCI system with steady-state visual evoked brain potentials to determine

the neural prostheses in late-stage ALS individuals who progressed from locked-in syndrome (LIS) to a completely locked-in state

(CLIS). With the aid of ML, the system adapted to each patient’s specific neural patterns, giving them to maintain consistent control

over the device for an extended duration. Results showed a median accuracy of 83.30 % was achieved throughout the course of 27

months, indicating the ability of all participants to reliably control the BCI system. Even though the 27-month evaluation duration is

noteworthy, a more robust understanding of the sustained effectiveness can be accomplished by conducting longer-term studies with 

a higher number of subjects with a more diverse cohort. Meanwhile, Borgheai et al., [3] focus on the evaluation of ALS individuals,

particularly, those in the later stages of the disease. The application of linear discriminant analysis (LDA), alongside correlation

analysis and statistical parametric mapping, has potentially enabled the selection of ideal channels and hemodynamic features from 

the fNIRS data. The outcomes suggest an average accuracy of 81.30 %, outperforming the conventional EEG-based multi-trial P3Speller 

(P3S). Similar to Okahara et al., [23] , it is necessary to focus on performing a longitudinal study where a more prolonged testing

procedure should be involved, rather than relying merely on short assessment times ( < 4 s). This is particularly crucial in real-world

scenarios, to gain a more accurate representation of the system’s overall validity and effectiveness. 

According to the finding in Miao et al., [21] , an ERP-based BCI was used to validate a new speller paradigm featuring peripheral

stimuli. The BCI display approach was optimized by the ML algorithms, presenting stimuli close to the periphery of the display thereby,

reducing errors triggered by flashing adjacent stimuli. In this assessment, notably, a total of 12 subjects attained a feedback accuracy

of greater than 80 % during online performance. However, to improve the overall system performance further, iterative testing and

design methods that centered around user feedback can be conducted. In addition, the work of de Oliveira Junior et al., [5] presented

a BCI system integrated with IoHT to help ALS individuals complete predefined activities by employing a personal digital assistant

brainwave sensor. In this intervention, the recognition of eye blinking is to be transmitted to the ALSHelp programme and the real-

time processing of brainwave signals was enhanced by ML algorithms. Comparing the experienced group to the inexperienced group,

the former scored an average of 66.67 % of correct answers, whereas the latter obtained a mean of 48.89 % which confirmed the

efficiency of the application. Although the initial tests were promising, gradual improvements may be facilitated by establishing a

feedback loop where users can give their input on the system’s functionality and performance. 

Referring to the analyses conducted by Hosni et al., [11] , the subject-specific spatio-temporal characteristics of ALS individuals 

were quantified using motor-imagery (MI)-based BCIs. Essentially, the use of a generalized linear model (GLM) in this study offered an

approach to estimate and evaluate the unique spatial activation patterns for every ALS individual. The distinctive characteristics that

distinguish one ALS patient from another were achieved through statistical optimization of channel sets, contributing to a nuanced 

comprehension of brain function during motor imagery tasks. Besides that, the linear support vector machine classifier was employed 

to determine the efficiency of ALS individuals in controlling a binary BCI. This finding demonstrated an average accuracy of 85.40 %

and underscored the significance of data-driven approaches for BCI performance optimization. However, this finding is based on a

relatively small sample size, involving only 8 ALS subjects, which may limit the generalizability of the outcome. Therefore, it is vital

to broaden the cohort of ALS individuals, encompassing a diverse range of demographic characteristics and including patients at

varying stages of disease progression. 

Current status of ML application in ALS prognosis 

ALS is a rapidly progressive neurodegenerative disease with currently limited prognostic and therapeutic options. In comparison 

to conventional methods in ALS prognosis, the ML models have a higher tendency to achieve a better performance when handling

intricate, and high-dimensional datasets, adding to the growing corpus of literature that compares ML with traditional approaches 

[3] . Based on the existing literature, ML algorithms such as neural networks, SVM, and RF can potentially outperform conventional

models. It is renowned that ML techniques have been applied in the analysis of various biomarkers which are often practiced in clinical

settings such as imaging [14 , 32 , 38] , clinical [25 , 33] , and demographical data ( [12 , 18] ; and [27 , 37] ). Hence, ML is known for its

meaningful contributions to ALS prognosis and for enhancing ALS patients’ quality of life. The successful main distinct prognosis

identified can be classified into survival time and disease progression. After reviewing numerous studies, ML is demonstrated to be

promising and could be advantageous in the development of a decision support system for the prognosis of ALS. 

Limitations and future directions 

The selection of the most appropriate ML algorithm for prognostic assessment should align with the specific research question

and the underlying nature and features of the datasets being utilized. Significant factors to take into account are sample size, dataset

balance, and number of variables. For example, adopting neural networks might result in overfitting problems in contexts when the

population size is small. On the flip side, the SVM techniques have the advantage of decreased dimensionality, but careful kernel

number calibration is required. In many studies, a possible constraint on the generalizability of the results is majorly due to the

relatively small sample sizes that are employed. Furthermore, the lack of external validation is another limitation, as most findings

solely rely on basic internal validation. Most of the current focus on specific biomarkers or features in ALS prognosis typically might

have missing critical facets of the disease. 

To increase the applicability and robustness of the established ML models, future initiatives should consider including ALS indi-

viduals from diverse demographic characteristics and cohorts that have different disease progression stages. Some of the prospective 
9
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directions may involve improving the utility of ML models in a clinical context by including validation across varied health set-

tings. On top of that, to improve prognostic accuracy and gain a more comprehensive insight into ALS progression, a wider range

of biomarkers and features should be included, such as exploring additional clinical variables, genetic markers, and neuroimaging 

data. In addition, further emphasis is needed on fostering a more personalized interaction between the ML technology and the ALS

patients it seeks to assist by implementing a feedback loop that allows the users to provide real-time input, so timely adjustments can

be made to the system. 

Incorporating state-of-the-art techniques, including transfer learning, semi-supervised learning, deep learning, and modal-based 

RF algorithm, all can potentially be useful in further enhancing the performance, accuracy, interpretability, and clinical applicability 

of ML models for ALS prognostic assessment. For instance, transfer learning can be particularly helpful in dealing with limited ALS

datasets, as it has the ability to improve performance on smaller or more specialized datasets by leveraging pre-trained models on

larger datasets. Moreover, modelling complex relationships among data could benefit from employing graph neural networks, either 

brain connectivity networks or the widely known protein = protein interaction networks, to better understand the disease mechanisms 

occurring within ALS. Apart from boosting algorithms, approaches like multivariable Royston-Parmar models can present farther 

avenues for optimizing the overall design and analysis of various clinical trials for ALS. 

Conclusion 

The application of ML algorithms in prognosis and as an assistive tool for individuals with ALS offers significant opportunities for

advancements. This review revealed random forests as the most popular ML model for predicting ALS prognosis, predominantly in

the context of both survival time and disease progression. Across multiple ML techniques, variations were observed in the reported

performance, accounting for complexities associated with disease progression itself and the diversity of the data involved. In the 

effort to enhance the applicability and utility of ML algorithms in prognostic studies, additional methodological work is required, 

particularly in terms of incorporating external validation and sample size expansion. Additionally, the integration of ML to BCI- 

powered assistive devices can help empower ALS patients to communicate and perform motor-imagery tasks with greater ease and

precision. Despite several limitations, the current review highlights the tremendous potential of ML in revolutionizing prognosis and 

individualized ALS care, underlining the imperative of ongoing research to unlock its full capacity. 
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