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There is increasing emphasis in medical research on fetal

and childhood antecedents of disease, and how these inter-

act with other exposures throughout the life course to

influence later-life conditions. As outlined by Ben-Shlomo

et al.,1 answering questions about the relative importance

of aspects and timing of growth, behaviour and health sta-

tus for longer-term outcomes requires appropriate analyses

of longitudinal data.

Analysis of such data inevitably poses statistical chal-

lenges due to the complex temporal relationships between

multiple factors across life.2,3 Analyses must account for

dependencies between repeated observations on the same

person: methods to do this (e.g. random effects models4)

are now widely available in standard statistical software

packages. However, when repeated measures are taken fre-

quently, there is likely to be serial autocorrelation among

the measurements (greater correlation among measurements

closer together in time), which requires more complex

models. Where there are repeated measures of exposures

related to a later-life outcome, standard regression models

may be affected by multicollinearity among the repeated ex-

posures. Measurement error may vary over time (e.g. abso-

lute measurement error in weight will be larger in

adulthood than childhood), which will need to be taken into

account in any analysis. There will also usually be dropout

over time due to death, illness or refusal to participate,

which will limit the sample size and may result in bias in

complete case analyses.

When the initial life course models were proposed, stat-

istical methods for addressing questions about repeated ex-

posures and outcomes were under-developed. Life course

epidemiology stimulated research on the methodology to

be able to better address such research questions. The focus

of life course methodology, initially at least, was in the

analysis of repeated measures of the same exposure—and

in many cases, specifically for the analysis of growth and

its association with later outcomes. Simpler approaches are

appropriate for a small number of repeated measures of an

exposure, each recorded at the same age for all individuals

(e.g. weight measured at 2, 4 and 6 years of age). Early

on in life course epidemiology, one method was to plot

average z-scores over time for the two groups formed by a

dichotomous outcome. These z-score plots can be misinter-

preted as growth trajectories,5 whereas in fact they show a

series of cross-sectional associations of exposure with

outcome.

Further developments led to the use of regression mod-

els for the outcome, including various parameterizations of

the exposure, depending on whether conditioning on previ-

ous measures of the same exposure, or using observed

measures or change scores.2 In turn, this led to awareness

of the dangers of conditioning on variables which are on

the causal pathway from exposure to outcome—such as

including adult weight in models relating birthweight to

adult disease.6 More recently, increasingly complex

approaches such as multilevel models or latent variable

models have been used to describe patterns of change

and relate these patterns to various health outcomes.5

Essentially, all approaches aim to relate changes in an ex-

posure such as body size to a later outcome, with some of

the methods, such as multilevel models, parameterizing

average and individual change, and others, in particular la-

tent class models, describing subpopulations with different

patterns of growth. These types of models have been ex-

tended to relate trajectories of several repeatedly measured

variables to each other, for example to relate repeated

measures of mean arterial pressure to simultaneous weight

gain during pregnancy.7

A simple structured modelling approach using regres-

sion was proposed in order to distinguish a critical period

model from an accumulation model when relating a re-

peated binary exposure to an outcome.8 It is being
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increasingly applied in the epidemiological literature,

mainly in relation to lifetime socioeconomic position as in

the original example,9–12 but also to other repeated binary

exposures such as overweight/obesity.13,14 The original ex-

ample involved occupational social class (categorized into

manual and non-manual) at three ages selected to represent

different periods of the life course—childhood, early adult-

hood and midlife. Each alternative life course model is

tested against the saturated model (where all eight possible

trajectories have a different mean outcome) using an F-test.

Larger P-values indicate that the more parsimonious model

fits the data as well as the saturated model and thus can be

deemed a good fit. Accumulation and critical period mod-

els were considered alongside social mobility. Social mobil-

ity is not a life course model as such, but is a concept of

particular interest to social scientists, and the operationali-

zation of social mobility remains contentious. Additional

variations on these original models have subsequently been

considered.10,14

The advantage of the approach is that it provides a way

to compare a set of pre-specified models and forces a clear

specification of the models of interest. Analyses that only

consider the association of a cumulative score with an out-

come may be misleading and conclude that there is evi-

dence for accumulation, as a cumulative score can capture

the effect of a critical period.8 Although, as Ben-Shlomo et

al. now note, a sensitive period and a critical period are

more sensibly viewed as subsets of an accumulation model

rather than being distinct, when considering the same ex-

posure over the life course. The selection of the best fitting

model based on P-values is not ideal and has proved chal-

lenging in practice as, for example, there are situations

where more than one model fits as well as the saturated

model.

An alternative approach where model selection is based

on a least absolute shrinkage and selection operator

(lasso), which does not rely on significance testing, has re-

cently been developed.15 Structural equation models have

also been used to test the fit to the data of competing

hypotheses.16 The ability to distinguish between the vari-

ous models is limited by the variability in trajectories

within any dataset, and the timing and spacing of the

measurement points. In the original paper, measures were

selected to cover three relatively equally spaced but distinct

periods of the life course. In an application with only child-

hood and adult socioeconomic position (SEP), the adult

SEP exposure covered a considerably longer period of time

than the childhood measure.9

Another example used three equally spaced measures of

SEP, but covering only a relatively short period of the life

course from early to late midlife (ages 40, 50 and 60)

where fewer changes in SEP might be expected.12 It is less

clear whether a critical period would be a potential model

in this example, compared with when considering more

distinct periods of the life course. The approach has been

applied using differing markers of SEP at different ages.

Education, for example, was used as an early adult marker

and occupational social class for childhood and midlife.10

This first raises the practical challenge of dichotomizing

different measures of SEP in a comparable way. Second,

there is the possibility that it may be the particular meas-

ure, as opposed to the time period that it is representing,

that is more (or less) informative, and mediation analysis

may be more appropriate in such cases. Whether using the

same or different indicators of SEP, the structured life

course modelling approach has generally been applied

without acknowledgement of the fact that adult SEP is a

potential mediator of the relationship between early life

SEP and the outcome, and that thus conditioning on adult

SEP may induce collider bias. Modern methods of medi-

ation analysis have been developed,17 and are informed by

causal inference thinking, as outlined in a commentary in

this issue.18

Often in life course epidemiology the question of inter-

est is not limited to repeated measures of the same expos-

ure. Indeed, the original accumulation models were

defined in terms of different exposures even though they

have generally been applied in the context of the same ex-

posure.19 A recent paper examined associations between

birthweight, development in infancy, socioeconomic pos-

ition and depression in adolescence and adulthood.

Structural equation models were used to estimate the size

of the relationships among all these variables, and examine

direct and indirect effects on repeated measures of the out-

come (depression).20 A drawback to structural equation

models is that they can be relatively complex to fit, and

are easier to use with data measured on regular occasions

(e.g. six waves of a cohort study) than with data measured

irregularly (e.g. routine measures of weight taken during

infancy). Structural equation models are not inherently

‘causal’; a given model may not be able to distinguish the

hypothesis that A causes B from the hypothesis that B

causes A, for example. However, parameters from struc-

tural equations can often be interpreted in a causal frame-

work, and have been used to examine mediation.21

Structural equation models are able to take into account

known measurement error, latent variables, repeated meas-

ures of exposures, covariates and outcomes, and complex

associations. For example, exposure at one time point

could influence a confounder at the next, which could in

turn influence later exposure.22 This type of confounding,

often known as time-varying confounding, can also be

examined using other methods such as marginal structural

models.17,18
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Although complex methods are increasingly used in epi-

demiology, they are often too limited to accommodate the

complexities of life course analyses. Their typical use is un-

critical: results are often reported without making model

assumptions and study hypotheses explicit. Choice of

method often depends more on the study design than the

question being asked, and dependence of conclusions on

assumptions such as missing data mechanisms, measure-

ment error and absence of confounding is seldom exam-

ined. In particular, all the models described here depend

crucially on the assumption of no unmeasured confound-

ing, and sensitivity to this, or to choice of modelling frame-

work, is infrequently investigated. In order to support the

investigation of increasingly complex life course hypothe-

ses, we need corresponding development in statistical

methods and their use. Choice of methods should be

guided by the question of interest, thus requiring under-

standing of the underlying biology and proposed causal

mechanisms. Burgeoning areas of focus include high-

dimensional data (epigenetics metabolomics), and use of

intensively collected data to measure phenotypes more ac-

curately (e.g. use of accelerometers, GPS data). We need to

further develop ways to integrate all these types of data

into one analytical framework.
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