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ABSTRACT

The ribozyme self-cleavage site in the antigenomic
sequence of hepatitis delta virus (HDV) RNA is 33-nt
downstream of the poly(A) site for the delta antigen
mRNA. An HDV antigenomic ribozyme precursor
RNA that included the upstream poly(A) processing
site was used to test the hypothesis that nonribo-
zyme sequence near the poly(A) site could affect
ribozyme activity. Relative to ribozyme precursor
without the extra upstream sequences, the kinetic
profile for self-cleavage of the longer precursor was
altered in two ways. First, only half of the precursor
RNA self-cleaved. The cleaved fraction could be
increased or decreased with mutations in the
upstream sequence. These mutations, which were
predicted to alter the relative stability of competing
secondary structures within the precursor, changed
the distribution of alternative RNA structures that
are resolved in native-gel electrophoresis. Second,
the active fraction cleaved with an observed rate
constant that was higher than that of the ribozyme
without the upstream sequences. Moreover, the
higher rate constants occurred at lower, near-
physiological, divalent metal ion concentrations
(1–2mM). Modulation of ribozyme activity, through
competing alternative structures, could be part of a
mechanism that allows a biologically significant
choice between maturation of the mRNA and
processing of replication intermediates.

INTRODUCTION

Hepatitis delta virus (HDV), a single-stranded RNA
satellite of the hepatitis B virus, is proposed to replicate
its RNA genome by a double rolling-circle mechanism
(1–3). In this model for replication, RNA synthesis

generates longer-than-unit-length products that are pro-
cessed by a cis-cleaving ribozyme in each strand to yield
monomer-length antigenomic and genomic RNAs. These
linear monomers are circularized and serve as templates
for additional rounds of replication. In addition to serving
as a template for replication, the genomic RNA strand is
the template for the transcription of an mRNA for the
delta antigens. In this mRNA, the poly(A) site is 33-nt
upstream of the ribozyme cleavage site (4,5). Thus, the
two processing sites are very close to each other, and, yet,
these alternative processing paths must be distinct since a
polyadenylated product cannot serve as a template for
replication and ribozyme cleavage would be predicted to
interfere with mRNA maturation (6,7).

Models for replication and mRNA transcription in
HDV that use either different cellular RNA polymerases
(8) or different forms of the same polymerase (9) are
attractive because RNA processing is closely linked to
RNA synthesis (10,11). Two models that can account for
both rolling-circle replication and mRNA synthesis using
the same genomic strand of HDV RNA as template come
from the labs of Lai (8) and Taylor (9). In one model, it is
proposed that RNA Pol II transcribes the delta antigen
mRNA and RNA Pol I synthesizes the full-length anti-
genomic replication product (8,12). In other models,
however, RNA Pol II synthesizes both forms of the
antigenomic RNA sequence. In a recent paper from the
Taylor group (9), it is proposed that RNA Pol II initiates
synthesis at a single promoter region in the folded genomic
RNA. The resulting transcript can be polyadenylated to
generate the mRNA or processed at the ribozyme site to
generate the replication intermediate, but not both. This
model differs from an earlier model where they suggested
that a single Pol II initiation could first yield a poly-
adenylated mRNA, and then, by not terminating, con-
tinue synthesis to yield ribozyme-processed full-length
products (5). Nevertheless, in all of these proposed
models, RNA Pol II is responsible for synthesis of the
mRNA, and therefore, ribozyme self-cleavage in that
transcript could interfere with its polyadenylation.
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Here, we test if the close proximity of the poly(A) site and
the ribozyme could allow sequence interactions between
the two regions to influence the choice between ribozyme
cleavage and polyadenylation.

In vitro studies of the HDV antigenomic ribozyme and
its catalytic mechanism have focused on the activity of a
small, or minimal, cleavage domain (Figure 1a). This form
of the ribozyme does not include the upstream poly(A)
signals. However, there was early evidence that sequences
50 to the cleavage site could affect HDV ribozyme activity
(13,14). Subsequently, Chadalavada et al. (15,16) more
thoroughly investigated and characterized the effect of
upstream nonribozyme sequence on genomic HDV
ribozyme activity. In those studies, they identified both a
base-pairing interaction between the upstream sequence
and the ribozyme sequence (Alt 1) and a competing
hairpin within the upstream sequence [P(-1)] that would
interfere with Alt 1 formation.

The HDV poly(A) site is comprised of sequence
elements that are similar to those found in cellular
mRNAs (11,17).These sequence elements consist of the
highly conserved AAUAAA hexamer, which is recognized
by the cleavage and polyadenylation-specificity factor
(CPSF), potential CA cleavage sites downstream of the
AAUAAA sequence, and a U-rich sequence downstream
of the CA sites that could function as a binding site for the
cleavage stimulation factor (CstF). These sequences also
have the potential to be included in secondary structures
resembling those noted for the genomic ribozyme (18).

They could form both a hairpin, P(-1), involving nucleo-
tides �57 to �16 (numbering is relative to the ribozyme
cleavage site) (Figure 1b), and an alternative pairing of
nucleotides �30 to �12 in the upstream sequence with
nucleotides 74–88 of J4/2 and the 30 side of P2 in the
ribozyme (Figure 1c). This alternative pairing is similar to
the pairing in the genomic sequence called Alt 1 (16), but
here we called it AltP2 following a nomenclature similar to
that used by Pan and Woodson (19) for the Group I
intron. As described for the genomic sequence, the 50 side
of AltP2 and the 30 side of P(-1) share a common sequence,
so only one of the two pairings is presumed to form in a
transcript. For the antigenomic RNA sequence, an AltP2-
like (Alt 1, in the genomic ribozyme) interaction would
prevent ribozyme cleavage, while a P(-1)-like structure
might reduce the efficiency of polyadenylation (20–22).
To examine the effect that the upstream polyadenyla-

tion sequences might have on ribozyme activity, the
antigenomic ribozyme construct PEX1 was modified by
the addition of 60 nt of wild-type sequence 50 to the
cleavage site to generate the precursor PAH1 (Figure 1b).
Both the ribozyme and upstream sequences were based on
HDV isolate US-2 (ID 261991). We report here that this
longer construct formed at least two different folded
populations, in about equal amounts, which could be
physically separated. One population cleaved rapidly
while the other did not cleave to any appreciable level
under the same conditions. Mutations that favored one
proposed fold over the other changed the amount of
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(a) Ribozyme Domain (PEX1) (b) Ribozyme plus 5′ leader (PAH1) (c) AltP2

Figure 1. Sequence and secondary structure of the self-cleaving domain of the antigenomic HDV ribozyme. (a) PEX1, lowercase letters indicate
vector-derived sequence. (b) PAH1 with the upstream sequences drawn in a hypothetical P(-1) hairpin stem–loop. Nucleotide numbering begins from
the ribozyme cleavage site with negative values for the 50 sequences. Poly(A) sequence elements, the AAUAAA hexamer, the cleavage/
polyadenylation site at �33 (4), and the U-rich region between P(-1) and P1 are labeled. (c) A proposed alternative pairing designated as AltP2.
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cleaved RNA in a predictable manner. Somewhat
unexpectedly, the observed cleavage rate for the cleavable
fraction with the longer precursors was greater than that
for precursors containing only the ribozyme domain.
These results suggested that the 50 sequences inhibited
cleavage activity in one folded population but may have
enhanced the cleavage rate of the other population.

MATERIALS AND METHODS

Enzymes and reagents

T7 RNA polymerase was purified by M. Puttaraju from
an overexpressing clone provided by W. Studier (23).
Oligonucleotides were ordered from Integrated DNA
Technologies. Other enzymes and chemical supplies were
purchased from commercial sources.

Plasmids

The plasmid pPAH1 was prepared by inserting a synthetic
double-stranded DNA containing 149 nt of wild-type
HDV sequence into the plasmid pTZ18R; it contains
both the antigenomic HDV core ribozyme sequence
present in PEX1 (24) and a 60-nt sequence upstream of
the ribozyme cleavage site. This DNA duplex was cons-
tructed using three pairs of oligonucleotides that were
annealed, ligated and inserted into EcoRI and BanI cut
plasmid. The DNA was transformed into Escherichia coli
(JM83), and the correct DNA sequence was confirmed by
sequencing miniprep DNA as previously described (25).
Plasmid DNA for transcriptions was prepared from
250-ml cultures and purified by CsCl equilibrium density
ultracentrifugation with ethidium bromide. Variants of
PAH1 were made by oligonucleotide-directed mutagenesis
of a uracil-containing single-stranded pPAH1 template
(26–28). Plasmid DNA for each mutant was prepared as
described above.

Transcriptions

Transcription of BanI cut plasmid DNA with T7 RNA
polymerase yielded the 149-nt PAH1 sequence with 7-nt
and 5-nt vector-derived sequences at the 50 and 30 ends,
respectively. RNA for ribozyme cleavage reactions was
made in transcription reactions (25 ml, 15min, 378C) that
contained 40mM Tris–HCl (pH 7.5), 15mM MgCl2,
5mM dithiothreitol, 2mM spermidine, 1mM each ATP,
UTP and GTP, 0.5mM CTP, 6 mg DNA, 25 mCi [a32P]-
CTP and 300U T7 RNA polymerase. Reactions were
terminated with an equal volume of formamide stop mix
containing 100mM EDTA, and the products were
separated by electrophoresis on a 6% polyacrylamide gel
containing 7M urea. Following electrophoresis, precursor
RNA was located by autoradiography and excised from
the gel. RNA was eluted in 0.1% SDS and 1mM EDTA,
desalted by G25 gel-filtration, ethanol precipitated and
stored in 0.1mM EDTA at �208C. To prepare unlabeled
RNA, the volume of the transcription reaction was
increased to 75 ml, and the RNA was located by UV
shadowing after gel electrophoresis.

Ribozyme cleavage assays

For the hand-mixing experiments, radiolabeled precursor
RNA in 0.1mM EDTA was heated at 958C for 3min and
cooled to room temperature. The buffer conditions were
adjusted to 40mM Tris–HCl (pH 7.5), 1mM EDTA,
0.5mM spermidine (TES), and the RNA was preincu-
bated at 378C for 15min followed by 258C for 10min. An
aliquot was removed for a zero time point before MgCl2 in
TES was added to initiate the cleavage reaction (at 258C).
Final concentrations in the cleavage reactions were 40mM
Tris–HCl (pH 7.5), 1mM EDTA, 0.5mM spermidine and
[MgCl2] necessary for a final [Mg2+] given in the text
assuming stoichiometric chelation by the EDTA. Aliquots
of the reactions were removed and stopped with an equal
volume of formamide stop mix containing 100mM
EDTA. The products of the cleavage reactions were
separated by electrophoresis on 6% polyacrylamide gels
containing 7M urea. The gels were dried, and the fraction
of precursor cleaved was quantified using a Storm 820
Phosphorimager and ImageQuant software.

Rapid-mixing reactions were performed on a Chemical-
Quench-Flow apparatus (KinTek Corporation Model
RQF-3). Radiolabeled RNA was renatured and preincu-
bated in TES as described above, and an aliquot was
removed as a zero time point. Cleavage reactions were
initiated by rapid mixing with a 2X solution of MgCl2 or
CaCl2 in TES and quenched by rapid mixing with two
volumes of EDTA (50mM or higher depending on the
[MgCl2] or [CaCl2]). Final concentrations in the cleavage
reactions were 40mM Tris–HCl (pH 7.5), 1mM EDTA,
0.5mM spermidine and MgCl2 or CaCl2 at various con-
centrations. To measure rates in lower concentrations of
the divalent metal ion, the EDTA concentrations in the
reactions were reduced to 0.1mM. Aliquots of the
quenched reactions were mixed with an equal volume of
formamide and separated by electrophoresis on 6%
polyacrylamide gels containing 7M urea. The gels were
dried, and the fraction of precursor cleaved was quantified
as above.

Native gel electrophoresis

RNA samples from hand-mixing cleavage reactions were
mixed with an equal volume of stop mix (15% glycerol
and 100mM EDTA) and separated on 6% polyacryla-
mide gels (37.5 to 1 acrylamide:bisacrylamide) run in
0.1M Tris–acetate (pH 7.5) with 5mM EDTA at low
power (2.5W) and low temperature (48C) for 12–16 h. The
gels were dried, and the fraction of precursor cleaved was
quantified as above.

Preparation of 3’ end-labeled precursor RNA

RNA was labeled at the 30 end with [50-32P]pCp (14,29).
The [50-32P]pCp was prepared in a 25 ml reaction that
contained 1 nmol of 30 CMP, 100 pmol of [g32P]ATP and
30U of T4 polynucleotide kinase in 50mM Tris–HCl
(pH 7.6), 10mM MgCl2 and 10mM 2-mercaptoethanol;
after incubation at 378C for 30min it was heated to 708C
for 5min. Two micrograms of RNA were labeled in a 20 ml
reaction containing 5 ml of the [50-32P]pCp and 10U of T4
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RNA Ligase in 50mM Tris–HCl (pH 7.5), 10mM MgCl2,
10mM DTT, 1mM ATP and 0.06mg/ml aceylated BSA.
The labeling reaction was incubated at 378C for 30min
and stopped by adding an equal volume of formamide
containing 100mM EDTA. The labeled RNA was gel
purified, precipitated and stored in 0.1mM EDTA
at �208C.

RNA structure mapping

For the alkaline hydrolysis ladder, 30 end-labeled RNA in
50mM NaHCO3 (pH 9.0), 1mM EDTA and 0.25mg/ml
yeast tRNA was heated for 2min at 958C. An equal
volume of 4.5M NaAcetate was added, and the RNA was
ethanol precipitated. To generate a G-ladder, 30 end-
labeled RNA was denatured for 2min at 958C in a reaction
containing 9M Urea, 30mM NaCitrate (pH 3.5), 1.5mM
EDTA and 0.3mg/ml yeast tRNA. The reaction mix was
then cooled to 558C for 1min before adding T1 ribonu-
clease to 5U/ml. After incubating at 558C for 30min, the
tubes were placed in dry ice. For T1 cutting under native
conditions, 30 end-labeled RNA was heated to 958C for
2min in 0.1mM EDTA and then adjusted to 40mM
Tris–HCl (pH 7.5), 1mM EDTA, 0.5mM spermidine. The
reaction mix was preincubated at 378C for 15min followed
by 258C for 10min before T1 ribonuclease was added to
0.5U/ml. After 30min at 258C, an equal volume of
formamide with 100mM EDTA was added and the tubes
were placed in dry ice. The products of the alkaline
hydrolysis, T1 sequencing, and T1 structure mapping
reactions were separated by electrophoresis on 8%
polyacrylamide gels containing 7M urea.

Curve fitting

Nonlinear, least squares fitting with KaleidaGraph
(Synergy Software) was used to plot and analyze the
reaction kinetics and binding data. For the kinetics,
fraction cleaved ( f ) at each time point (t) was fit to a first-
order exponential equation, f=F (1–e�kobs(t)), to obtain
the observed rate constant (kobs) and an endpoint (F ) for
each reaction. Estimates of the kobs of the slow phase were
made from the slope of the line after the burst (divided by
the remaining fraction of total precursor) or by fitting the
complete data set to the sum of two exponential
equations. For the metal concentration curves, a simple
binding model is assumed where

Rþ nðMÞ5 ¼ 4R �Mn and kobs ¼ kmax� ½R �Mn�=½R�total:

The apparent dissociation constant Kd,app= [R][M]n/
[R�Mn], and kobs= kmax/(1+Kd,app/[M]n). R is ribozyme
without bound metal (M), n is the Hill coefficient and kmax

is the rate constant for saturating [M].

RESULTS

Wild-type sequence upstream of the ribozyme affects
both self-cleavage rate and extent of cleavage

In vitro self-cleavage activity of the PAH1 precursor, which
contained the poly(A) sequence elements, was compared to
the shorter ribozyme, PEX1 (Figure 1). The shorter PEX1

precursor cleaved with first-order kinetics and a rate
constant (kobs) of �15min�1 (in 10mM Mg2+, pH 7.5,
258C) (Figure 2a). In this set of experiments, a higher
endpoint was observed for data collected by hand mixing
(�90%) than for data collected with the rapid quench
instrument (�70%). However, when fit to a first-order
exponential, both sets of data gave similar values for
kobs. Following addition of MgCl2, slightly less than half
of the PAH1 precursor cleaved in the first few

Figure 2. Upstream sequence alters the extent of reaction and the
cleavage rate of the antigenomic ribozyme. (a) Cleavage of PEX1 pre-
cursor (258C, 10mMMg2+, pH 7.5). The data shown were collected both
by hand mixing (circles, 90% cleaved) and on a rapid quench instrument
(squares, 69% cleaved). In other experiments, with data collected
manually, the extent of cleavage also ranged from 70% to 90% (data
not shown). (b) Cleavage of PAH1 (258C, 2mM Mg2+, pH 7.5). Data
were collected manually (circles, 49% cleaved) and by rapid quench
(squares, 42% cleaved). The first 30 s of 4 h reactions collected by hand are
shown. The rate constant for cleavage in the slow phase was estimated to
be no >10–3min–1. The rate constant for the initial reaction is reported
only for the data collected on the rapid quench instrument.
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seconds (Figure 2b), but there was little additional cleavage
thereafter (some reactions were allowed to continue for up
to 24 h, data not shown).
PAH1 appeared to form functionally distinct popula-

tions that were stable in a variety of reaction conditions.
The endpoint of the PAH1 reactions did not increase with
changes in [MgCl2] (0.5 to 100mM) or with the addition
of NaCl (0.1–0.2M). A variety of different preincubation
conditions also failed to increase the extent of cleavage,
and the ‘slow-cleaving’ fraction remained slow (kobs
�10�3min�1 at 258C). If, however, the reaction contain-
ing Mg2+ was briefly heated to 958C after the initial phase
at 258C, most of the remaining precursor fraction did
cleave (data not shown).
Although the extent of cleavage of PAH1 was lower

than PEX1 under the same reaction conditions, the
fraction that cleaved did so with a kobs about three times
higher than PEX1 (Figures 2a and b, and 3). We propose
that roughly half of the PAH1 precursor adopted an
active-ribozyme fold, and it may cleave faster than the
shorter PEX1 precursor, while the remainder remained
trapped in a kinetically stable inactive fold under the same
reaction conditions. Two alternative explanations for a
lower extent of cleavage are that the reaction reached
equilibrium between cleavage and ligation, or that, in
these reaction conditions, there is a parallel first-order
reaction which does not lead to cleavage. The second
scenario could account for the higher kobs without the
actual cleavage rate increasing. Reasons to rule out these
two possibilities will be addressed in the discussion after
additional data are presented. Finally, we note that there
was no increase in the kobs of PEX1 when the upstream
fragment of RNA was isolated from a PAH1 transcription
reaction and added in excess to a reaction with PEX1.

Metal ion dependence of the PAH1 ribozyme

To facilitate the comparison of the cleavage kinetics of
PAH1 and PEX1 in manual mixing experiments, the
MgCl2 concentration was reduced to slow the reactions. In
1mM Mg2+ at 258C, the PAH1 ribozyme continued to
cleave with a higher kobs (�20min�1) (Figure 3) and still to
�50% (data not shown). A [Mg2+]-rate curve for PAH1
cleavage revealed that, under the reaction conditions used
(258C, pH 7.5), the concentration of Mg2+ that gave one
half kmax ([M]1/2) was 1.2� 0.2mM (Figure 3). This value
was about 10-fold lower than the [M]1/2 (�10mM) for the
PEX1 ribozyme as reported previously (30).
The PEX1 version of the antigenomic ribozyme cleaved

faster in Ca2+ than in Mg2+ (31). Higher rates for PAH1
cleavage were also seen in reactions with Ca2+ where there
was a 3-fold increase relative to those with Mg2+. The
[M]1/2 for Ca2+ was also relatively low (1.7� 0.4mM)
(Figure 3). The low [M]1/2 for Ca

2+ and Mg2+ suggested
that the active fold of PAH1 could have a higher affinity
for metal ion than the shorter version, PEX1.

Stabilizing AltP2 reduced the extent of ribozyme cleavage

The extent of cleavage of PAH1 was less than that of the
shorter precursor (PEX1) suggesting that wild-type
sequence upstream (50) of the cleavage site inhibited

formation of an active ribozyme. In studies with the
genomic sequence, Chadalavada et al. (15,16) found that a
segment of 50 sequence could form an alternative duplex
with the 30 end of the ribozyme. This new pairing
prevented native ribozyme formation and inhibited
cleavage. To test the hypothesis that the sequence
upstream of the antigenomic ribozyme had a similar
effect, we introduced sequence changes into PAH1 that
would be predicted to alter the stability of the putative
P(-1) and AltP2.

Introducing additional base pairs to stabilize the
alternative pairing (AltP2) would be predicted to reduce
the extent of antigenomic ribozyme cleavage. PAH2, the
construct with a stabilized AltP2 (Figure 4a) differed from
PAH1 at five positions in the upstream sequence that
could form the 50 side of AltP2 (C-19a, C-21u, U-22c,
G-23u and G-25u). With the PAH2 precursor,51% of the
RNA cleaved in the initial phase of the reaction (Figure 5a
and b), and no additional specific cleavage was observed
with longer incubation (�2% after 4 and 24 h at 258C,
data not shown). Considering that no mutations were
made in the ribozyme domain, this result was consistent
with the hypothesis that the formation of an alternate
pairing (such as a stabilized AltP2) inhibited ribozyme
activity in PAH2.

Stabilizing P(-1) increased the extent of ribozyme cleavage

Two constructs predicted to have more stable P(-1)
structures, PAH3 and PAH4, were also tested. In PAH3,

Figure 3. Dependence of cleavage rates on metal ion concentration.
Cleavage of PAH1 (open symbols and solid lines) and PAH3 (closed
symbols and dashed lines) was compared inMg2+ and Ca2+. Kinetic data
were collected by rapid quench (the extent of cleavage was 40–50%
for PAH1 and 70 to 85% for PAH3 in these reactions). The concentrations
ofMg2+ (circles) and Ca2+ (squares) in the reactions were varied from 0.2
to 100mM, and all reactions were at 258C and pH 7.5. For PAH1 in
Mg2+, kmax=72� 2min�1 and Kd,app=1.3� 0.2mM; in Ca2+,
kmax=234� 15min�1 and Kd,app=1.7� 0.4mM. For PAH3 the
corresponding values were kmax=71min�1, Kd,app=1.3mM (in Mg2+)
and kmax=218min�1, Kd,app=1.6mM (in Ca2+).
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3 base changes (A-50c, U-51a and A-52g) were introduced
into the 50 side of the proposed P(-1) (Figure 4b). These
changes were predicted to increase the number of base
pairs in P(-1). Precursor RNA from this construct cleaved
to>75% (Figure 5a and b). The kobs for cleavage of PAH3
in either Mg2+ or Ca2+ were indistinguishable from those

Figure 5. Changes in the upstream (50) sequence can alter the extent of
self-cleavage. (a) Cleavage of PAH2 (triangles) and PAH3 (diamonds)
compared to the wt PAH1 (circles). The data for PAH3 (and PAH1)
were collected on a rapid quench instrument. PAH2 cleavage was
nearly undetectable. PAH3 cleaved to 81% with a rate constant
(42� 2min�1) that was similar to PAH1 (47� 2min�1). Reaction
conditions were 2mM Mg2+, pH 7.5 and 258C. (b) Cleavage of PAH4
(closed diamonds) and PAH2c (closed inverted triangles). PAH4 data
collected by rapid quench generated rate constants of 41� 2min�1.
Data for PAH2, PAH3 and PAH2c for this experiment were collected
by hand mixing, so only the extent of cleavage could be determined in
those reactions.
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Figure 4. Potential secondary structures of P(-1) and AltP2 in the
modified precursors. Sequences and hypothetical secondary structures
are presented for just the P(-1) and AltP2 of (a) PAH2, (b) PAH3,
(c) PAH4 and (d) PAH2c. Red letters in the boxed areas denote
the mutations made in the wt 50 leader sequence. Nucleotide numbering
is as in PAH1 (Figure 1) and was not modified to account
for nucleotide insertions and deletions that were introduced into the
variants.
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of the self-cleaving fraction of the original PAH1
(Figure 3). Thus, the only apparent difference between
the cleavage kinetics of PAH3 and PAH1 was the greater
extent of cleavage of the PAH3 RNA. In PAH4, mutations
were introduced in the 30 side of P(-1) to again increase
base pairing in P(-1) (C-21u, G-23u and insertion of an A
between �22/�21; Figure 4c). PAH4 behaved much like
PAH3; in Mg2+ it cleaved to �70% with a kmax=
71� 3min�1 (Figure 5b) and a [M]1/2=1.6� 0.2mM
(data not shown).
The results from these studies with both PAH3 and

PAH4 supported the idea that stabilizing the P(-1) hairpin
structure in the 50 sequence somehow favored the
formation of the active ribozyme structure. Cleavage
activity was the same when changes were made to either
the 50 or 30 side of the predicted P(-1) suggesting that the
P(-1) structure, more so than its sequence, contributed to
this effect.

P(-1) competes with AltP2

According to the proposed pairing schemes, P(-1) and
AltP2 share a common sequence. If so, it should be
possible to restore a higher extent of cleavage in a
precursor with the PAH2 changes (which had increased
base pairing in AltP2), by also increasing the number of
potential base pairs in P(-1). A more stable P(-1) would be
predicted to compete with the stabilized AltP2. Additional
changes to PAH2 were introduced into only the 50 side
of P(-1) (U-41c, U-42c, G-44a, C-46a, A-48i, A-49i,
U-51g, G-54u and U-55c) (Figure 4d). In this construct
(PAH2c), both P(-1) and AltP2 were capable of more
extensive base pairing than the starting PAH1 sequence.
Consistent with the prediction, these changes increased
cleavage of the precursor RNA from the 1% seen in
PAH2 to 45� 5% (PAH2c, Figure 5b). The reaction was
too fast to extract a rate constant from data collected in
hand-mixing experiments; however, PAH2c cleaved faster
than PEX1, and probably as fast as PAH1.

Active and inactive conformations were resolved by
nondenaturing polyacrylamide gel electrophoresis

Four of the precursor RNAs, PAH1, 2, 3 and 4, were
analyzed by nondenaturing polyacrylamide gel electro-
phoresis (Figure 6). Prior to loading, the RNA either
received no additional treatment after thawing, or the
RNA was heated and renatured as for the cleavage
reactions. In a third sample, Mg2+ was added to the
renatured precursors for 1min before EDTA was added to
stop the reaction. The untreated wild-type precursor RNA
(PAH1) ran as a diffuse set of two darker bands and at
least one additional much lighter band (noted with
asterisks, Figure 6). After renaturation, there was a
change in distribution within that set, and the faster-
migrating band was most abundant (asterisk 1). This
darker band was identified as the active ribozyme species
because it decreased in intensity with Mg2+ treatment,
and two new fast migrating product bands appeared.
About half of the total amount of precursor cleaved
(�54% in the example shown). There was no noticeable
change in the intensity of the slower migrating precursor
band, and thus, it appeared to be an inactive form
(asterisk 2). It is also noted that these data reveal that the
precursor RNA adopted these different folds prior to the
addition of Mg2+.

Precursors PAH2, PAH3 and PAH4 were resolved
under the same conditions used for PAH1 (Figure 6). The
poorly cleaving PAH2 RNA ran predominantly in the
position of the slower of the two dark precursor bands
after the renaturation step (asterisk 2), and little, if any,
cleaved when Mg2+ was added. The better-cleaving PAH3
and PAH4 precursors migrated predominantly in two
bands if untreated (asterisks 1 and 2). However, after
the renaturation step, most of the RNA had converted to
the faster species (asterisk 1). This band disappeared
with the addition of Mg2+ and two faster migrating bands
appeared, suggesting it had cleaved. These data were
entirely consistent with the interpretation that

Figure 6. Nondenaturing polyacrylamide gel electrophoresis. Migrations of PAH1, PAH2, PAH3 and PAH4 precursors are shown (left to right
panels, respectively). The RNA either received no renaturation treatment (lanes labeled Untreated) or it was heated and renatured as in the cleavage
reactions (lanes labeled renatured and +Mg2+). The reactions with Mg2+ (2mM) were terminated with EDTA after 1min and the percent
conversion to product is given below the image. Asterisks mark positions of the two darker and one faint precursor bands referred to in the text.
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stabilization of P(-1) (PAH3 and PAH4) enhanced
formation of the active ribozyme, while stabilization of
AltP2 (PAH2) favored a structure incapable of cleavage.
Importantly, the results suggest that the base changes
predicted to increase pairing in P(-1) or AltP2 stabilized
conformations that had mobility similar to those that
formed with the wt PAH1 sequence.

Structure in the 5’ leader sequence

Ribonuclease T1 (a probe for unpaired Gs) was used to
test for structure in the 50 leader sequences of 30 end-
labeled PAH1(C76U), PAH2(C76U), PAH3(C76U) and
PAH4(C76U) precursor RNAs. (The inactive C76U
variant of the ribozyme was used to prevent self-cleavage
of the precursor under structure mapping conditions.)
Under denaturing conditions, T1 cleaved, to a similar
extent, at all Gs in the 50 leader sequences of all four
constructs (Figure 7a). Under conditions favorable for
secondary structure formation, T1 cleavage in the wild-
type 50 leader sequence was reduced at �25, �29, �30,
�43, �44, �45 and �47. This protection would be
consistent with the formation of the upper portion of
the predicted P(-1) structure (Figure 7b). The Gs at �54
and �56 remained accessible to T1 suggesting that either
the short stem below the bulge in P(-1) did not form or
that its formation was transient under these conditions.
While these data were consistent with a structured
50 leader that includes the upper duplex of the predicted

P(-1), structure probing data cannot eliminate other
potential alignments.
We next examined the T1 cleavage patterns in the 50

leader sequences of PAH2(C76U), PAH3(C76U) and
PAH4(C76U). In the PAH2(C76U) precursor, under non-
denaturing conditions, the Gs at �43, �44, �45, �47, �54
and �56 in the 50 side of P(-1) were all accessible to T1
cutting, whereas positions �23, �25, �29 and �30 in the
30 side of P(-1) were protected. This pattern was consistent
with the disruption of P(-1) and the formation of an
alternative structure that involves the 30 side of P(-1), such
as AltP2. In PAH3(C76U) and PAH4(C76U), all of the
Gs in the 50 leader were protected from T1 cutting in
nondenaturing conditions. This result was consistent with
the formation of a stabilized P(-1) structure that includes
the upper stem that forms in the wild-type PAH1(C76U),
as well as base pairs involving nucleotides in the bulge and
at the base of P(-1) that did not appear to form stable
pairing interactions in the wild-type construct.

DISCUSSION

During synthesis of the antigenomic RNA sequence of
HDV, ribozyme cleavage and mRNA 30 processing may be
competing events. To test if antigenomic HDV ribozyme
activity might be influenced by upstream sequences near
the poly(A) site, we have examined a ribozyme precursor
that included an additional 60 nt of 50 sequence. Evidence
that the upstream sequence alters ribozyme activity was
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seen in the ribozyme cleavage rate profile in that the extent
of the reaction was reduced to �50%. The extent of
cleavage in several precursor variants correlated with the
potential for base pairing between two competing struc-
tural elements, whereas the increase in the observed
cleavage rate of the active fraction appeared largely
unaffected by sequence changes in those same regions. In
all constructs tested, the slow-cleaving fraction was
remarkably stable in MgCl2-containing buffers at 258C;
cleavage of that fraction was estimated to be at least
104-fold slower than cleavage of the more active fraction.
Previous studies with a genomic HDV ribozyme

construct similar in length to PAH1 used here, revealed
biphasic kinetics where 36% of the RNA cleaved fast
(51min�1) and the remainder cleaved slowly (0.13min�1)
(conditions were 378C, 10mM Mg2+, pH 8.0) (32). The
cleavage profile for the antigenomic PAH1 construct used
in our studies (50% cleaved) can also be viewed as biphasic
but with a very slow second phase. Alternatively, a reaction
profile that levels off without the going to completion could
result from an approach to equilibrium between cleaved
and religated RNA. If correct, the equilibrium explanation
for the kinetic profile would be exciting because ligation of
ribozyme cleavage products by the HDV ribozymes, in a
reverse reaction, has not been demonstrated. Indeed,
invoking a role for AltP2 in bringing the 50 and 30 ends
of the linear cleavage products together for ligation could
be an attractive solution to the biological problem of
circularizing the unit-length RNA during HDV replication
(2,3). However, the endpoint of�50% seen with the PAH1
precursor does not appear to be the result of ligation
activity. Varying the RNA concentration did not change
the endpoint, nor were precursors regenerated from
isolated products (unpublished data). More compelling,
however, is that in the native gel analysis, differently folded
populations of the precursor formed prior to the addition
ofMg2+ to the reaction, and only one of those populations
cleaved when Mg2+ was added.
Another possible explanation for the lower endpoint is

that two parallel first-order reactions occurred upon the
addition of Mg2+. One pathway leading to ribozyme
cleavage and the other one resulting in a stable noncleav-
ing structure. If these two reactions proceeded with the
same rate constant and drew from the same pool of
precursor RNA, only half the RNA would be cleaved but
the kobs for the disappearance of precursor would be twice
the rate constant for the cleavage pathway. Two
independent lines of evidence argue against this model.
First, the data from the native gels mentioned above was
also incompatible with this model. Second, mutations that
stabilized P(-1) in PAH3 and PAH4 increased the extent of
cleavage but the kobs did not return to the lower kobs value
of PEX1, as the parallel pathways model would have
predicted.
The data presented here are most consistent with the

idea that there are kinetically stable populations of
alternatively folded poly(A) site-containing precursor
RNA. In one population, a pairing such as AltP2 can
turn-off ribozyme activity by preventing the active
structure from forming. In the other population, a feature
of the upstream sequence affects the native ribozyme

structure in a manner that leads to the higher observed
rate. This in vitro behavior could be consistent with a
model in which interactions between sequences associated
with the poly(A) region and the ribozyme influence
relative usage of the two processing sites.

Chadalavada et al. (15,16) have shown that, in the
genomic HDV ribozyme, sequences upstream of the
cleavage site interact with ribozyme sequence. In the anti-
genomic sequence, however, sequence covariation in indi-
vidual isolates of HDV did not strongly support unique
alignments of base pairs in P(-1) and AltP2 (18). Multiple
pairing alignments of the sequences appear possible, and
P(-1) and AltP2 may thus represent examples of potential
secondary structures involving the 50 sequences. More-
over, in this case, mutations and compensatory mutations
do not necessarily define the true competing secondary
structures because the assay only reports that another
structure was prevented from forming correctly. Thus,
while the evidence is consistent with the hypothesis that
AltP2 will interfere with ribozyme activity, it is not
possible to say with certainty that interference of ribozyme
activity is due to formation of AltP2 exactly as drawn.
This uncertainty is not due to a lack of structural data, but
to the nature of the activity assay. Despite this uncer-
tainty, mutations predicted to increase AltP2 stability
decreased the extent of cleavage, as was the prediction.
Moreover, a more stable P(-1)-like structure predicted to
compete with AltP2 increased the fraction of precursor
that cleaved. Base pairing, but not a specific sequence, in
P(-1) appeared to be the important feature that enhanced
the extent of cleavage.

The kobs for PAH1 cleavage at 258C (�1–4 s�1, depen-
ding on metal ions) was higher than previously seen with
the shorter ribozymes from HDV. Nevertheless, the
increase relative to PEX1 was modest (�3-fold). This
increase might not be another example of flanking ‘extra-
ribozyme’ sequences (or domains) that stabilize the core
ribozyme. More dramatic examples of that effect on the
kobs for cleavage in small ribozymes have been seen with
extended versions of the hairpin (33), hammerhead (34)
and glmS ribozymes (35–37). In these ribozymes, where
flanking sequences stabilize an active structure, the rate
enhancements are typically much larger, and the extra
sequence makes an obvious structural contribution. For
the wild-type PAH1 ribozyme or the PAH3 and PAH4
variants, interactions that could contribute to the stability
of the HDV ribozyme core are not apparent. Chadalavada
et al. (15,16) observed a similar increase in kobs of the
genomic HDV ribozymes with extra 50 sequence. They
have described a statistical mechanical model based on the
rapid interchange of tertiary structures between native
(active) and inactive forms under cleavage conditions (32).
That model, also applicable to the antigenomic HDV
ribozymes, would predict that kobs for PAH1 or PEX1 was
less than the rate determining kcat for self-cleavage because
only a statistical fraction, f3, of the folded ribozyme
precursor is in the native tertiary fold and capable of
cleavage: that is, kobs= f3� kcat. An increase in kobs for
PAH1 (and PAH3 and 4), relative to PEX1, could then
reflect an increase in f3 rather than an increase in kcat for
those ribozymes. Although the general model may explain
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the change in kobs, our data do not address a basis for the
predicted change in f3.

The potential for rapid ribozyme self-processing along
with formation of stable nonribozyme structures could be
important to the biology of the virus. The sequence coding
for the ribozyme is near one end of a duplex rod formed
by base pairing in the HDV RNA (Figure 8). Rapid
cleavage of the ribozyme during replication may ensure
that the ribozyme acts very soon after it is synthesized. If
not, a large hairpin that forms at the end of the rod-like
structure could sequester the uncleaved ribozyme sequence
(Figure 8) leading to the accumulation of primary
replication products. Assuming a transcription rate of
about 10–20 nt/s, a slow-cleaving ribozyme sequence could
be sequestered as an inactive duplex within 5–10 s after the
completion of the ribozyme domain. Although such
pairing could prevent unwanted re-cleavage by the ribo-
zyme after the circles are generated, it would presumably
interfere with processing of the initial transcript (2,38,39).
With a half-life on the order of 1 s, a newly synthesized
ribozyme could cleave before the polymerase transcribes
around the hairpin end of the circular genomic RNA. The
flip side, however, is that high ribozyme activity during

transcription of the mRNA could reduce polyadenylation
efficiency. Such an effect could occur even though the
ribozyme is downstream of the poly(A) site (6,7). Thus,
inhibition of ribozyme activity under some conditions may
be required for efficient polyadenylation and mRNA
maturation. A need to suppress ribozyme self-cleavage,
under certain conditions, may not be unique to the virus.
Recently, a sequence coding for an active HDV-like
ribozyme was discovered in the mammalian gene for
CPEB3 (cytoplasmic polyadenylation element binding
protein 3) (40). Even though that ribozyme is located in
an intron, self-cleavage of the RNA might interfere with
or alter CPEB3 expression if cleavage was faster than
splicing.

ACKNOWLEDGEMENTS

We thank Feng Su and Sara Wilkinson for comments on
earlier versions of this manuscript. This work was
supported by National Institutes of Health (GM047233).
Funding to pay the Open Access publication charges for
this article was provided by NIH grant GM047233.

Figure 8. The ribozyme is near the end of the rod-like HDV antigenomic RNA. A cartoon of the circular single-stranded antigenomic RNA is
presented at the bottom in its proposed rod-like structure. The ribozyme sequence (upper portion) is located near one end of the rod, and the
locations of the paired elements in the antigenomic ribozyme are labeled. The cleavage site at the 50 end of P1 is between nucleotides 901 and 900 in
the viral numbering system (13). It should be noted that the sequence that pairs with the antigenomic ribozyme sequence is the template for the
genomic ribozyme.
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