
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:16532  | https://doi.org/10.1038/s41598-022-21007-8

www.nature.com/scientificreports

Wearable, wireless, multi‑sensor 
device for monitoring tissue 
circulation after free‑tissue 
transplantation: a multicentre 
clinical trial
Yoko Tomioka1*, Masaki Sekino2, Jian Gu2, Masakazu Kurita1, Shuji Yamashita1, 
Shimpei Miyamoto1, Takuya Iida1, Koji Kanayama1, Kotaro Yoshimura3, 
Masahiro Nakagawa4, Satoshi Akazawa5, Yu Kagaya5, Kentaro Tanaka6, Yuki Sunaga2, 
Keiko Ueda7, Takuya Kawahara7, Yukiko Tahara1 & Mutsumi Okazaki1

Wearable sensors have seen remarkable recent technological developments, and their role in 
healthcare is expected to expand. Specifically, monitoring tissue circulation in patients who have 
undergone reconstructive surgery is critical because blood flow deficiencies must be rescued within 
hours or the transplant will fail due to thrombosis/haematoma within the artery or vein. We design 
a wearable, wireless, continuous, multipoint sensor to monitor tissue circulation. The system 
measures pulse waves, skin colour, and tissue temperature to reproduce physician assessment. 
Data are analysed in real time for patient risk using an algorithm. This multicentre clinical trial 
involved 73 patients who underwent transplant surgery and had their tissue circulation monitored 
until postoperative day 7. Herein, we show that the overall agreement rate between physician and 
sensor findings is 99.2%. In addition, the patient questionnaire results indicate that the device is 
easy to wear. The sensor demonstrates non-invasive, real-time, continuous, multi-point, wireless, 
and reliable monitoring for postoperative care. This wearable system can improve the success rate of 
reconstructive surgeries.

Free microvascular tissue transplantation is indispensable in current medicine. The creation of anastomoses of 
the vessels of the transplant tissue and the vessels of the recipient site enables various tissues, such as cutaneous, 
subcutaneous, osseous, muscular, or even organs to be transplanted1,2. Since it was first reported in the early 
1970s, free microvascular tissue transplantation has enabled both functional and aesthetic reconstruction for 
tissue deficits due to congenital anomalies, trauma, and malignant tumour resection1–4. Furthermore, vascular-
ised allotransplantation, such as face transplants or limb transplants, has become a reality in recent decades5,6.

While the benefits of microvascular tissue transplantation are substantial, blood-flow deficiencies occur with 
an incidence rate of 3–5%7–9. This is due to thrombosis or other trouble of the artery and veins which the vas-
cularisation of the graft relies on. This deficiency should be detected as soon as possible and corrected promptly 
by emergency surgery; otherwise, tissue injury will progress, and the graft will be lost7–10. Thus, evaluation of 
real-time tissue circulation is particularly critical in postoperative care following tissue grafting11. The greatest 
risk of blood flow deficiency is during the first week after surgery; therefore, a blood flow monitoring device must 
provide continuous postoperative monitoring9,12,13. In addition, multi-point measurements are essential because 
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flow deficiencies do not always occur as a complete black-and-white or all-or-none event. Generally, deficiency 
occurs gradually, and in those cases, the sign partially appears in the early stages. Moreover, in cases when flow 
deficiency occurs in a branch of the vessels, the sign appears only in the following area. As such, multi-point 
measurements are needed for early and adequate detection. A device that is portable and comfortable to wear 
such that patients can ambulate freely is also important in continuous monitoring. There have been reports on 
various devices for tissue monitoring, but no single device reported to date can satisfy all these requirements14–26. 
Frequent medical examination is an alternative approach; however, the time and human resources required for 
this strategy are substantial, and assessments may vary among staff14. Furthermore, even with frequent medical 
examinations, a delay can occur between the onset of abnormal findings and the next assessment.

New techniques in fabrication and implementation enabled producing thin and wearable sensors that accu-
rately monitor certain parameters for accurate clinical feedback27–46. Most studies have measured a certain single 
observation variable in laboratories, and even in clinical trials which have started to be reported also measure 
a certain parameter47,48. Instead of a single parameter, we applied multi-point, multi-modal measurement to 
meet the aforementioned demand. We decided to follow this style referring to physician’s overall judgments 
based on multiple observation items. We utilised our experience of ultra-flexible, thin electronic sensor arrays 
to design a wearable sensor durable enough for clinical application49–52. We have previously reported the utility 
and accuracy of the sensor in animal models and a healthy subject model53,54. By applying algorithmic analysis to 
assess the multi-modal data, we were able to reproduce the decisions of clinical surgeons using the sensor-based 
assessment55. Details of sensor and algorithm are described in material and methods.

We used our wearable sensor to monitor 73 patients following tissue grafting surgery in two clinical trials. 
The device was worn for 24 h for seven days. The high rate of agreement of the sensor system with physician 
assessment and the results of the questionnaire support the reliability of a wearable monitoring system after 
free-tissue transplantation.

This study investigates the validity of wearable devices after microvascular tissue transplantation, where accu-
rate monitoring of tissue circulation is required. We believe this continuous, multi-point, wireless, and wearable 
monitoring system has a large potential to improve the success rate of autograft and allograft transplantation, 
improve the quality of life of patients, and improve the quality of life of medical staff.

Results
The study workflow is presented in Fig. 1. Seventy-eight patients undergoing free-tissue transplantation for 
functional or aesthetic reconstruction after tissue loss were enrolled. We collected the physical exam findings 
of the physicians from patient assessments conducted during morning and evening rounds. These data were 
integrated with the risk rate calculated by the wearable sensor system (Fig. 2) based on algorithmic analysis of the 
acquired tissue temperature, pulse waveform, and colour data. The agreement between physician and wearable 
sensor findings was the primary outcome of this study. A flow chart of the algorithm used for risk assessment 
is shown in Supplementary Fig. 2. The algorithms for pulse waveform, colour, and temperature measurements 
were executed independently prior to calculating the overall risk score (Fig. 3).

For the first patient registered in our clinical trial, effusion from the wounded area caused a component of 
the sensor to short circuit, which resulted in a 1 cm × 1.5 cm burn to the transplanted tissue. This adverse event 
resulted from insufficient waterproofing of the sensor system. Following this case, the clinical study was imme-
diately cancelled, and we improved the system by increasing the waterproofing of the sensor and implementing 
functions to prevent excessive current flow. Once the improved safety measures were implemented (Supplemen-
tary Data “Risk management”), we sought new ethical approval for a subsequent clinical trial that enrolled 27 
patients for preliminary investigations. The data from that preliminary study supported the main clinical trial 
described in this paper and the examination and validation of the system. We subsequently enrolled an additional 
50 patients in an inspection study to evaluate the measurement performance of the sensor system after revising 
the trial protocol. The participants were 54.5 ± 13.0 years of age on average, and the primary cause of tissue loss 
was tissue resection due to cancer (73% of patients). The surgical sites were mostly breast tissue (48%), though 
other surgical sites including the head and neck (15%) and the trunk (6%) were evaluated (Fig. 4).

Clinical trial 1: exploratory study.  We enrolled 27 patients in the exploratory study conducted after 
improving the safety of the device. We attached our device to the graft site and recorded the data collected by the 
device as well as clinical findings provided by the surgeons twice a day (at each morning and evening rounds). 
Recording was continued until postoperative day 7, when the risk of insufficient blood flow to the graft site 
decreases2,5–7. We collected 221 total datapoints (Fig. 5) and the overall agreement between the comprehensive 
risk judgment by the algorithm and the judgment of the physician regarding blood flow deficiency was 96%. The 
rates of agreement between the physician and the algorithm for the pulse waveform, colour, and temperature 
features considered individually were 96.4%, 86.9%, and 69.1%, respectively.

Clinical trial 2: device performance study.  Following the initial exploratory study described above, 
we refined our study design and conducted Clinical Trial 2 as a device performance test. In revising our study 
design, we most significantly considered that the physician can have a judgment of not only ‘normal’ or ‘abnor-
mal’ but also ‘neither normal nor abnormal’. In the ‘neither normal nor abnormal’ case, the physician’s examina-
tion reveals that the tissue does not appear definitively normal, and therefore follow-up examination is required 
shortly thereafter due to the risk of abnormality. Based on this, we redefined the classification of the physicians’ 
medical opinions to include three possible categories. A total of 56 patients were enrolled in the second trial; 
however, one patient withdrew consent, five did not meet the inclusion criteria, and five were unable to wear the 
device because of changes in the surgical technique or size of the tissue. Therefore, 45 patients were fitted with 
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Figure 1.   Overview of study workflow. (a) Flowchart of the clinical trial. Participants undergoing tissue transplant surgery provided 
informed consent and were fitted with the blood flow monitoring device at the graft site until postoperative day 7. (b) Concurrently, 
typical physical examinations of the graft site were performed twice daily by surgeons, as per the usual routine. Those assessments were 
observation of the tissue colour to determine whether it was ischemic or congestive, pin prick findings, where the tissue is pricked 
using a needle and the colour and speed of bleeding are observed, palpation to determine the temperature of the transplanted tissue, 
and a capillary refill test, which is a quick test to observe blood flow through peripheral tissue by compressing the tissue until it turns 
white and observing the time taken for the colour to return. (c) On the day participants underwent transplant surgery, the blood flow 
monitoring device was attached. Over 1 week, monitoring data collected from the device were transmitted to a tablet by a Bluetooth 
transmitter; thus, patients were not restricted from getting out of bed. Twice a day, surgeons performed the exam, recorded their 
findings, and provided a diagnosis of whether the tissue had sufficient circulation. Clinical photographs were also taken for comparison 
with data collected from the device. The device was removed on postoperative day 7 and the device site was assessed for abnormalities 
and clinical outcome. Patients then completed a questionnaire about their comfort and quality of life while wearing the device.
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Figure 2.   System overview. (a) Sensor probe details. One unit consists of three sensors which continuously monitor pulse 
waveforms, tissue colour, and tissue temperature. These three components were selected because the efficacy of pulse 
waveforms has been previously studied, and tissue colour and temperature are the key features assessed by surgeons during 
postoperative care in a clinical setting14,47. This probe is an array of units with four channels, which can be configured 
according to the graft size. The flexible sensor conforms to various shapes and positions on the body. (b) Adapting the 
sensor. First, a medical dressing film was placed on the skin. Then, a polydimethylsiloxane sheet was placed beneath the 
sensor probe to ensure the sensor remains attached despite its surface irregularities. The sensor probe was then fitted. Lastly, 
another medical dressing film was used to cover the sensor and keep it attached to the skin. (c) Overview of the system setup. 
Data were transmitted via Bluetooth to a tablet, where they could be displayed and analysed. We created a smartphone/
tablet application to store and visualise the data collected by the sensor to enhance the device’s versatility. This would enable 
several physicians to receive alarms and notifications when a blood circulation issue is suspected. Moreover, they could 
access the data at any time by installing the application on their own device. (d) Flexibility supporting the wearability of the 
sensor. Participants included patients who underwent breast reconstruction after breast cancer treatment, head and neck 
reconstruction after carcinoma treatment, limb reconstruction after trauma, among others. The sensor was flexible enough to 
adapt to these variously curved surfaces.
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the device following surgery. We collected 526 total datapoints from these 45 patients and the rate of agreement 
between the comprehensive risk judgment by the algorithm and the physician judgment was 99.2% (Table 1). 
The rates of agreement between the physician and the algorithm when the pulse waveform, colour, and tempera-
ture were each considered individually were 93.4%, 85.5%, and 66.4%, respectively.

Case presentation with no circulation deficiency.  In Fig. 6a (left), the raw signal data for each meas-
ured parameter are shown. The pulse wave signal was strong, the colour signal was stable, and the temperature 
was stable. In Fig. 6b (top), we show the time course of the comprehensive risk rate for a patient without circula-
tion deficiencies in the grafted tissue. The risk rate was calculated from the measurement of the three parameters 
by each of the four sensor channels and subsequent algorithmic analysis. The risk rate was consistently low 
throughout the week of monitoring, which was in agreement with the physician assessment as normal findings.

Case presentation with blood circulation deficiency.  In Fig. 6a, we show the raw data of each param-
eter. Figure 6b shows the time course of the comprehensive risk rate for a patient who experienced circulation 
deficiencies in the grafted tissue. In this case, the risk rate was elevated in each of the four sensor channels after 
approximately 7:00 p.m. on postoperative day 3. Specifically, the pulse wave output was attenuated, and the col-
our data showed that the graft colour became much lighter and then steadily darkened. There were no notable 
findings in the temperature measurements. The graft circulation was diagnosed as abnormal based on the clini-
cian findings after 8:00 a.m. on postoperative day 4. Thus, the device detected the tissue circulation deficiency 
13 h earlier than the medical staff.

Patient questionnaire.  At the end of the final day of the study, patients received a questionnaire to com-
ment on their experiences after wearing the device for one week postoperatively. Patients noted that the discom-
fort of wearing the device was tolerable, and 90% of patients indicated that they would use this device in the 
future if needed (Fig. 7).

Discussion
In our clinical trials, we showed that our wearable sensor could be used safely and effectively in clinical settings 
for evaluating tissue circulation following free-tissue transplantation. Importantly, the system was shown to be 
accurate, as the rate of agreement between the physician examination findings and the risk rate calculated by 
our wearable system was 99.2%. This high agreement supports the efficacy of the device for this application and 
suggests that other applications of wearable sensors in clinical settings should be investigated in subsequent work. 
The results from the questionnaire also revealed that this device was truly ‘wearable’, which is another important 
factor in continuous monitoring systems.

Figure 3.   Flow chart of the algorithm for sensor-based assessment of tissue circulation. The pulse wave signal 
is analysed using a fast Fourier transform (FFT) to estimate fluctuations in capillary blood volume in real time. 
The colour and temperature signals are analysed by curve fitting to estimate the change in these parameters 
in the event that circulation is compromised. The risk rates are independently calculated using the algorithm 
described in Supplementary Fig. 2 and integrated to provide a comprehensive judgement.
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Figure 4.   Overview of the clinical trial population—demographics and outcomes. (a) Breakdown of the trial 
population by several variables. The participants were 54.5 years of age on average, but all age categories were 
represented. Of these, 79% of the participants were female, reflecting the large number of breast reconstruction 
patients. The original disease was cancer in 73% of cases. Almost half of the surgical sites were breasts, followed 
by the extremities (31%), and head and neck (15%). (b) Summary of the adverse events experienced by patients. 
Unfortunately, our first case had a 1 cm × 1.5 cm burn due to insufficient waterproofing of the sensor system. 
After deep reflection, we improved the system by increasing the waterproofing of the sensor and implementing 
functions to prevent excessive current flow. One additional type of adverse event caused by the device was 
shoulder discomfort from prolonged wear in all cases. (c) Summary of tissue transplantation clinical outcomes. 
There was no total necrosis, partial necrosis in 7.6% of cases, and full survival of the transplant tissue in the 
remaining 92.4% of cases.
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The technology for manufacturing flexible electronic devices or miniature sensors has progressed significantly 
in recent years27–46. Thus far, their efficacy has mainly been demonstrated in high-performance laboratories, 
since increasing the fabrication yield and durability of these devices is essential in their development toward 
future use in clinical settings. Recently, clinical trials have also been reported on devices that monitor activities 
or measure ECG signals and other vital signs47,48,56–58. Our device was fabricated with the sensors and circuit 

Figure 5.   Comparison of the results from the blood flow deficiency algorithm and physician findings. The 
risk rate calculated for each parameter was stratified by the findings of the medical staff for each patient. A 
statistically significant difference was seen between the normal and abnormal cases for the pulse wave parameter 
in Trial 1. Because we noticed that in a clinical setting, there are some cases that are hard to determine as either 
normal or abnormal, in the next trial, we added follow-up required as an alternative finding for the physician. 
In Trial 2 (n = 45), a statistically significant difference was seen between the normal and abnormal cases for 
all three parameters (pulse wave, colour, and temperature). A significant difference was also seen between the 
neither normal nor abnormal (follow-up required) and the abnormal cases for the pulse wave and temperature 
parameters.

Table 1.   Rate of agreement between the comprehensive risk judgment by the algorithm and the physician’s 
judgement. As an overall evaluation of the blood flow to the grafted tissue, the device outputs a comprehensive 
risk judgement calculated from the assessment of each of the three parameters as normal or abnormal. The rate 
of agreement between the algorithm’s judgement and the physician’s judgement was 96.8% overall when the 
follow-up required category was considered as abnormal. The rate of agreement was 99.2% when cases judged 
as neither normal nor abnormal (follow-up required) were excluded.

Staff findings

Normal Follow-up required Abnormal Total

Comprehensive judgment as device output

Normal 497 13 1 511

Abnormal 3 0 12 15

Total 500 13 13 526

Rate of agreement including follow-up required 96.8% (94.9%, 98.1%)

Rate of agreement excluding follow-up required 99.2% (98.0%, 99.8%)
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Figure 6.   Representative case presentation of a patient with and without impaired blood flow. (a) Raw signal 
data for each measured parameter. In the case where the tissue had normal blood flow (left), the pulse wave 
signal was strong, the colour signal was stable, and the temperature was stable within 1° or 2°. In the case of 
impaired blood flow (right), the pulse wave signal was weak, the colour signal varied substantially, and the 
temperature varied by 2°–3°. (b) Comprehensive risk rate calculated from the raw data. In the normal case (top), 
the risk rate was close to zero throughout the postoperative week. However, in the case which tissue circulation 
was compromised (bottom), the calculated risk rate increased in all four sensor channels. The system identified 
the risk of circulation deficiency 13 h prior to medical staff reporting the change.



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:16532  | https://doi.org/10.1038/s41598-022-21007-8

www.nature.com/scientificreports/

elements assembled on a thin, flexible substrate based on our previous studies49–54. In addition to its flexibility, 
its durability and biological safety were designed and verified for one-week use54. Thus, the device was easily 
fixed on various locations of the body for one week without discomfort, allowing flexibility throughout the 
clinical trial. Furthermore, we designed the device to assess tissue circulation and output results that meet the 
performance of a surgeon’s diagnosis. We have used the latest technology in wearable sensors to meet the clinical 
needs in postoperative care.

To further investigate the wearable monitoring system and definitively determine whether it facilitates early 
diagnosis of blood-flow abnormalities and/or improved success rates of graft repairs and blood flow restoration, 
a much larger trial would be crucial because of the low incidence rate of blood flow abnormalities in this context. 
However, because the early detection of blood flow deficiencies is known to improve success rates9,12,25,26, the high 
agreement rate of the device’s judgement and the diagnosis of the surgeons indicate that our device will contribute 
to the early detection of blood flow deficiencies and consequently lead to the success of transplant surgeries. In 
fact, in one model case, the device was able to detect blood flow deficiency 13 h prior to detection by medical 
staff. In this case, the blood flow deficiency of the transplanted tissue was discovered during the morning round, 
but the device had detected the abnormality the night before. This case highlights the value of 24-h continuous 
monitoring, even when patients are resting, even when there are few staff, and even when the lights are low.

Nevertheless, there are certain limitations of this study that should be acknowledged. First, the device judge-
ment was compared with the diagnosis of the surgeons at each observation, not with whether there was an actual 
blood flow deficiency. This is because blood flow deficiency is obvious when the flap necrotises; however, there 
is no way to determine when exactly the deficiency started. Hence, during the early stage of the moderate case 
mentioned above, the judgement of the device and the surgeons’ diagnoses do not match. Another limitation is 
that because this study included 72 participants, as the size of the data set increases, the threshold that maximises 
sensitivity and specificity could change. We consider that by establishing a deep learning system on the cloud 
in the future, real data obtained by the real clinical world can be utilised to optimise the threshold value. This 
approach could realise a medical device that continues to innovate automatically even after it has been placed 
on the market.

In this study, we presented an important and feasible clinical application of flexible devices and demonstrated 
their safety, durability, and effectiveness. Questionnaire indicated that the wearability of the device was accept-
able. Continuous, multi-point monitoring and analysis reproduced a surgeon’s assessment with a high rate of 
agreement.

Clinical surgeons have a clear idea of what could meet medical needs, whereas engineers have a clear idea of 
what is possible. Their collaboration could help them share their expertise, which could be a challenging process, 

Figure 7.   Results of patient questionnaire. On the last day of the trial, participants were asked to respond to 
a questionnaire. In the questionnaire, 94% of the patients responded that the wearable monitoring sensor was 
at least mostly comfortable, and 90% reported that they would choose to be monitored with this device in the 
future if needed.
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but can enable us to develop something that is truly useful. Future technical developments in the manufacturing 
process and wireless power transfer capabilities will enable us to further enhance the usability of the device and 
potentially expand the applications of these devices in other clinical settings.

Material and methods
Ethics approval.  The clinical trial protocol was approved by the Ethical Review Board of The University 
of Tokyo for Trial 1 (registered as UMIN000028399, 27/7/2017) and the Clinical Research Review Board of 
The University of Tokyo for Trial 2 (registered as jRCTs032190011, 16/4/2019). Informed written consent was 
obtained from all participants, and the tenets of the Declaration of Helsinki and Clinical Trials Act of Japan were 
followed throughout the study. This study was part of the trial and used only data from the trial.

Standardised procedure for recording of medical findings.  The clinical data in this study were col-
lected using the EDC system (Viedoc™). The data were analysed after the observation period was completed in 
all cases and the data were locked. This study was also subjected to monitoring and inspection.

Participant experience.  The study physician provided an approved explanatory document and consent 
form to potential study patients and provided an oral explanation of the document and the study overall (Fig. 1). 
If the patient was deemed to have sufficient understanding of the process, an agreement was signed by free will 
to consent to participation in the trial. In addition, consent was obtained from the parents of one potential study 
subject younger than 20 years of age. Patients were not pressured during the explanation of the study or at any 
other time and were able to withdraw consent at any time without consequence. Patients underwent tissue trans-
plant surgery and were subsequently fitted with a monitoring device at the transplant site when they returned 
to the wards. While the patients were lying in bed, the transmitter was on the bed. Patients were asked to carry 
the transmitter with them when they left the bed. The instrument was attached until postoperative day 7, and 
the data were sent to a tablet via a Bluetooth transmitter. Concurrently, diagnosis of tissue circulation deficiency 
was made based on clinical findings such as tissue colour, skin temperature, pin prick findings, and the presence 
or absence of putrescence. These parameters were measured by surgeons twice a day and recorded on predeter-
mined record sheets and by clinical photographs. The device was removed at postoperative day 7 and the sensor 
site was examined by surgeons to confirm the diagnosis of blood flow deficiency and to determine whether there 
were any abnormalities at the graft site due to the device. Finally, the patients completed a questionnaire regard-
ing their experience with the device.

Statistics and reproducibility.  Since Clinical Trial 1 was an exploratory study and was intended to accu-
mulate the minimum number of cases needed to shift to the assessment of device performance, we did not 
design an explicit number of patients. In Clinical Trial 2, which was designed to evaluate device performance, 
the target number of patients was set at 50. We expected to obtain the measurement results from the device and 
physician findings at the same time at least 8 time points per case, and we designed a total of 400 time points 
from the 50 cases. The reason for this was that if a total of 400 time points of data could be obtained from 50 
cases, the correlation between the judgment of the physician and the comprehensive risk judgment by the algo-
rithm could be examined graphically. We expect an overall agreement rate of 80%, which means that if a total of 
400 time points of data from 50 cases are obtained, the probability that the 95% confidence interval (one-sided) 
of the agreement rate will fall within 5% is more than 95%.

Statistical analysis was performed on patients for whom efficacy data were obtained at least once after fitting 
the study device. The frequency and proportion of patients’ backgrounds were tabulated, as were the frequency 
and proportion of adverse events, clinical outcomes, and patient questionnaires, and presented as graphs or tables.

For each clinical trial, the percentage of agreement between and the judgment of the physician regarding 
blood flow deficiency was calculated to confirm the clinical utility of the algorithm. In addition, the correlation 
between the judgment of the physician and the comprehensive risk judgment by the algorithm was checked with 
a box-and-whisker plot. Analysis of variance was used to compare whether the means of comprehensive risk 
judgment by the algorithm differed between the judgment of the physician.

Missing value was not imputed, and multiplicity was not adjusted. All statistical tests were two-tailed and 
p < 0.05 was considered statistically significant. The statistical analysis for this paper was performed using SAS/
STAT® and SAS/GRAPH® software, version 9.4 of the SAS System for Windows (SAS Institute Inc, Cary, NC, 
USA).

Structure of the wearable sensor.  The wearable device is comprised of a sensor, cable, data transmit-
ter, and a tablet (as shown in Fig. 2). To obtain pulse waveform data, a reflective optical sensor (NJL5303R, 
Shinnihonmusen Corp, Japan) composed of a green light-emitting diode (LED; 570 nm) and a phototransis-
tor was used for each channel. The intensity of backscattered light varies with changes in the blood volume of 
the capillaries, which is synchronised with the heartbeat. This phenomenon occurs because the incident light 
emitted from the green LED is partially absorbed when passing through blood and tissue. The temperature sen-
sor (LMT70YFQ, Texas Instruments, USA) measured temperature by assessing the decrease in output voltage, 
which occurs as the temperature of a thermal diode rises. The colour sensor (P12347, Hamamatsu Photonics, 
Japan) detected tissue colour using a photodiode with three colours of LED (red, blue, and green) light, which 
irradiated the tissue and was reflected and scattered in the tissue.

After our first participant unfortunately encountered an adverse event, the waterproof coating of the device 
was also developed and tested55, demonstrating that a 30-μm-thick parylene C coating on the device could 
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provide durability against bending, was biocompatible, and safely waterproofed the device. Safe limit of the leak 
current from the device to the patient body was smaller than 1 μA.

The measured values were converted to digital data on the sensor probe; then, the data were sent to the tablet 
via Bluetooth transmitter to be displayed and recorded. A diagnosis algorithm implemented using a monitor 
application was then applied to determine the state of the blood flow in the tissue by integrating the pulse wave, 
temperature, and colour signals. The sensor was attached to the subject with a piece of medical transparent film 
(Tegaderm® 3 M, USA). The outward-facing surface of the sensor was covered with an adhesive silicone sheet 
to flatten the sensor surface irregularities and to ensure adhesion. Finally, another medical transparent film 
(Tegaderm® 3 M, USA) was applied to securely fix the sensor to the transplanted tissue. This method was used 
to avoid having the sensor touch the skin directly, in order to reduce the risk of a potential allergic reaction.

Information processing.  Algorithm for pulse wave measurement.  The system LEDs were turned on for 
1 min and switched off for 3 min in each cycle. This conserves battery power while providing data in a timely 
manner, as a 3 min delay is clinically acceptable. In each cycle, data were acquired for 1 min and measured with a 
sampling rate of 16 Hz. During preprocessing, the algorithm segmented the 1-min data intervals into nine sam-
pling windows. Each window in a given cycle was 16 s, with a 5 s interval between the windows. A fast Fourier 
transformation was applied to each sampling window and the frequency spectrum was calculated. The global 
peak of the spectrum from 0.5 to 2 Hz was extracted, as were local peaks with an intensity exceeding 1/3 of the 
global peak intensity. The frequencies of the global and local peaks in all nine windows were counted. Since the 
artefact measurements showed separated peak distributions and the pulse wave signals showed intensive peak 
distributions, the frequency at which most peaks occurred was extracted as the frequency of the pulse wave 
signal. Other signal artefacts were rejected. The amplitude of the pulse wave was defined as the average intensity 
of the corresponding extracted frequency. During circulation assessment, the amplitude of the pulse wave was 
compared with the threshold value. If the amplitude exceeded the threshold, the signal was judged as normal 
circulation in this cycle; otherwise, it was judged as compromised circulation. Finally, the pulse wave measure-
ment was used to calculate the associated risk value. The risk value was designed to use data from the last 30 min 
of sampling, rather than from one data point to allow more reliable, real-time circulation monitoring55.

The algorithm output one of the following results every 4 min: normal circulation, compromised circula-
tion, and motion artefact. The risk value was the ratio of the compromised circulation assessment outputs to the 
number of usable datapoints within the analysis period. This ratio can be calculated using the following equation:

where Risk30 indicates the risk value analysis over the last 30 min (approximately eight datapoints), Numberc is the 
number of compromised circulation judgments, and Numbern is the number of normal circulation judgments. 
Risk30 was recalculated every 4 min. The system generated a high risk output when Risk30 exceeded the threshold 
and a low risk output when Risk30 was less than the threshold. A failed to judge output occurred when no pulse 
wave signal was measured due to data loss, which could occasionally occur due to loss of power or Bluetooth 
communication failures, but was mitigated by the multiple daily assessments.

This algorithm, which is based on frequency analysis of the signals, is computationally inexpensive and suit-
able for implementation in wearable devices55. In another paper, we report a case study where the same raw data 
were analysed by a different algorithm based on deep learning59.

Threshold estimation.  The threshold for distinguishing normal and compromised circulation was evaluated 
using a receiver operating characteristic (ROC) curve, which demonstrates the relationship between the sensi-
tivity and specificity of the sensor (Supplementary Fig. 1). The sensitivity was defined as the ratio of the number 
of true positive judgments of compromised blood flow to the total number of samples with compromised circu-
lation. The specificity was defined as the ratio of the number of accurate normal judgments to the total number 
of samples with normal circulation. In this approach, a variable between the minimum and maximum of the 
data was set as a virtual threshold. The total data included the pulse power calculated from both normal and 
compromised circulation samples. The virtual threshold was extracted using the following conditional equation:

 where x is the virtual threshold, and the constraints showed that the threshold was effective only when F is 
greater than zero. Without this condition, the sensitivity and specificity values were too low to be verified by the 
approach outlined here.

Algorithm for colour and temperature assessment.  Colour and temperature data were measured once every 
4 min. The time sequence of the measurement cycle was 1 s for device setup, 0.4 s for the measurement of the 
temperature signal, and 1.6 s total for the measurement of the red, green, blue, and infrared signals (0.4 s for 
each component). The output of this algorithm was used to make an overall judgment in combination with the 
pulse wave algorithm output.

In clinical settings, tissue colour and temperature are expected to change gradually after venous or arterial 
occlusion. Thus, steep changes or fluctuations of the signal were smoothed to reduce signal noise. During pre-
processing, a data set of three continuously measured points was provided as 

[

y1, y2, y3
]

 . If y2 was the maximum 
or minimum point, and three points satisfied the condition that 

∣

∣y3 − y2
∣

∣ >
∣

∣y2 − y1
∣

∣× 1/2 , y2 was replaced by 

Risk30 =
Numberc

Numberc + Numbern
× 100% ,

Max F(x) = sensitivity + specificity − 1,

F > 0, minimum of total data < x < maximum of total data,
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the value of y1 . The next three points 
[

y2, y3, y4
]

 were then processed. The infrared signal from the colour sensor 
was used to estimate the distance from the sensor to the tissue. Thus, the measurement artefact was rejected when 
the infrared signal changed by more than 10% of the original value. Curve fitting was also a key part of the algo-
rithm. The colour signal transition of the tissue was assumed to be an exponential model function. Data collected 
over the previous 30 min were analysed, and parameters A and τ were calculated using the following equation:

where A represents the transition of the colour signal and τ represents the time constant of the transition. 
Goodness of fit ( gof  ) was also calculated as a parameter for assessment of the grafted tissue. A parameter Index 
was defined to evaluate the change in the signal over the current window and was calculated according to the 
following equations:

where gof  and lognormal functions were normalised by dividing all data by the maximum, scaling the data to a 
range from 0 to 1. The lognormal function was used to transform A and τ . Due this normalisation, the parameters 
should become either extremely large or small if there is no change in the signal. The lognormal function yielded 
a greater output when the input was close to the mode value 

(

eµ−σ 2
)

 and was approximately 0 when the input 
was far from the mode value. Therefore, detectable changes in the signal resulted in large function outputs, 
whereas a stable signal resulted in small function outputs. The gof  calculation used the Levenberg–Marquardt 
method. The parameter σ was fixed to 0.25, and µ was set to the mode value. For analysis of brightness, the mode 
value was set to 1000 and for analysis of temperature, the mode value was set to 2. The risk value was provided 
by Index . For analysis of the colour signal, if the |Index| for the last analysis window was greater than the thresh-
old, the risk value was calculated as

where riskprevious is the risk value for the previous analysis window. Otherwise, the risk value was calculated as

With a greater risk value, there is a higher likelihood of tissue circulation changes. The algorithm therefore 
provided a high risk judgment when the risk value exceeded threshold; otherwise, it returned a low risk judg-
ment. The threshold in this study was set to 0.5.

Comprehensive judgment.  The pulse wave, colour and temperature signals were analysed and output at the end 
of the analysis process as risk values for each parameter (Fig. 3). Risk values were calculated for every 4 min of 
data and compared with the corresponding risk thresholds. The detailed process and the method of threshold 
estimation are outlined in Supplementary Fig. 2. The comprehensive judgment ultimately outputs a system judg-
ment result of risky, low risk, or failed to judge, and the result is reassessed every 4 min.

The comprehensive judgment algorithm is shown in Supplementary Fig. 2. The pulse wave judgment is most 
consistent with clinical examination; therefore, the algorithm will yield a failed to judge result if the risk value of 
the pulse wave (pr) cannot be calculated. In the following steps, if the risk values of colour (cr) and temperature 
(tr) are not available, pr will be compared with the threshold of the pulse wave risk (pt). A risky judgment result 
is generated when pr is greater than pt. If tr is available, both pr and tr must be higher than the threshold risk 
for pulse wave and temperature, respectively, to yield a risky judgment. If cr is also available, pr, cr, and tr must 
all exceed their respective risk thresholds to result in a risky judgment. If a risky judgment is not reached but 
a pr value is present, low risk is generated as the system judgment. The risk values range from 0 to 1, as do the 
thresholds of three components. The thresholds were estimated from clinical trial data. The estimation method 
tests all possible threshold values between 0 and 1 with a step of 0.01. Therefore, the estimated thresholds should 
obey the following condition: pt ∈ [0.5, 0.71] & (ct = 1.0||tt = 1.0). The estimated thresholds used here are suit-
able for the current clinical trial, but these values may change when the population size increases. In the future, 
the algorithm could be modified to optimise the thresholds online and to generate a feasible result that enables 
real-time tissue circulation monitoring.

Data availability
Source data for the main figures in the manuscript can be accessed as Supplementary Data 1, 2 and 3. Further 
raw datasets generated during and/or analysed during the current study are not publicly available according to 
Swiss human research law but are available from the corresponding author on reasonable request. Proposals with 
reasonable requests may be submitted to yoko1031prs@gmail.com up to 24 months following article publication.

Received: 28 June 2022; Accepted: 21 September 2022

y = A0 + A∗e−
t−t0
τ ,

Index = gof × lognormal(|A|) × lognormal(τ ),

lognormal(x) =
1

√
2πσx

exp

(

−
(ln x − µ)2

2σ 2

)

,

risk = riskprevious + Index,

max
(

riskprevious , |Index|
)

,
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