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Breathing dissipative solitons in optical
microresonators
E. Lucas1, M. Karpov1, H. Guo1, M.L. Gorodetsky2,3 & T.J. Kippenberg1

Dissipative solitons are self-localised structures resulting from the double balance of dis-

persion by nonlinearity and dissipation by a driving force arising in numerous systems. In

Kerr-nonlinear optical resonators, temporal solitons permit the formation of light pulses in the

cavity and the generation of coherent optical frequency combs. Apart from shape-invariant

stationary solitons, these systems can support breathing dissipative solitons exhibiting a

periodic oscillatory behaviour. Here, we generate and study single and multiple breathing

solitons in coherently driven microresonators. We present a deterministic route to induce

soliton breathing, allowing a detailed exploration of the breathing dynamics in two micro-

resonator platforms. We measure the relation between the breathing frequency and two

control parameters—pump laser power and effective-detuning—and observe transitions to

higher periodicity, irregular oscillations and switching, in agreement with numerical predic-

tions. Using a fast detection, we directly observe the spatiotemporal dynamics of individual

solitons, which provides evidence of breather synchronisation.

DOI: 10.1038/s41467-017-00719-w OPEN

1 IPHYS, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland. 2 Russian Quantum Centre, Skolkovo 143025, Russia. 3 Faculty of
Physics, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia. E. Lucas and M. Karpov contributed equally to this work. Correspondence and
requests for materials should be addressed to T.J.K. (email: tobias.kippenberg@epfl.ch)

NATURE COMMUNICATIONS |8:  736 |DOI: 10.1038/s41467-017-00719-w |www.nature.com/naturecommunications 1

mailto:tobias.kippenberg@epfl.ch
www.nature.com/naturecommunications
www.nature.com/naturecommunications


D issipative solitons are localised structures, occurring in a
wide variety of dissipative nonlinear systems in plasma
physics, matter waves, optics, chemistry and biology1.

Recently, the generation of temporal dissipative Kerr solitons
(DKS) through parametric conversion in optical micro-
resonators2 triggered a substantial interest. Indeed, DKS con-
stitute a way to generate coherent optical frequency combs with
large repetition rates in the range of tens to hundreds of gigahertz,
having a vast application potential. They have already been
employed in a growing number of proof-of-concept experiments,
including coherent terabit telecommunications3, dual-comb
spectroscopy4 and for the realisation of a microwave-to-optical
link via self-referencing5, 6. In parallel, nonlinear microresonators
appeared as a suitable platform to study the properties and
dynamics of nonlinear systems. Despite their apparent simplicity,
microresonators possess a rich variety of stable inhomogeneous
solutions. As reported both in numerical simulations7–10 and in
experiments2, 11–13, depending on its dispersion parameters, a
resonator can sustain bright dissipative Kerr solitons2, 12, 13,
Turing patterns14, soliton crystals15 or dark pulses (platicons)11,
16. Some of these localised patterns can exhibit a rich panel of
dynamical instabilities. In particular, bright DKS, supported in
the case of anomalous group velocity dispersion (GVD), can
undergo breathing, i.e., a periodic variation in their duration and
amplitude17–20. Similar to Kuznetsov-Ma21, 22 and Akhmediev
breathers23 in conservative nonlinear systems, breathing dis-
sipative solitons are related to the Fermi-Pasta-Ulam recurrence19

—a paradoxical evolution of nonlinearly coupled oscillators, that
periodically return to the initial state24. Characterising the
breather regime is not only of fundamental interest, but impor-
tant for applications. The accurate knowledge of the conditions
for breathing allows the prevention of soliton instabilities and
extreme events such as solitons collisions25, ensuring a stable
operation of DKS-based microresonator devices, and avoiding
excess noise26.

Breathing dissipative solitons were first demonstrated in fibre
cavities by Leo et al.18. However, the experimental observation of
breathers in optical microresonators has posed a significant
challenge due to the non-trivial soliton generation process2, 13,
the thermal nonlinearity that may impact the effective laser
detuning27, 28 and high repetition rates (>10 GHz) that make
direct time-resolved observations difficult. Nevertheless, micro-
resonators remain an attractive platform to study breathers, as
their very high finesse allows easy access to strong driving regimes
where complex instabilities are predicted to occur18. Further-
more, the fact that the timescale of the instabilities scales with the
relatively long photon lifetime, combined with the ability to
generate a single soliton in the cavity suggests that the soliton
dynamics can still be captured with a sampling rate much smaller
than the repetition rate. Recently, the observation of breathers in
microresonators was reported, evidencing the link with the
Fermi-Pasta-Ulam recurrence19 in particular, as well as a first
attempt at characterising breather dynamics, in which the oscil-
lation frequency (breathing frequency) was shown to depend on
the pump detuning, but the direct relation was not unambigu-
ously determined.20

Here, we present a comprehensive analysis of breathing dis-
sipative solitons in microresonators. First, we demonstrate a
deterministic route to access and characterise breathing solitons
in two microresonator platforms: crystalline MgF2 whispering
gallery mode resonators and Si3N4 integrated microresonators.
Second, owing to a newly introduced probing method28, we
directly measure the operating conditions, allowing a detailed
exploration of the breathing regime, revealing the relation
between breathing frequency and the driving laser parameters.
Third, we map the breathers’ existence range and study its

dependence on the pump power. Fourth, we present time-
resolved observations of the intracavity pattern evolution in an
optical microresonator. This enables the behaviour of individual
soliton pulses to be tracked, even with several solitons in the
cavity, revealing non-stationary breathing dynamics as well as
evidence of breather synchronisation.

Results
Deterministic access to dissipative breathing solitons. The
nonlinear dynamics of the optical field in continuous wave (CW)-
laser-driven microresonators in the presence of the Kerr non-
linearity can be very accurately described using a system of
nonlinear coupled mode equations29, 30, demonstrating almost
perfect correspondence with experimental data26. This system of
equations may be considered as a discrete Fourier transform of
the damped driven nonlinear Schrödinger equation (NLSE)2:

i
∂Ψ
∂τ

þ 1
2
∂2Ψ
∂θ2

þ Ψj j2Ψ ¼ �iþ ζ0ð ÞΨþ if : ð1Þ

Here Ψ(τ, θ) is the normalised intracavity waveform, θ is the
dimensionless longitudinal coordinate, and τ the normalised time.
Equation (1) is usually termed in optics as the Lugiato-Lefever
equation (LLE)31, where a transverse coordinate is used instead of
a longitudinal one in our case. The nonlinear dynamics of the
system is determined by two parameters: the normalised pump
amplitude f and detuning ζ0, defined as2:

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8gηPin
κ2�hω0

r
; ζ0 ¼

2δω
κ
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where κ denotes the loaded resonator linewidth (Q=ω0/κ, loaded
quality factor), η= κex/κ the coupling coefficient, Pin the pump
power, ω0 the pumped resonance frequency and
δω= 2πδ=ω0 −ωp is the detuning of the pump laser from this
resonance, counted positive for a red-detuned laser. The non-
linearity is described via g ¼ �hω2

0cn2=n
2
0Veff giving the Kerr fre-

quency shift per photon, with the effective refractive index n0,
nonlinear refractive index n2, and the effective optical mode
volume Veff.

A similar equation was first analysed in plasma physics32, 33.
These early studies demonstrated that stable soliton attractors
exist within a certain range of effective detuning in the
red-detuned regime (green area in Fig. 1a). In addition, it was
also shown that, oscillating time-periodic solitons (i.e., breathers)
and chaotic states are possible7. Extensive numerical analysis and
charting of the parameter space of Eq. (1)7–9, 18 revealed that the
breathing region is located close to the low-detuning boundary of
the soliton existence range (red area in Fig. 1a). Theoretically the
transition from stationary to oscillating DKS results from a Hopf
bifurcation that arises above a certain pump power level18. The
simulated temporal evolution of the amplitude profile of a
breathing soliton is displayed in Fig. 1b, showing that the DKS
compresses and stretches periodically. The spectral envelope also
reflects this effect (Fig. 1c). Breathers are also known to radiate
weakly decaying dispersive waves34 that induce sidebands on the
optical spectrum.

We apply the so-called laser backward tuning method28 in
order to deterministically access the breathing regime of a single
soliton in a microresonator. A similar approach was recently
employed independently in fibre cavities35. In this approach, a
stationary multiple-soliton state is first generated by sweeping the
continuous wave (CW) driving laser forward (towards longer
wavelengths) over the pumped resonance and stopping on the
effectively red-detuned side, where solitons are sustained2.
Second, the driving laser is tuned backward (towards shorter
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wavelength), thus reducing the effective detuning. Thanks to the
microresonator thermal nonlinearity that lifts the fundamental
degeneracy of multiple-soliton states, this approach was shown to
enable the reduction of the intracavity soliton number, via
successive switchings to states with a smaller soliton number, thus
enabling single soliton access28. Figure 1a shows a simulation of
this excitation scheme in the Si3N4 microresonator, including the
thermal effects. Forward and backward tuning stages are
indicated with blue and red lines correspondingly. The system
experiences a series of consecutive switchings, as reflected by the
stair-like trace of the intracavity power. We observed that the
breathing regime is characterised by oscillations in the intracavity
power that occur in the vicinity of the switching points in each
step (inset in Fig. 1a). Importantly, the breathing dynamics can be
unambiguously characterised only in the single-soliton state,
where interactions among different solitons (in a multiple-soliton
state) are avoided.

Experimental identification of breathing. We experimentally
verified our approach in both platforms, in which a breathing
single soliton was generated using the backward tuning
method (see experimental setup Fig. 2a). Despite significant dif-
ferences in the resonators properties (Q factor, free spectral range
(FSR), material dispersion and nonlinearity, see Methods section),
both systems behave qualitatively similarly when approaching
and entering the breathing regime. Figure 2c, d show the
experimental evolution of the generated light power of a single
soliton in Si3N4 and MgF2 optical resonators when the backward
tuning is applied. This signal is obtained by detecting the out-
coupled light, after attenuation of the strong pump laser with a
narrow fibre Bragg grating notch filter. In both cases the system
evolved from a stationary DKS on the right of each trace, to
breathing DKS, and finally switched to a homogeneous back-
ground, without soliton. In both platforms, reaching the breath-
ing regime coincides with a progressively increased amplitude
noise of the generated light power. A detailed measurement (with
an increased sampling rate) reveals that the power is oscillating,
as shown in the inset of Fig. 2d.

The oscillatory nature of the out-coupled pulse train in the
breathing state can also be characterised by measuring its radio
frequency (RF) spectrum on an electronic spectrum analyser

(ESA). Figure 2e, g shows the RF spectra of the generated light for
stationary and breathing DKS in both optical resonator platforms,
at the points marked in Fig. 2c, d. The stationary soliton state
(blue traces) corresponds to a low-noise state of the system, while
the breathing state exhibits sharp tones indicating the funda-
mental breathing frequency and its harmonics (red traces). For
our systems, the breathing frequencies were in the range of 0.5–1
GHz for the Si3N4 microresonator (FSR ~100 GHz, κ~200 MHz)
and 1–4MHz for the MgF2 platform (FSR ~14 GHz, κ~200 kHz).
The breather regime can also be evidenced when measuring the
repetition rate beatnote on the ESA. The oscillating pulse
dynamics give rise to additional sidebands around the repetition
rate, spaced by the breathing frequency (see Fig. 2f, h which
compares stationary and breathing states in both platforms).

Another characteristic signature of the breathing state is
observed in the optical spectrum. Figure 2b shows the measured
spectra of both stationary and breathing single soliton based
frequency combs, in a MgF2 resonator. In the stationary state, the
spectrum has a squared hyperbolic secant envelope corresponding
to the stationary soliton solution, while in the breathing state, the
spectrum features a triangular envelope (on a logarithmic scale),
resulting from the averaging of the oscillating comb bandwidth by
the optical spectrum analyser, as illustrated in Fig. 1c. The
simulated spectrum (averaged over one breathing period)
reproduces well the triangular feature. The weak sidebands on
the optical spectrum are also captured on both the measured
spectrum and averaged simulated spectrum (marked by arrows in
2b), providing an evidence for evanescent waves radiation by
breather solitons.

Breathing dissipative solitons dynamics. Having established a
deterministic access to breathers, we next characterised the
breathing dynamics. We use a vector network analyser (VNA) to
acquire the transfer function of the system from pump phase
modulation to the transmitted power, which enables us to
determine the effective laser detuning of the driven nonlinear
system28, 36. In the stationary soliton state, this transfer function
exhibits a double- resonance feature (red curve in Fig. 3c)
which reflects the bistable nature of the intracavity field (soliton
and CW background). The first one (C-resonance) corresponds to
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Fig. 1 Numerical simulations. a Simulation of the intracavity power, illustrating the backward tuning method used to trigger breathing. The generation of a
stable multiple-soliton state is achieved by forward tuning of the pump laser (blue curve). The backward tuning is applied next (red curve) in order to reach
the low-detuning boundary of the soliton existence range where the breathing regime (increased noise) and switching effect (step features) occur, allowing
to transition to the single-soliton state. The blue shading corresponds to the region where modulation instability occurs, the green marks stationary solitons
existence and the red area indicates breathing. The lower inset details the single soliton breathing and switching during the backward tuning. The upper inset
shows the oscillations of the power for a fixed laser frequency in the single-soliton state (f= 21.5, ζ0= 27.3). b Temporal evolution of a breathing
dissipative soliton over one breathing period illustrating the periodic compression (CP) and stretching (SP), both indicated by a red dashed line and the
emission of waves in the background. c Corresponding optical spectrum of the intracavity pattern over half a period, showing the evolution between the
maximal stretching and compression instants (SP and CP). On average, over one period, the spectrum features a triangular shape (in log scale). The
emitted waves are causing the sidebands in the spectrum
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the background cavity resonance, and indicates the effective
pump laser detuning δ with good approximation. The second one
(S-resonance) corresponds to a resonant response of the soliton
to the pump modulation. It emerges at lower frequency and is
weakly dependent on the pump laser detuning.

Figure 3 shows the evolution of a single soliton in a MgF2
resonator while tuning backward from the stationary state (pump
power of 200 mW). During the scan, the transfer function of the
system is monitored simultaneously with the comb repetition rate
beatnote and total comb power. As the laser detuning is reduced,
the C-resonance consequently shifts to lower frequencies (Fig. 3a).
Interestingly, both C-resonances and S-resonances are also

observed in the comb beatnote measurement, appearing as
features on the background noise of the electronic spectrum
analyser (dashed lines in Fig. 3b). We ascribe this effect to the
transduction of laser input noise via the response of the system
(i.e., incoherent response which is identical to the probed
coherent response). The transition from stationary to breathing
soliton occurs when the separation of the C- and S-resonances is
comparable to the linewidth (κ/2π), for a detuning δ ~ 4MHz.
Afterwards, in the breathing region, strong sidebands at the
soliton breathing frequency and its harmonics emerge around the
beatnote. The sidebands move progressively closer to the
beatnote, revealing that the breathing frequency decreases for
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Fig. 2 Experimental observation of breathing solitons in Si3N4 and MgF2 platforms. a A similar experimental set-up is used for both platforms: A tunable
continuous wave laser is used as a pump source. EDFA, erbium-doped fibre amplifier; EOM, electro-optical phase modulator; OSA, optical spectrum
analyser; PD, photodiode; OSC, oscilloscope; ESA, electronic spectrum analyser; VNA, vector network analyser. b Experimental optical spectra of a
stationary (blue) and breathing soliton states (red), in the 14 GHz FSR MgF2 crystalline resonator. The effective detuning δ is varied by 0.5MHz between
the two states. The simulated optical spectrum averaged over one breathing period (black line) was offset by 3 dB for better visibility. The arrows mark the
positions of weak sidebands visible in both the simulated and measured spectra. c Generated light power evolution for a single-soliton state in the 100 GHz
Si3N4 microresonator as the pump is tuned backward, showing the transition from stationary state (green shading) to breathing (red shading) and final
decay. The inset shows an SEM image of the microresonator used (the scale bar corresponds to 100 μm). d In the MgF2 crystalline resonator (see inset, the
scale bar corresponds to 2mm), the comb light evolution features a similar behaviour as in d, when tuning backward. The inset shows the oscillations of the
generated comb power, resolved with a fast photodiode and high sampling rate. e, f RF spectra of the generated light for a breathing (point (i) in c, d, red
trace) and stationary (point (ii) in c, d, blue trace) soliton state respectively in the Si3N4 and MgF2 resonators. In f, the 0.4 GHz span is centred at
0.8 GHz, close to the fundamental breathing frequency. The resolution bandwidth (RBW) is indicated on the corresponding panel. g, h Repetition rate
beatnote for a breathing (i, red) and stationary (ii, blue) soliton state in the Si3N4 and MgF2 resonators
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smaller detuning. In the breathing state, the transfer function
(blue curve in Fig. 3c) features a strong sharp peak at the
breathing frequency that appears in between the C-resonance
and the S-resonance. From this response, the breathing frequency
and the effective laser detuning can thus be measured with a good
precision. Notably, the S-resonance behaviour is greatly modified
in the breathing domain as it shifts together with the breathing
frequency and detuning. We also observed that the transition into
the breather regime is reversible by tuning the laser forward (back
into the stationary state).

Figure 3d–g shows the detailed breathing dynamics within the
breathing region. In particular, the comb power is measured in
two ways. First, the global evolution is monitored continuously
on a DC- coupled photodiode with a slow sampling rate of ~100
kSa/s (Fig. 3e). Thus, the faster breathing oscillations appear as
increased amplitude noise, which can be quantified with the
relative standard deviation ~στðtÞ ¼ στðtÞ=μτðtÞ, where στ and μτ

are the local standard deviation and mean power level over τ=
1000 samples. Second, the fast dynamics of the intracavity soliton
is also recorded on a real-time oscilloscope with 120 GSa/s, but in
short sequences spread over the scan. This allows the observation
of the pulsed nature of the intracavity pattern (see Fig. 5). The
breathing oscillations in each sequence are then recovered by
detecting the envelope of the resolved pulse train and down-
sampled (Fig. 3g). Ultimately, the breathing dynamics could be
resolved with a slower oscilloscope.

The breathing starts with a weak oscillation of the soliton pulse
train power (stage i, δ ~ 4MHz). This corresponds to a single pair
of weak sidebands on the comb beatnote. For smaller detuning
the breathing becomes stronger, so that the first sidebands
(fundamental breathing frequency) increase, and breathing
harmonics emerge (stage ii) as the breathing pattern is not
sinusoidal. At δ ~ 3.3MHz (stage iii) the system exhibits a period
doubling, which corresponds to the appearance of sub-sidebands
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with frequency half of the initial breathing frequency. At last, the
breathing turns into strong and irregular oscillations (stage iv, δ ~
2.9MHz), exhibiting sporadic transitions to period tripling. This
coincides with a large increase in the noise pedestal around the
beatnote, although the fundamental breathing frequency remains
distinguishable. Finally, the soliton decays quickly thereafter.
Other sections of the same trace are presented in the Methods
section, revealing further transitions to period 5, 7 and 8
oscillations within a very irregular breathing state. Such
transitions to higher periodicity, temporal chaos, as well as the
soliton collapse match the predicted evolution from numerical
studies of the LLE8, 18.

The combined effect of increased modulation depth and reduced
breathing frequency is reminiscent of a typical characteristic of
complex dynamical systems approaching critical transitions37, 38. In
the present case, the critical event consists in the loss of the single
soliton, either via collapse into the continuous background as
observed in this work (switching), or via spatiotemporal instabil-
ities35. When approaching a tipping point, early warning signals in
the form of a variance increase and a critical slowing down have
been reported in a wide variety of systems, ranging from lasers near
threshold to entire ecosystems and the climate39–41.

We next study the breathing frequency as a function of laser
detuning for a single-soliton state in the MgF2 resonator. The
backward tuning over the breathing region was repeated for
different pump power levels, and the breathing frequency was
measured as a function of effective laser detuning (Fig. 4a)
using the transfer function of the system. The detuning
dependence is close to linear: fb � 1:23δþ f 0b , where fb is the
breathing frequency and δ indicates the effective laser detuning.
The offset f 0b is observed to decrease with the pump power.
We performed numerical simulations based on the LLE and
obtained an excellent quantitative agreement, with almost
identical results (Fig. 4a). A direct linear relation between the
breathing frequency and the detuning is also suggested by the
approximate breather expression we derived analytically (see
Methods section).

The relation we measured is of opposite sign to a trend
reported by Yu et al.20, where the breathing frequency was shown
to increase for reduced detuning. Although numerical simulations
predict an inversion of the trend over a narrow range of detuning,
for small pump amplitudes and detuning (see Methods section),
the dominant evolution of the breathing frequency matches with
our observations. In ref.20, the detuning was not accessed directly,
and the measurements carried with multiple solitons in the cavity,
making any comparison difficult.

Breathing region. We experimentally studied and mapped the
stability chart of DKS solitons in the two-parameter space (pump
power Pin and effective detuning δ) of the CW-pumped micro-
resonator system9, 42, 43. A stationary single soliton was generated
using the backward tuning method at different pump powers, and
gradually tuned across the breathing region until its decay. The
white circles in Fig. 4b mark the operating points (Pin, δ) thus
accessed experimentally. The colour-coded vertical line around
each circle indicates the relative standard deviation of the output
power measured at the corresponding point and directly relates to
the breathing amplitude. The results reveal a pump power
dependency for the breathing threshold, whose location shifts
towards higher effective detuning values and range slightly
reduces when the pump power increases, as predicted in ref. 18.

We compared our experimental results to LLE-based simula-
tions (see Methods section for details). The resulting types of
intracavity field attractors at various operating points are labelled
via the background colour-coding in Fig. 4b: CW-state (white),
where the soliton decays to the homogeneous background;
chaotic modulation instability state (blue); stationary soliton state
(green); and breathing soliton state (red). The experimentally
accessed stationary and breathing states are well within the
corresponding areas predicted by the simulations. The deviation
between experimental results and simulations for the transition
boundary (Hopf) can be attributed to the deviations between the
measured detuning values and the true δ that differ at
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low-detuning due to the higher background28. The highly
unstable and short-lived breather in this region makes it harder
to resolve. Finally, high-order dispersion and nonlinear effects
(e.g., Raman scattering, avoided mode crossings and third order
dispersion) were not included in the simulations for simplicity,
but are present in the Si3N4 microresonator.

Furthermore, as noted earlier, the breathing emerges when the
C-resonance is tuned close to the S-resonance, and their
separation is on the order of the resonator linewidth. Therefore
the S-resonance frequency provides an estimate for the detuning
value of the upper boundary of the breathing region (Hopf
bifurcation). Experimentally, we monitor the S-resonance
frequency as the pump power is raised, while stabilising the laser
detuning (C-resonance frequency) to a constant value in the

stationary soliton state26. Figure 4c reports the evolution of the
S-resonance frequency with the pump power for the
MgF2 resonator, whose smaller linewidth produces narrower
resonance peaks in the transfer function that are easily resolved.
The obtained relation fits to a parabolic dependence and matches
the Hopf boundary retrieved from simulations with a frequency
offset that does not exceed twice the linewidth, showing that the
breathing region can be identified even from the stationary state.

Real-time observation of breathers. The fast soliton dynamics in
the microresonator is studied further in the time domain by
measuring the 14 GHz soliton pulse train coupled out of the MgF2
resonator. The generated light is amplified and detected on a fast
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photodiode (70 GHz bandwidth) connected to a real-time oscil-
loscope with 45 GHz analogue bandwidth (sampling rate
120 GSa/s). We note that so far, the real time sampling of suc-
cessive solitons in microresonators had not been attained due to
the required high sampling bandwidth. The present configuration
allows for the measurement of ~9 samples per roundtrip and
enables a coarse localisation of the soliton pulse within one
roundtrip as shown in Fig. 5b, c. Since we observe that the soliton
breathing dynamics evolve over a large number of roundtrips
(>1000), we aggregate together the samples contained in seg-
ments of 100 roundtrips, to achieve an effectively larger sampling
rate. This produces smoother traces, revealing the impulse
response of the acquisition system (matching with the photodiode
response), where the instantaneous pulse peak amplitude can be
reliably retrieved (Fig. 5b). Longer traces (Fig. 5c, e) that measure
the evolution over a large number of roundtrips are divided in
100-roundtrips segments, which are aggregated and stacked. This
facilitates the visualisation of a spatiotemporal evolution of the
cavity content over a large number of roundtrips.

We first benchmarked our measurement procedure in the
single-soliton state. At a pump power of 230 mW and for the
effective laser detuning ~10MHz, the soliton is stationary as
expected, with a constant amplitude (Fig. 5d). For a smaller
detuning ~3.5 MHz, the soliton is breathing and the time trace
reveals the oscillatory envelope of the soliton amplitude (Fig. 5e).
In the spatiotemporal frame, this leaves a dotted pattern at the
breathing period (Fig. 5f), where the blue shading indicates the
soliton amplitude. The breathing frequency is ~3.4 MHz
corresponding to 4145 roundtrips.

The fast recording on the real-time oscilloscope also enables us
to delineate the breathing dynamics of individual pulses in a
multiple-soliton state. Figure 5g shows the evolution of a
breathing two-solitons state during a backward tuning around
δ ~ 2.1MHz. The state experiences a switching28 where one
soliton decays and the other survives. Furthermore, in this small
detuning condition, the breathing is typically irregular and might
be locally identified as period doubling or tripling, as reflected on
the traces (Fig. 5g–j). The measurement reveals that the two
solitons breathe overall at the same frequency but are not in
phase. In the present case, there seems to exist a preferred phase
relation of ~π/2. Even if the breathing is irregular and the phase
relation can be locally altered as shown in Fig. 5i, the relative
phases seem to quickly recover this relation. A longer section of

the spatiotemporal evolution of Fig. 5g can be visualised in the
Supplementary Movie 1, together with a second similar dual-
breather realisation (Supplementary Movie 2). Such behaviour
has been predicted by Turaev et al.34, showing that the longer
interaction length of breathing solitons can lead them to form
bound states with a specific separation distance and breathing
phase relation. A quadrature breathing should correspond to a
comparatively large soliton separation, which matches with the
above case as the pulses are separated by more than the
photodiode response time. However, we could not derive a clear
correlation between the soliton separation and the relative
breathing phase. Other cases of in-phase, out-of-phase, and
quadrature breathing, as well as phase wrapping were also
observed and are reported in Methods section.

Discussion
We have experimentally demonstrated the formation of breathing
dissipative solitons in two distinct microresonator platforms. The
large difference in the characteristics of the MgF2 crystalline
resonator and photonic chip Si3N4 microresonator validates the
universal nature of our observations. We implemented a laser
tuning method which enables a reliable access to soliton
breathing. Typical signatures of breathing solitons, including a
periodically varying soliton peak intensity and a triangular
spectral envelope are identified and observed. Moreover, we
presented a direct time-resolved observation of dissipative Kerr
solitons in microresonators, revealing the breathing dynamics of
individual solitons in both single and multiple breathing soliton
states. Such measurements unambiguously reveal the transition to
higher breathing periodicity and a more chaotic type of beha-
viour. By monitoring the laser detuning of the driven nonlinear
system, we present direct measurements of the breathing
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frequency dependence on the laser detuning. These studies evi-
denced a linear relation, which agrees remarkably well with
numerical simulations and provides further insights into this
breathing property. Furthermore, the experimental mapping of
the Hopf transition boundary from stationary to breathing state
reveals the parabolic-like relation between the pump power and
the detuning, which also matches numerical simulations. In the
context of low-noise operation of soliton-based Kerr frequency
combs, breathing degrades the soliton stability and should gen-
erally be avoided. Our results provide useful diagnosis tools to
determine the breathing boundary, even from the stationary
soliton state and shine a new light on the S-resonance of the
soliton and its relation to the Hopf boundary and breathing
frequency. These findings not only carry importance from an
application perspective, but also contribute more broadly to the
fundamental understanding of dissipative soliton physics. Our
observations further demonstrate the suitability of the

microresonator platform to study nonlinear dynamics, especially
for accessing high normalised driving amplitudes. In the present
case, the remarkable agreement between the numerical simula-
tions and experimental observations validates one more time the
relevance of the Lugiato-Lefever model, even in such cases of
nonstationary and chaotic dynamics. However, beyond the
intrinsic soliton breathing explored in this work (as predicted by
the standard LLE) the imperfections of a microresonator provide
an additional opportunity to study the effects of perturbations on
soliton stability, such as the influence of mode-family interactions
triggering inter-mode breathing of solitons44.

Methods
Optical resonators. Si3N4 integrated microring resonators with the free spectral
range (FSR) of ~100 GHz and Q-factors ~106 (linewidth κ

2π ¼ 150�200MHz) was
fabricated using the photonic damascene process45. In order to achieve the single-
mode operation and suppress the effect of avoided mode crossings, a filtering
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section was added to the microresonator46, 47. The resonators dispersion para-
meters −D2

2π ¼ 2MHz, D3
2π ¼ Oð1 kHzÞ—were measured using the frequency comb

assisted laser spectroscopy method48 (the resonance frequencies near ω0 are
expressed in a series ωμ ¼ ω0 þ

P
i�1 Diμi=i!, where i 2 N, μ 2 N is the mode

number). The wavelength of CW pump laser in experiments was set at 1553 nm,
the pump power varied from 1 to 4W.

The MgF2 crystalline resonator with FSR D1
2π ¼ 14:094 GHz was fabricated by

diamond turning of a cylindrical blank. The high Q-factor of ~109 (intrinsic linewidth
κ0
2π ¼ 80 kHz, intrinsic finesse F � 1:7 ´ 105) was achieved with subsequent hand
polishing. The dispersion parameters at the pump wavelength of 1553 nm are:
D2
2π ¼ 1:96 kHz, D3

2π ¼ Oð1HzÞ. The pump laser (fibre laser, wavelength 1553 nm; short-
term linewidth 10 kHz) is amplified between ~20 and 450mW and evanescently
coupled to the resonator with a tapered optical fibre, which enables a tuning of the
coupling. The loaded linewidth κ is retrieved by measuring the S-resonance linewidth in
the VNA trace (when no solitons are present in the cavity), the associated coupling
coefficient η= κex/κ= (κ− κ0)/κ was measured in the range 0.45−0.62.

Numerical simulations. Numerical simulation based on the LLE (Eq. 1) were
implemented in order to study breathers. For the MgF2 resonator, the simulations
are performed using periodic boundary conditions with 1024 discretisation points
(1024 modes). The simulation of the breathing frequency as a function of the
control parameters is carried as follows: the operating parameters (pump power
and the laser detuning) are fixed and the intracavity field is initiated with a single
(stationary) soliton ansatz2. The simulation of the soliton evolution is then carried
over 15 photon lifetimes (2π/κ) and the breathing dynamics analysis is carried over
the final 2/3 time range, where the stationary soliton ansatz has converged to the
inherent breathing state of the system. The oscillation frequency is determined via
spectral analysis and plotted in Fig. 4a. We also simulated the breathing frequency
in the range of parameters simulated in ref. 20 and compared it with our operating
conditions on Fig. 6. The inversion of the slope is reproduced at low pump
amplitude and small detuning, but occurs over a very narrow range of the para-
meter space (on the order of the resonator linewidth), which we believe is difficult
to access experimentally. The dominant trend is well reflected in our measurements
as shown in Fig. 4a.

The simulations of the stability chart of the Si3N4 microresonator presented in
Fig. 4b were performed with 512 modes. Using hard excitation scheme, stationary
DKS were seeded at fixed input powers and large detunings. Then the laser
detuning was reduced step by step to map over the chart. In each step, the
intracavity field pattern is characterised after ~5000-roundtrips to exclude
early-stage transient formations. In simulations for both MgF2 and Si3N4

microresonators, we identified intracavity states of single stationary soliton state,
breathing soliton state, chaotic state in the operation regime of modulation
instability (MI) and state where intracavity field decays leaving only the cw
background, showing in colour-codings in Fig. 4b, c.

Approximate breather ansatz. We develop an approximate breather solution for
the LLE (Eq. (1)), that allows to inspect the relation of the breathing regime
parameters to the pump power and the effective detuning. It is known that an
approximate stationary solution of the LLE for positive ζ0 (i.e., for the pump laser
being effectively red detuned) may be found as a sum of the soliton and a back-
ground:

ΨðθÞ � ΨC þ ΨSðθÞ eiϕ0 ; ð3Þ

here Ψ(θ) is the intracavity waveform, θ ¼ ϕ
ffiffiffiffiffi
1
2d2

q
is the dimensionless longitudinal

coordinate, ϕ is the co-rotating angular coordinate of the resonator and d2=D2/κ
is the dimensionless dispersion. ΨC≈ −if/ζ0 represents the constant solution of (1)
(background), while ΨS= B sech(Bθ) is the exact stationary conservative soliton
solution of (1) (without loss or drive), with B ¼ ffiffiffiffiffiffiffi

2ζ0
p

. The phase ϕ0 may be found
by perturbation methods49 from cosϕ0= 2B/πf.

The exact Kuznetsov-Ma breather21, 22 solution of Eq. (1) without loss and
pump can be employed to derive an approximate ansatz for dissipative breathing
solitons:

ΨSðθ; τÞ ¼ K1 cosΩτþiK2sinΩτ
cosh Bθ�K3cosΩτ � ϵ

� �
eiK4τ

Ω ¼ B
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ 4ϵ2

p

K1 ¼ B2ffiffiffiffiffiffiffiffiffiffiffi
B2þ4ϵ2

p ; K2 ¼ B

K3 ¼ 2εffiffiffiffiffiffiffiffiffiffiffi
B2þ4ϵ2

p ; K4 ¼ ϵ2 � ζ0

: ð4Þ

If the time dependent part of the background ϵ is small then leaving only terms
up to the first order on ϵ → 0 we arrive at:

ΨSðθ; τÞ ¼ B sechðBθÞ þ 2ϵ cos ζ0tð Þsech2ðBθÞ � ϵ e�iζ0 t : ð5Þ

We notice, that for ϵ= 0 this breather converges to a simple stationary soliton, and

for small ϵ the oscillation frequency of both the background and soliton itself
simply coincides with the laser detuning.

Higher breathing periodicity. At low detuning, the breathing gets irregular, as
shown in Fig. 3g. Within this regime of irregular oscillations, we observed episodic
transitions to high periodicity breathing, where the breathing pattern repeats at
least twice. Apart from the case of period tripling shown in the main manuscript,
we present in Fig. 7 the observed transitions to period 5, 7 and 8 oscillations. A
representative section of the trace showing irregular (chaotic) breathing, where no
clear periodicity can be found, is also displayed.

Relative breathing phase. We have recorded the spatiotemporal evolution of
several dual breathers realisations and analysed the relative breathing phase
(Fig. 8). The detuning is overall larger than the case shown in Fig. 5g, so that the
breathing is more regular. The breathing synchronisation is assessed in the fol-
lowing way: a cut of the spatiotemporal map is extracted along the peak corre-
sponding to the position each soliton. The two resulting time series are
band-pass filtered to keep only the fundamental breathing harmonic and the
analytical signal of each filtered trace is computed via Hilbert transform. The
relative phase is detected by taking the argument of the quotient of the two ana-
lytical signal.

Typical breathing behaviour are displayed in Fig. 8a–c, showing out-of-phase, in
phase and quadrature breathing. Besides these three cases, other phenomenon were
observed punctually such as synchronisation with a phase multiple of π/4, of
incomplete synchronisation at the onset of breathing as shown in Fig. 8d. The
spatiotemporal evolution of Fig. 8d can be visualised in Supplementary Movie 3.

Data availablity. The code and data used to produce the plots within this paper are
available at 10.5281/zenodo.823538. 545822. All other data used in this study are
available from the corresponding authors upon reasonable request.
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