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Abstract: The design of experiments (DoE) is one of the quality-by-design tools valued in analytical
method development, not only for cost reduction and time effectiveness, but also for enabling analytical
method control and understanding via a systematic workflow, leading to analytical methods with
built-in quality. This work aimed at using DoE to enhance method understanding for a developed
UHPLC enantioseparation of terbutaline (TER), a model chiral drug, and to define quality assurance
parameters associated with using chiral mobile phase additives (CMPA). Within a response surface
methodology workflow, the effect of different factors on both chiral resolution and retention was
screened and optimized using Plackett-Burman and central composite designs, respectively, followed by
multivariate mathematical modeling. This study was able to delimit method robustness and elucidate
enantiorecognition mechanisms involved in interactions of TER with the chiral modifiers. Among many
CMPAs, successful TER enantioresolution was achieved using hydroxypropyl β-cyclodextrin (HP-β-CD)
added to the mobile phase as 5.4 mM HP-β-CD in 52.25 mM ammonium acetate. Yet, limited method
robustness was observed upon switching between the different tested CMPA, concluding that quality
can only be assured with specific minimal pre-run conditioning time with the CMPA, namely 16-column
volume (60 min at 0.1 mL/min). For enantiorecognition understanding, computational molecular
modeling revealed hydrogen bonding as the main binding interaction, in addition to dipole-dipole
inside the CD cavity for the R enantiomer, while the S enantiomer was less interactive.

Keywords: quality-by-design; quality assurance; design-of-experiments; chiral separation; chiral
mobile phase modifier; terbutaline

1. Introduction

The pharmaceutical industry is obliged to adopt quality-by-design (QbD) strategies as per the
International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use
(ICH) guidelines Q8, Q9, and Q10, in order to ensure robust manufacturing processes and enhanced
product quality. The concepts of QbD have been extrapolated to the development and verification of
analytical methods in what is known as analytical quality-by-design (AQbD) [1–4]. Design of experiments
(DoE) is one of the tools of AQbD where multivariate statistical analysis is used for the optimization
of analytical method conditions [5,6]. DoE mathematically determines main factor effects, as well as
their interactions, on chromatographic separation and retention responses with a predefined number
of experiments. The mathematical model and the graphical response surface allow superior, global,
and accurate understanding of the simultaneous effects of variable factors on the measured response,
minimizes costs and time spent during method development, and allows visualization of the design
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space or response surface [7–9]. DoE is applied for the optimization of a wide range of chromatographic
methods, including chiral separations [9–14]. Instead of using expensive, widely available chiral stationary
phases (CSP) [14–18], limited budget laboratories of small industrial pharmaceutical enterprises use
chiral mobile phase additives (CMPA) to achieve enantioresolution on commonly available achiral
stationary phases in various modes (normal phase and reversed phase) [19–23]. Analogous approaches
are commonly used in capillary electrophoresis [24–27]. Terbutaline (TER) (Figure 1) is a selective
β2-agonist, therapeutically used as a fast-acting bronchodilator and tocolytic agent. It is marketed by
many pharmaceutical companies as a racemic mixture (racTER) i.e., an equal ratio of the (R) eutomer and
(S) distomer [28,29]. In 1992, the FDA highlighted that the determination of the different enantiomers is
necessary and cannot be ignored since the enantiomers of a biologically active chiral compound often
behave differently in pharmacokinetic and pharmacological activity. Guidelines request the consideration
of each enantiomer of pharmaceuticals as single active compounds [30]. Hence, TER enantiomers were
chiraly resolved—among many methodologies—using native and substituted beta cyclodextrins as
CMPA by capillary electrophoresis (CE) and HPLC [25,31–34]. Despite the availability of numerous
reports regarding TER enantioseparation in the literature, no understanding of the mechanistics of
chiral recognition has ever been reported [15,35,36], likely because all reports use a one-factor-at-a-time
(OFAT) approach during optimization, leaving factors’ interactions unexamined. This old OFAT method
development strategy risks failure, especially if the analyst aims at method transfer, where risk-based
approaches for process developments are indeed recommended by the FDA [37,38]. Thus, the aim of
this study is to shed the light on the enantiorecognition mechanism of TER using CMPA via a QbD
approach using DoE, evaluate method robustness as a part of quality assurance for chiral analysis of
TER by CMPA in a pharmaceutical industry context, and to delineate the response surface for optimum
chromatographic conditions, achieving the highest resolution and least retention.
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Figure 1. Chemical structures of R- and S- enantiomers of terbutaline (TER). 

2. Results 

2.1. Screening Design 

Among the screened CMPA, two were promising: hydroxypropyl β-cyclodextrin (HP-β-CD) 
and sulfobutylether β-cyclodextrin (SBE-β-CD) with degree of substitution (ds) of about6, where tRLast 

was 8.5 min and α was 1.09 upon using SBE-β-CD (Figure 2A), while HP-β-CD resulted only in partial 
enantioseparation of TER when the pH was adjusted to 4 (Figure 2C) and no separation at pH 6 
(Figure 2B). Experimental run conditions and corresponding results of retention and separation are 
summarized in Table 1. Main effects plots revealed that among the six screened factors, three were 
most influential on targeted responses, namely type and concentration of the CMPA, in addition to 
the concentration of buffer (Supplementary Materials Figure S1). Moreover, Pareto charts showed the 
cumulative effect of these three factors on responses (Figure S2), supporting their incorporation in 
the following optimization design. 

Figure 1. Chemical structures of R- and S-enantiomers of terbutaline (TER).

2. Results

2.1. Screening Design

Among the screened CMPA, two were promising: hydroxypropyl β-cyclodextrin (HP-β-CD) and
sulfobutylether β-cyclodextrin (SBE-β-CD) with degree of substitution (ds) of about6, where tRLast

was 8.5 min and α was 1.09 upon using SBE-β-CD (Figure 2A), while HP-β-CD resulted only in partial
enantioseparation of TER when the pH was adjusted to 4 (Figure 2C) and no separation at pH 6
(Figure 2B). Experimental run conditions and corresponding results of retention and separation are
summarized in Table 1. Main effects plots revealed that among the six screened factors, three were
most influential on targeted responses, namely type and concentration of the CMPA, in addition to
the concentration of buffer (Supplementary Materials Figure S1). Moreover, Pareto charts showed the
cumulative effect of these three factors on responses (Figure S2), supporting their incorporation in the
following optimization design.
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Figure 2. UHPLC chromatograms of racemic Terbutaline (racTER) standard with mobile phase 
conditions: (A) 2.3 g/L sulfobutylether β-cyclodextrin (SBE-β-CD) in 0.05% formic acid: ACN, isocratic 
elution (93:7) at 0.3 mL/min achieving tRLast at 8.5 min and α = 1.09; (B) 8 mmol/L hydroxypropyl β-
cyclodextrin (HP-β-CD) in 0.05 M ammonium acetate: MeOH adjusted to pH 6, isocratic elution (95:5) 
at flow rate: 0.1 mL/min achieving tRLast 13.5 min and α = 1; (C) 8 mmol/L HP-β-CD in 0.05 M 
ammonium acetate: MeOH adjusted at pH = 4, isocratic elution (95:5) at flow rate: 0.1 mL/min 
achieving tRLast 14.2 min and α = 1.03. The two small peaks were artifacts appearing in all 
chromatograms.

Figure 2. UHPLC chromatograms of racemic Terbutaline (racTER) standard with mobile phase conditions:
(A) 2.3 g/L sulfobutylether β-cyclodextrin (SBE-β-CD) in 0.05% formic acid: ACN, isocratic elution (93:7)
at 0.3 mL/min achieving tRLast at 8.5 min and α = 1.09; (B) 8 mmol/L hydroxypropyl β-cyclodextrin
(HP-β-CD) in 0.05 M ammonium acetate: MeOH adjusted to pH 6, isocratic elution (95:5) at flow rate:
0.1 mL/min achieving tRLast 13.5 min and α = 1; (C) 8 mmol/L HP-β-CD in 0.05 M ammonium acetate:
MeOH adjusted at pH = 4, isocratic elution (95:5) at flow rate: 0.1 mL/min achieving tRLast 14.2 min and
α = 1.03. The two small peaks were artifacts appearing in all chromatograms.
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Table 1. Experimental run settings and results of the screening design.

Run Order Chiral Mobile Phase
Additive CMPA Type CMPA Conc. (mM) pH Buffer Conc. (mM) Flow Rate (mL/min) %B Change tRLast (min) α

1 SBE-β-CD 0.6 6 50 0.05 0.04 152.41 1.00
2 HP-β-CD 10 6 50 0.05 0.04 35.17 1.16
3 HP β-CD 0.6 2.5 5 0.05 0.02 69.82 1.27
4 HP-β-CD 10 6 5 0.3 0.02 6.20 1.16
5 SBE-β-CD 0.6 6 5 0.05 0.02 >240 1.00
6 SBE-β-CD 10 6 5 0.3 0.04 70.65 1.14
7 SBE-β-CD 0.6 2.5 5 0.3 0.04 6.68 1.20
8 HP-β-CD 10 2.5 5 0.05 0.04 39.70 1.18
9 HP-β-CD 0.6 6 50 0.3 0.02 6.97 1.19

10 SBE-β-CD 10 2.5 50 0.05 0.02 241.06 1.11
11 SBE-β-CD 10 2.5 50 0.3 0.02 100.35 1.14
12 HP-β-CD 0.6 2.5 50 0.3 0.04 66.12 1.00
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2.2. Optimization Design

A circumscribed central composite design (CCD) was selected to demarcate the design space of
TER chiral separation via 26 chromatographic runs of different levels for each of the three studied
factors (Table 2).

Table 2. Experimental runs and results of the central composite design (CCD).

Run Order CMPA Conc. (mM) Buffer Conc. (mM) CMPA Type tRLast (min) α

1 5.40 52.25 HP-β-CD 11.11 1.32
2 10.46 27.50 HP-β-CD 34.50 1.01
3 5.40 27.50 SBE-β-CD 69.20 1.10
4 5.40 27.50 HP-β-CD 9.62 1.23
5 10.00 50.00 HP-β-CD 7.89 1.25
6 0.80 50.00 SBE-β-CD 18.61 1.00
7 5.40 27.50 HP-β-CD 7.98 1.26
8 5.40 2.75 HP-β-CD 8.58 1.35
9 0.34 27.50 SBE-β-CD 89.16 1.00

10 5.40 27.50 SBE-β-CD 75.71 1.23
11 5.40 27.50 HP-β-CD 9.69 1.22
12 10.00 50.00 SBE-β-CD 9.74 1.00
13 0.80 5.00 HP-β-CD 11.91 1.19
14 0.34 27.50 HP-β-CD 13.45 1.16
15 0.80 50.00 HP-β-CD 10.09 1.24
16 5.40 27.50 HP-β-CD 7.63 1.24
17 10.00 5.00 HP-β-CD 6.43 1.17
18 5.40 27.50 SBE-β-CD 12.19 1.12
19 5.40 2.75 SBE-β-CD 42.30 1.23
20 10.46 27.50 SBE-β-CD 24.01 1.22
21 10.00 5.00 SBE-β-CD 8.14 1.00
22 5.40 27.50 SBE-β-CD 65.12 1.22
23 5.40 27.50 HP-β-CD 9.38 1.25
24 0.80 5.00 SBE-β-CD 6.50 1.07
25 5.40 27.50 SBE-β-CD 45.58 1.20
26 5.40 52.25 SBE-β-CD 56.04 1.19

2.3. Multiple Linear Regression Models

The regression model was computed for tRLast and α, where optimal Box-Cox transformations of
the response were ln tRLast and α (λ − 1)/((λ × gˆ(λ − 1))”, where λ = 3 and g = 1.16737 as the geometric
mean of α (Equations (1)–(4)). Model fitting was evaluated using values of correlation coefficients (R2),
while the absence of an insignificant term was tested by ANOVA (p-values < 0.05). The regression
models obtained were validated experimentally and results for both types of CMPA successfully met
the predicted values (Figure 3).

Equations (1) and (2) imply that, for both types of CMPA, a shorter retention time is only dependent
on buffer concentration. The enhancement of elution by the buffer is attributed to the ionic interaction
of NH4Ac with TER in the mobile phase as a result of the ionization of the TER tertiary amine group
and its interaction with the acetate group at the studied pH. It also leads to improved peak shape due
to the blockage of the free silanol groups of the stationary phase by the ammonium group in the buffer.

For HP-β-CD:

ln(tRLast) = 1.657 + 0.0603 Buffer conc − 0.000979 Buffer conc2 (1)

For SBE-β-CD:

ln(tRLast ) = 2.686 + 0.0603 Buffer conc − 0.000979 Buffer conc2 (2)
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Figure 3. Chromatograms for three randomly selected experimental conditions within the optimum
robust surface of contour plots to validate the prediction power of regression models in Equations (3)
and (4); (A) 5 mM SBE-β-CD in 5 mM ammonium acetate: ACN (97:3) pH = 3.5 at 0.3 mL/min achieving
tRLast 12.7 min and α = 1.17 (predicted α = 1.18); (B) 5.4 mM HP-β-CD in 5 mM ammonium acetate:
ACN (97:3) at pH = 3.5 at 0.3 mL/min achieving tRLast 8.9 min and α = 1. 28 (predicted α = 1.30);
(C) 3 mM HP-β-CD in 50 mM ammonium acetate: ACN (97:3) at pH = 3.5 at 0.3 mL/min achieving
tRLast 9.1 min and α = 1.24 (predicted α = 1.25).

In Equations (3) and (4), selectivity is influenced by CMPA concentration and buffer concentration
for both types of CMPA. Factors were shown to affect selectivity in their first and second order.
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For HP-β-CD:

αλ−1

λ×g(λ−1) = 0.1816 + 0.0569 CMPA conc − 0.00935 Buffer conc

− 0.00524 CMPA conc2 + 0.000182 Buffer conc 2
(3)

(λ = 3, g = 1.16737 is the geometric mean of alpha α)
For SBE-β-CD:

αλ−1

λ×g(λ−1) = 0.0041 + 0.0569 CMPA conc + 0.00186 Buffer conc

−0.00524 CMPA conc2
− 0.000047 Buffer conc 2

(4)

(λ = 3, g = 1.16737 is the geometric mean of alpha α)
To obtain a compromise in conditions leading to maximum α and minimum tRLast, the global

desirability function (D) was used (Figure 4). HP-β-CD at a concentration of 5.45 mM in aqueous
52.25 mM NH4Ac successfully resulted in an experimental least retention time of 9.6 min within a 95%
confidence interval (7.52–13.95 min) and highest experimental α of 1.22 at a 95% predicted interval
(1.212–1.449) (Figure 4).
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Figure 4. Optimization plots of factors vs. responses, where each column describes the effect of individual
factors of the regression Equations (1)–(4) on the measured responses α and tRLast. Optimum conditions
that simultaneously achieve maximum α and minimum tRLast are 5.4511 mM HP-β-CD and 52.250 mM
buffer in a global desirability (D) of 96.90%. Lines and values in red show the factor points included
in the optimized response conditions, Horizontal blue lines shows the desirability function values
achieving maximum α and minimum tRLast.
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3. Discussion

In the screening design, the steepness of the lines in the main effect plots (Figure S1) show that the
use of an acidic mobile phase and low %B had a positive effect on enantioresolution, indicating that the
lower the pH and %B, the higher the enantioseparation. Changing the flow rate between the studied
levels (0.05 to 0.3 mL/min) did not significantly affect the separation, but definitely shortened retention
time. The low ionic strength of the buffer had the benefits of improving enantioseparation, fastening
elution, and preventing precipitation of buffer salt when the aqueous and organic phases meet in
the UHPLC mixing chamber. Doubling the rate of the change in %B in the linear gradient caused a
noticeably shorter retention time due to the increased eluent strength of the mobile phase, according to
the linear solvent strength theory, indicating that hydrophobic–hydrophobic interactions are governing
analyte (stationary phase) mobile phase interactions. However, high %B decreased the solubility of
CMPA and worsened enantioseparation, likely due to competition of the organic modifier with the
chiral binding site at the β-CD cavity as reported by Gratz et al [25]. Finally, the mobile phase was set
at pH = 3.5 and %B change at 0.02 as fixed conditions for all upcoming runs of the optimization design.

The linear solvent strength theory governing reversed phase (RP) separations is known to be
a logarithmic relationship where the retention factor K to the base 2 is related to surface tension of
the aqueous mobile phase modifier (ln K = A + BD+ C
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+ E + ln RT/PoV, where A,
B, C and D are constants). Our regression model for retention (Equations (1) and (2)) has the same
logarithmic relationship to the base 2, which infers that hydrophobic interactions predominate in
the three-point interaction of enantiomers, leading to chiral separation even in the presence of the
CMPA in the mobile phase. Moreover, faster elution was possible with large %B change (0.04%/min),
supporting the fact that reversed phase mode is followed in the presence of CMPA. On the other hand,
selectivity (α) is dependent on buffer and CMPA concentrations in first and second orders (Equations
(3) and (4)). Hence, careful selection of levels of these two factors is important for quality assurance of
the separation, where distancing from the robust optimum values would lead to a dramatic drop in
enantioresolution due to the presence of the quadratic terms.

HP-β-CD (Figure 5A) displays free rotating substituted hydroxy groups that promote strong and
stereospecific interaction via hydrogen bonding with the 3-hydroxy groups of TER, in addition to the
inclusion of its aromatic ring into the CD cavity, leading to a hydrophobic interaction. In contrast,
enhanced enantioseparation was only possible at moderate CMPA concentrations (4–7 mM) of HP-β-CD
(Figure 6A), where higher concentrations showed decreased column effectiveness due to increased
column pressure. Despite the fact that the regression model of α with HP-β-CD did not show any
interaction terms between buffer concentration and CMPA concentration (Equation (3)), separation
was only achieved at either very low or very high concentrations of buffer due to the quadratic
order of this factor (Equations (3) and (4)). Moreover, a wider range of CMPA concentration (3–8
mM), concomitantly with the highest buffer concentration (45–50 mM), leads to acceptable separation.
This may conclude the involvement of both stationary and mobile phases in which interaction and
saturation of the stationary phase with HP-β-CD takes place at low buffer concentration. On the other
hand, at high buffer concentration and ionic strength (45–50 mM), the ionized TER predominates in
the CMPA rich mobile phase; thus, chiral recognition takes place via both surface stationary phase
and mobile phase. This also explains the improved resolution with lower retention time at high buffer
concentrations when TER elutes with the HP-β-CD in the mobile phase.
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For the sulfonated SBE β-CD (Figure 5B), a different pattern in the relationship between α and both
CMPA and NH4Ac concentrations was observed. A moderate concentration (3–8 mM) of SBE-β-CD
led to a good separation at a wide range of buffer concentration (5–50 mM, Figure 6B). A mixed
modal interaction involving ion pairing, hydrogen bonding, and inclusion complex at the hydrophobic
cavity are most likely occurring [33]. Separation in a slightly acidic medium (pH = 3.5) guarantees
the unionization of some sulfonic groups (pKa = 2), where partitioning with the reversed phase takes
place along with the presence of some other ionized sulfonic groups eluting in the mobile phase paired
with TER.

As per Equations (3) and (4), separation is weakly affected by buffer concentration (coefficients
related to buffer concentration are 6–110 times smaller than coefficients of CMPA concentration) and
a wide range of buffer concentration prospers to achieve α > 1.16 (Figure 6B). For similar methods
published in literature, no selectivity was reported. On the other hand, resolution was measured
instead [33], or it was stated as no separation for TER was achieved on octadecylsilane with the use of
HP-βCD in the mobile phase [31]. Other reports using native beta cyclodextrins as CMPA rather than
using substituted ones showed slightly lower selectivity values for TER to the values in our study [32].
Our findings contradict the report of Ngim et al. [33], which states that separation was not sensitive to
the degree of substitution of CMPA, pH, nor the organic modifier.

In general, HP-β-CD resulted in higher α value than SBE-β-CD on an octadecylsilane column in the
presence of an organic modifier in the mobile phase. Thus, HP-β-CD was selected for further response
optimization experiments. This contradicts the report by Ameyibor et al. [31], in which TER enantiomers are
separated using HP-β-CD in 50 mM NH4Ac only on hexylsilane and octylsilane columns with a complete
loss of resolution upon the addition of the organic phase when an octadecylsilane column was used.

Computational docking of different TER conformers into HP-β-CD confirmed the predicted
interactions in some favorable docking poses (Figure 7). Interactions inside the CD cavity include
hydrogen bonding and dipole interactions between the cavity and the electron cloud of the TER
aromatic ring, as well as hydrogen bonding with the externally protruding hydroxypropyl substituent
of HP-β-CD. R-TER showed additional bonds at the chiral center (Figure 7B) that allow three-point
interactions, leading to superior chiral recognition compared to all conformers of S-enantiomers.
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Figure 7. Three-dimensional molecular visualization showing the predicted binding modes upon
docking in HP-β-CD (yellow surface). Dotted red lines denote dipole interactions, while dotted black
lines denote hydrogen bonding. (A) Interactions of four different S-TER conformations with the pocket
(blue, cyan, green and orange structures), (B) docking of four different R-TER conformations anchored
to the pocket by extra hydrogen bonding at the chiral center (oval red shapes).
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The mandatory randomization of runs in a DoE-based experiment revealed that even after washing
the achiral column with an achiral mobile phase (50 mM NH4Ac pH 3: ACN, 97:3), between runs
involving different CMPA (Table 2), enantioselective interactions of a former run are preserved, where
TER are still enantioresolved after several washing cycles (Figure 8). This is likely due to the attachment
of the CMPA–TER complex to the stationary phase. Indeed, quality assurance of CMPA-based chiral
separations seems to globally suffer from a lack of data about strict protocols of column conditioning
and inter-run washes upon switching between different chromatographic conditions, which is proven
in our study to severely compromise method robustness. In some experiments, variation in retention
times for the same run conditions was observed due to memory effects of former chromatographic
conditions. For instance, the retention time of each enantiomer in run 19 (Table 2), expressed as
mean ± standard deviation, showed 33.3 ± 1.59 s and 41.0 ± 1.83 s. However, inter-run washing and
conditioning achieved a retention time of the enantiomers as mean ± 0.07–0.09 s. This authenticates
the ability of the built-in-quality gained by using DoE-based method development to detect a lack of
robustness in chiral separations. We identified some factors, including effective column conditioning,
appropriate washing time, and suitable mobile phase flow rate for conditioning phases during our
screening experiments, while previous reports were not attentive to conditioning time nor to flow rate.
The C18 surface was freed from the memory effect after the addition of 16× the normal column wash
volume.The C18 surface was freed from the memory effect after using a washing volume equivalent to
16 times normal column volume (Figure 8). For quality assurance, studies using CMPA should include
clear protocols for washing and conditioning to preserve reproducibility and robustness. Notably,
our findings exclude a potential gradient mode chromatography that is indeed seldom used with
CMPA. Even though CSP are more common for enantioseparation, it cannot be ignored that the use
of CMPA is cost-effective and provides freedom to the analyst to quickly change between different
chiral selectors. Moreover, not all chiral selectors are available as chiral columns. Nevertheless, chiral
separations are more challenging upon using CMPA in terms of method transfer and performance
since it was concluded that long conditions and washing times are a key factor for quality assurance.
Future directions include the application of this chiral approach to members of chiral β2 agonists
produced by the pharmaceutical industry, not only to evaluate predominant interactions leading to
enantioseparation, but also to study quality assurance-related parameters in the analytical method.Pharmaceuticals 2020, 13, x FOR PEER REVIEW 12 of 17 
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Figure 8. Chromatograms obtained post-washing of the achiral column with the achiral mobile phase
(50 mM NH4Ac pH 3: ACN, 97:3): (A) 5.6×, (B) 7.25×, and (C) 16× the column volume, showing that
the memory effects of former chromatographic conditions persist, and that exact guidelines need to be
available for column washing and conditioning for CMPA-based enantioseparation to ensure quality
and robustness.

4. Materials and Methods

4.1. Standards and Reagents

racTerbutaline (as sulfate salt) was generously offered by SEDICO Pharmaceuticals (Giza, Egypt).
Ammonium acetate (NH4Ac) was obtained from Fluka Chemie GmbH (Steinheim, Germany). Native
β-cyclodextrin (β-CD) and substituted β-cyclodextrins (charged and uncharged β-CD) were purchased
from Cyclolab kft. (Budapest, Hungary). Methanol (MeOH) and acetonitrile (ACN), gradient grades
for HPLC, were obtained from Merck KGaA (Darmstadt, Germany). Trifluoroacetic acid (TFA) was
used for pH adjustment of the mobile phase (Sigma Aldrich, Steinheim, Germany) and Milli-Q water
was used from an ELGA Purelab water purification system (UHQ I, High Wycombe, UK).

4.2. Instrumentation

The chiral experiments were performed on an Acquity H-class UHPLC System (Waters, Milford,
MA, USA) equipped with a quaternary solvent pump and sample manager, a column compartment,
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a photodiode array detector set at 280 nm, and a degassing system. Separation was conducted in RP mode
using a Hypersil®BDS C18 column (100 mm × 4.6 mm × 3 µm) from ThermoFisher Scientific (San Jose,
CA, USA). The method involves the use of solvent A containing CMPAs (in varying concentrations)
dissolved in ammonium acetate (NH4Ac) buffer (with varying buffer pH and concentration), and solvent
B which is uniquely composed of acetonitrile. The injection volume was 10 µL and temperature of the
autosampler maintained at 25 ◦C.

4.3. Software

UHPLC data acquisition and processing was performed using Empower v.2.0 (Waters, Milford, MA,
USA). Statistical analysis and modeling was performed by Minitab®19 (Statistical Software, Coventry,
UK). Computational chemistry and docking were done using the Molecular Operating Environment
(MOE) software package (version 2016, Chemical Computing Group, Montreal, QC, Canada).

4.4. Standard Preparation

A TER reference standard solution in methanol (0.30 mg/mL) was used as a test solution during
optimization. Pre-analytical sample filtration was carried out using a 0.2 µm syringe filter.

4.5. Analytical Target Profile

Before method development, the analytical target profile (ATP) was set to achieve baseline separation
of TER enantiomers, as well as to shorten the run time. Consequently, the measured responses were
the separation factor (α), to express enantioseparation of TER, and retention time of the latest eluting
peak (tRLast) as an indication of run time. In addition, it was targeted to interpret the obtained response
surfaces to comprehend the enantiorecognition process and to determine parameters influencing the
quality assurance of the method.

4.6. Plackett-Burman Screening Design for UHPLC Analysis

At an early stage of DoE, a screening design was needed to determine the most influential factors
on TER enantioseparation. Six factors were screened, namely CMPA type and concentration, buffer pH
and concentration, flow rate, and linear gradient as rate of %B change (Table 3). To have a reasonable
number of runs in the screening design, only 2 out of 6 explored CMPA were included based on their
significantly different natures and on previously reported promising TER enantioresolution [31,33].
Moreover, the enhanced solubility of the substituted β-CD in the aqueous mobile phase rather than
native β-CD supported their further incorporation in experiments in order to study the various binding
modes resulting from their chemical difference and accomplishing enantioseparation. Low and high
values for each of the 6 chromatographic factors reported in the literature were extended to wider
limits to explore responses at what analysts believe is the limit for “the optimal”. The substituted
CMPAs selected were charged SBE-β-CD (ds of about6) and SBE-β-CD (ds of about 10), in addition to
an uncharged hydroxypropyl derivative (HP-β-CD). HP-β-CD was tested at a concentration of 8 mM
in 0.05 M NH4Ac:MeOH (95:5), while SBE β-CD with ds of about 6 and ds of about 10 were tested at a
concentration of 2.30 g/L in 0.05% FA in water:ACN (93:7). The column was thermostated at 30 ◦C
and TFA was used for pH adjustment in all runs due to its favorable ion pair effect on retention and
resolution, as well as its contribution in additional interactions [39,40]. Selection of the most influential
factors among the 6 screened factors was aided by Pareto charts and main effects plots.

Table 3. Factors and levels included in the Plackett-Burmann screening design.

Factor Level CMPA Type CMPA Conc. (mM) pH Buffer Conc. (mM) Flow Rate (mL/min) %B Change/min

Low (−1) HP-β-CD 0.6 2.5 5 0.05 0.02

High (+1) SBE-β-CD 10 6 50 0.3 0.04
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4.7. Multiple Linear Regression Analysis

Multiple linear regression (MLR) was used to determine coefficients by which factors affect the
responses, the order of this relationship, and the possible existence of 2- or 3-way interactions between
the factors. Box-Cox transformations were attempted to produce a normal distribution of curve fitting
residuals, minimize standard deviation, and produce the highest coefficients of determination (adjusted
R2 and predicted R2 values) for the transformed responses α (separation factor) and tRLast (retention
time of latest eluting peak). The number of terms in each regression model was restricted to the most
significant (p value < 0.05) via backward elimination of non-significant terms.

Visualization of the response surface corresponding to the mathematical model is presented as 2D
contour and 3D surface plots. To validate the quality of predictability power of the regression model,
random experimental points were selected in the robust optimal surface for practical implementation,
followed by a comparison of experimental vs. predicted values.

4.8. 3D Molecular Modeling

Using the Molecular Operating Environment (MOE) software, a conformational search for TER
resulted in 5 conformers that were further docked into the HP-β-CD structure, where atoms in the
β-CD cavity were selected and defined as a pocket. Docking was done with different TER conformers
as a ligand database using the Amber10: Extended Hückel Theory (EHT) force field and the “triangle
matcher” as a placement method (number of return poses set to 200), with “Alpha HB” as scoring.
Selected docking poses were further used to evaluate binding modes of different conformers with the
host molecule.

5. Conclusions

In this work, enantioresolution of TER was optimized via a design of experiment approach on
UHPLC-UV, where a simultaneous maximum separation factor (1.22) and least run time (9.6 min) were
obtained using HP-β-CD as a chiral mobile phase modifier on a C18 column. The robust experimental
conditions of the developed method were delimited by contour plots visualizing areas of optimal
responses following multiple regression analysis. For quality assurance and enhanced method robustness,
a minimum of 16× the normal column wash volume of the achiral column with the achiral mobile
phase is essential to eliminate the memory effects of enantioselectivity produced by CMPA in isocratic
mode and achieve retention times expressed as mean ± 0.09. Meanwhile, the need for sufficient
conditioning time and molecular docking support the hypothesis that modification of the stationary
phase surface via attachment of the CMPA–TER complex to the stationary phase is probable as the
mechanism of enantiorecognition. The predominant interactions achieving chiral recognition of TER
were hydrogen bonding and hydrophobic interactions through the inclusion of the aromatic ring inside
the cyclodextrin cavity.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8247/13/11/364/s1,
Figure S1: Graphical output of the screening design of TER chiral separation. (A) Main effect plots for retention
time (tRLast), (B) Main effect plots for selectivity (α). Steepness of the slope in CMPA type and concentration,
and buffer concentration indicates the high influence of these studied factors on the responses. Figure S2: Pareto
charts expressing the effect of each studied factor on responses: (A) Most influential factors affecting tRLast,
(B) Most influential factors affecting α.
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