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Abstract: In the context of rapid urbanization, the spread of cities in the Yangtze River Economic Belt
is intensifying, which has an impact on the green and sustainable development of these cities. It is
necessary to establish an accurate urban sprawl measurement system. First, the regulation theory of
urban sprawl is explained. According to the actual development situation of cities in the Yangtze
River Economic Belt, smart growth theory is selected as the basic regulation method of urban sprawl.
Second, the back propagation neural network (BPNN) algorithm under deep supervised learning
is applied to construct a smart evaluation model of land use growth. Finally, based on the actual
development of cities in the Yangtze River Economic Belt, the quantitative growth measurement
method is selected to construct a measurement system of urban sprawl in the Yangtze River Economic
Belt, and the empirical analysis is carried out. The training results show that the proposed BPNN
smart growth evaluation model, based on deep supervised learning, has good evaluation accuracy,
and the error is within the preset range. The analysis of the quantitative growth-based measurement
system in the increase of urban construction land shows that the increase in urban construction land
area of the Yangtze River Economic Belt from 2014 to 2019 was 78.67 km2. Meanwhile, the increases
in urban construction land area in different years are different. The empirical results show that the
population composition of the Yangtze River Economic Belt and the urban construction area between
2005 and 2019 show a trend of increasing annually; at the same time, urban sprawl development
shows a staged characteristic. It is of great significance to apply deep learning fusion neural network
algorithm in the construction of the urban sprawl measurement system, which provides a quantitative
basis for the in-depth analysis and discussion of urban sprawl.

Keywords: deep learning; back propagation neural network algorithm; Yangtze River Economic Belt;
smart growth evaluation of land use; quantitative growth measurement; urban sprawl measurement
system; empirical analysis

1. Introduction

At present, the urban development in China has entered a rapid stage. Population and land
urbanization are important elements in the urbanization process [1,2]. In China, the expansion rate of
land urbanization is much faster than that of population urbanization, which leads to the occurrence
and development of urban sprawl [3,4]. For the research on the factors affecting urban sprawl,
there have been research results worldwide. Chen et al. (2018) completed the construction of the land
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cover data set by calculating the urban land expansion index in Northeast China from 1990 to 2015;
they found that the increase in urban land area is mainly concentrated in coastal areas [5]. Focusing on
the phenomenon of serious urban sprawl in collapse-prone areas, Farvacque et al. (2019) proposed an
overall quantitative risk analysis procedure based on town scope, which provided a good reference
for refined and quantitative land use [6]. Barrington-Leigh and Millard-Ball (2017) explored how to
quantify urban sprawl problems and take rash measures to solve urban sprawl problems, revealing
the importance of long-term infrastructure decisions [7]. Castillo-Eguskitza et al. (2017) combined
land use variables with socio-economic and cultural variables, to explore the evolution of land use
and management under autonomous planning in and outside the protected area, which proposed
corresponding measures for urban sprawl phenomenon [8]. As shown in the above results, research
on urban sprawl mainly focuses on economic, industrial, and policy improvement. After years of
development, the measurement method for urban sprawl has already included the single index
method, multiple index method, and modern computer information technology. Sarkar and Paul
(2017) believed that the measurement and monitoring of urban sprawl urgently need the support of
remote sensing software and corresponding technologies; besides, they analyzed and discussed the
urban sprawl measurement in the Bardhaman planning area [9]. Bian et al. (2018) studied the factors
affecting urban sprawl and the impact of non-tillage environments on animal diversity. The analysis
results based on a linear mixed model showed that urban sprawl has a negative impact on arthropods;
in addition, the measurement of urban sprawl was analyzed and studied [10]. Zhang et al. (2019)
used the super-efficiency data envelopment analysis model to calculate the ecological efficiency of
264 prefecture-level cities in China. Through the empirical test of the panel model and the threshold
regression model, as well as the measurement analysis of urban sprawl, the urban sprawl was found to
have an influence on both the threshold effects and the ecological efficiency of city size [11]. In summary,
currently, research on urban sprawl measurement is abundant, while few research results have been
combined with intelligent algorithms and other means. From the perspective of the region where the
city is located, the spread of cities in the Yangtze River Economic Belt is very prominent.

On this basis, to expand the analysis and discussion of urban sprawl in the Yangtze River
Economic Belt, extend the application of deep intelligent neural network algorithm tools in urban
sprawl measurement, thereby achieving reasonable control of urban sprawl in the Yangtze Economic
Belt, cities in the Yangtze River Economic Belt are selected as the research objects. To complete the
construction of the urban sprawl measurement system in the Yangtze River Economic Belt and provide
a reference for the future in-depth study of urban sprawl, the back propagation neural network (BPNN)
algorithm under deep supervised learning is introduced to construct the evaluation model of the urban
sprawl measurement system. It is hoped to expand the application of deep learning fusion neural
network algorithm in the field of urban sprawl.

2. Materials and Methods

2.1. Theories of Urban Sprawl Regulation

To actively respond to a series of negative effects caused by urban sprawl, organizations and
scholars have proposed corresponding countermeasures and theories [12–14]. Under the current
development stage, the corresponding regulation theory proposed for urban sprawl mainly includes
the following four aspects. One is the smart growth theory. The urban regulation theory is based
on preventing the city from continuing to spread. During the development process of this theory,
ten principles are proposed based on regional land use and community construction. It is an effective
regulation tool of urban sprawl [15]. The second is the organic concentration theory, which regards the
urban development process as an organic combination of concentration and decentralization. However,
one of the biggest deficiencies in the application of this theory is that it only describes the spread of the
city; accordingly, in contrast, its applications are rare. The third is the compact city theory, which has
the characteristic of promoting the sustainable development of society [16,17]. The last theory that
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has a greater impact on urban sprawl is the new urbanism theory, which proposes corresponding
urban sprawl control strategies based on the regional perspective, the town perspective, and the block
perspective [18]. Land use is a factor that plays a key role in urban sprawl; in addition, the actual
situations of cities in the Yangtze River Economic Belt are also considered. Here, the smart growth
theory is chosen as the basic tool for urban sprawl regulation in the Yangtze River Economic Belt,
and its regulation mechanism for urban sprawl is shown in Figure 1 below.
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2.2. BPNN Algorithm Based on Deep Learning

The artificial neural network actually belongs to a form of information processing system.
The neural network has the characteristics of self-learning, self-adaptive and parallel processing
ability [19–22]. Thus, it is different from other intelligent algorithm tools. Among the networks,
the most widely used is BPNN [23,24]. The composition of the BPNN model includes the input
layer, the hidden layer, and the output layer. Specifically, the input layer and the output layer both
represent practical problems, and the setting of the hidden layer is mainly based on the actual model
and the complexity of the problem [25,26]. BPNN uses deep supervised learning to achieve training
and learning [27,28]. If the number of units corresponding to the input layer is n, the input vector is
expressed as:

xi(i = 1, 2, . . . , n) (1)

Furthermore, if the number of units corresponding to the output layer is q, the output vector
corresponding to the input vector is expressed as:

yt(t = 1, 2, . . . , q) (2)

Besides, the connection weight between the input layer and the hidden layer is expressed as:

wi j(i = 1, 2, . . . , n, j = 1, 2, . . . , p) (3)

The connection weight between the hidden layer and the output layer is expressed as:

v jt( j = 1, 2, . . . , p, t = 1, 2, . . . , q) (4)

Finally, the threshold corresponding to each unit of the hidden layer is expressed as:

θ j( j = 1, 2, . . . , p) (5)
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The threshold corresponding to each unit of the output layer is expressed as:

γt(t = 1, 2, . . . , q) (6)

The input and output corresponding to each neuron in the output layer of this neural network
algorithm tool can be expressed by the following equations:

si = f

 n∑
i=1

wi jxi + θ j

 (7)

l j = f


p∑

j=1

v jtsi + γt

 (8)

where: xi represents the input vector, wi j represents the corresponding connection weight between the
input layer and the hidden layer, θ j represents the corresponding threshold value of each unit in the
hidden layer, v jt represents the corresponding connection weight between the containing layer and
the output layer, γt represents the corresponding threshold of each unit in the output layer, and γt

represents that the number of units in the input layer is i. At the same time, in the BPNN algorithm,
the expression and calculation corresponding to the Sigmoid function is:

f (x) =
1

1 + e−x (9)

The specific implementation process corresponding to the BPNN algorithm is shown in
Figure 2 below.Int. J. Environ. Res. Public Health 2020, 17, x FOR PEER REVIEW 5 of 14 
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Figure 2. Implementation process of back propagation neural network (BPNN).

In terms of geographical location, the Yangtze River Economic Belt is a bridge connecting the
coast and the inland, which is the backbone of the economic development in China. The Yangtze River
Economic Belt includes 11 provinces, such as Jiangsu, Zhejiang, Chongqing, and Yunnan; therefore,
this regional cluster has huge development potential. From the perspective of population composition,
the population of cities in the Yangtze River Economic Belt accounts for more than 42% of all cities in
China. From the perspective of the regional area, the city area of the Yangtze River Economic Belt reaches
21.4% of the country. It is not difficult to find that, in terms of population composition and regional
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area, cities in the Yangtze River Economic Belt occupy an important position. Before constructing the
urban sprawl measurement system of the Yangtze River Economic Belt, the BPNN is utilized as the
index model of regional land evaluation. Organically, the deep learning and neural network algorithm
are integrated. Then, BPNN is used to design and build the land evaluation model. First, it is necessary
to obtain the parameters corresponding to the input layer and output layer of the neural network;
second, the land evaluation model is built by determining the hidden layer.

When using BPNN to construct the land evaluation model, the input layer of the neural
network mainly includes various evaluation factors, such as land evaluation factors, standards,
and corresponding results. Before the actual evaluation calculation, the index composition of
corresponding evaluation factors needs to be standardized to be within the range of [0,1]. The output
layer in the neural network mainly includes the evaluation results for the regional land. For the
hidden layer in the BPNN, the Sigmoid function is used as an excitation function. On this basis,
the composition and structure of the deep BPNN model for the urban land evaluation in the Yangtze
River Economic Belt are shown in Figure 3 below.Int. J. Environ. Res. Public Health 2020, 17, x FOR PEER REVIEW 6 of 14 
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2.3. Smart Growth Model Based on Deep Learning Fusion BPNN Algorithm

Here, deep learning and neural network algorithms are organically integrated, and the BPNN
algorithm under deep supervised learning is applied to the construction of a smart growth evaluation
model for land use in the Yangtze River Economic Belt. Based on the above theories and structural
components for BPNN, the constructed deep learning fusion BPNN algorithm builds a smart growth
evaluation model of urban land use in the Yangtze River Economic Belt, as shown in Figure 4 below.
Corresponding to the BPNN model, the model is mainly composed of the input layer, the hidden
layer, and the output layer. The specific evaluation method is: the number of nodes corresponding to
the input layer is characterized by the composition of the evaluation index, which corresponds to 19
evaluation indexes, respectively. In the hidden layer, the larger the corresponding number of nodes
is, the longer the corresponding operation time will be. On this basis, the number of hidden layer
nodes finally determined is 50. For the output layer, the corresponding number of nodes represents
the evaluation level of land use in the urban area of the Yangtze River Economic Belt, which is finally
determined as 4. As a result, the final composition of the BPNN structure for smart land use growth
evaluation is 19 × 50 × 4, and the analysis of the evaluation model is implemented in MATLAB software.
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For the training of the evaluation model, the mean square error (MSE) is used as the evaluation
index to characterize the training results of the evaluation model [29–31]. The specific implementation
of the training process is: first, the BPNN is provided with the changes in the population of the Yangtze
River Economic Belt and the corresponding areas of the urban construction during 2005–2019, as well
as the changes in urban sprawl data. Through continuous training and learning processes, combined
with the back propagation of the BPNN, the corresponding weights and thresholds are continuously
modified for the network. Therefore, all connection weights between corresponding neurons in the
network change, and the error can be gradually reduced until the preset error value is reached. The
actual data of the urban population of the Yangtze River Economic Belt and the corresponding area of
the urban built-up area from 2005 to 2019 are obtained through network statistical analysis. This takes
15 years, as a research cycle can reveal the evolution and development of the cities in the Yangtze River
Economic Belt in recent years.

2.4. Construction of Urban Sprawl Measurement System

Accurate measurement of the degree of urban sprawl is an important condition for regulating
urban sprawl. However, under the current circumstances, there is no unified measurement selection
standard or system [32–34]. Considering this situation, based on the above urban sprawl regulation
theory, the land use smart growth theory is applied to it. According to the deep supervised learning
BPNN model, the model of land use evaluation for the urban area of the Yangtze River Economic
Belt is constructed. On this basis, for the construction of the urban sprawl measurement system in
the Yangtze River Economic Belt, the measurement standard and measurement index are mainly
considered. In terms of the measurement standard constructed for the measurement system of cities in
the Yangtze River Economic Belt, the major consideration of the quantitative growth measurement
is the phenomenon of increasing the construction area caused by the disorderly expansion of the
city [35,36]. Discontinuous measurement, in fact, is a representation of urban sprawl disorder in urban
form. Generally, the greater the degree of discontinuity is, the greater the urban sprawl will be [37,38].
Decentralization measurement considers that the faster the urban sprawl develops, the weaker its
centrality will be. The measurement of mixing degree assumes that if the other composition conditions
do not change, the smaller the mixing degree is, the greater the performance of the corresponding
degree of spread will be [39]. Other measurements, such as the accessibility measurement and the
open space measurement, also have different measurement standards [40,41].

Urban sprawl is greatly affected by factors such as population growth; in particular, in the
cities of the Yangtze River Economic Belt, its influence is greater. Therefore, the quantitative growth
measurement is utilized as the standard for evaluating the urban sprawl of the Yangtze River Economic
Belt. On this basis, the measurement index corresponding to the urban sprawl measurement system of
the Yangtze River Economic Belt is the quantitative growth measurement index, and the expression
and calculation of the corresponding sprawl index are shown in the following equation.

SIi = 50
{
[Si −Di]/100 + 1

}
(10)
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where: SIi represents the spread index, Si represents the proportion of the population corresponding
to the low-density population in the i regions, and Di represents the proportion of the population
corresponding to the high-density population in the i regions. Considered from the perspective of
urban construction land, the expression and calculation of the total newly added construction land is
shown in the following equation:

Uab = (Ub −Ua) (11)

where: Uab represents the total area of newly added construction land in a certain stage, and Ua and
Ub represent the total area of newly added construction land at the start and end points of the entire
research stage. The expression and calculation of the newly added urban construction land expansion
speed is shown in the following equation.

K = (Ub −Ua)/(T·Ua)·100% (12)

where: T represents the time frame corresponding to the entire research process, and K corresponds to
the rate of changes in regional land use during the entire research process. Based on the aforementioned
two urban construction land levels, the expression and calculation of the population area elasticity
index combining the two are shown in the following equation:

I = (Ub −Ua)/(Pb − Pa) (13)

where: I corresponds to the expansion index of construction land, Ua and Ub correspond to the
corresponding area of the land type used at the starting point and the end point of the entire study
process, and Pa and Pb correspond to the population corresponding to the starting and ending points
within the entire research process.

To avoid the impact of the non-standard data on the research results, the research data are
standardized. Due to the superiority of the range transformation method in data processing, coupled
with this method, the effect of the two extreme values on the data is considered. Therefore, this method
is selected to complete the standardization of the research data in the measurement system, and the
corresponding expression and calculation are as shown in the following equations:

yi j =
(
xi j − x0

j

)
/
(
x+j − x0

j

)
(1 ≤ i ≤ m, 1 ≤ j ≤ n) (14)

yi j =
(
x+j − xi j

)
/
(
x+j − x0

j

)
(1 ≤ i ≤ m, 1 ≤ j ≤ n) (15)

where: x+j represents the maximum value corresponding to the positive index, and x0
j represents the

minimum value.
In summary, to measure the urban sprawl of the Yangtze River Economic Belt, based on the smart

growth theory of land use, the quantitative growth measure is used as the measurement standard;
combined with the actual situation of the population and land use in the cities of Yangtze River
Economic Belt, the population growth and changes in new construction area are taken as specific
indicators to measure and evaluate the urban sprawl in the Yangtze River Economic Belt. Different
from other regions, for cities in the Yangtze River Economic Belt, the change in population density
is a key factor that promotes the sprawl of the cities. Therefore, this influencing factor is crucial and
cannot be ignored. Besides, the construction of the urban land area is a direct reflection of the sprawl
of regional cities. The change in population growth is the guiding factor for urban sprawl in a region,
and the change in the newly built urban area is a characteristic manifestation of urban sprawl. On this
basis, the population density change and the urban land area change are chosen as the two major
indicators to evaluate the urban sprawl of the Yangtze River Economic Belt.
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3. Results

3.1. Evaluation of the Smart Growth Model

Using MSE as the evaluation factor, the training results of the BP neural network land use
evaluation model, based on deep supervision, are shown in Figure 5 below.Int. J. Environ. Res. Public Health 2020, 17, x FOR PEER REVIEW 9 of 14 
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After analyzing the data changes in the figure, it is found that the area of urban construction land
in the Yangtze River Economic Belt increased by 78.67 km2 from 2014 to 2019. At the same time, from a
general perspective, the increase in urban construction land in different years is different. The increase
in urban construction land area is not very uniform. Among them, the increase was the largest in 2014,
and the total urban construction land area in various regions has reached 1761.34 km2.

3.3. Empirical Analysis of Urban Sprawl Measurement

Based on the deep supervised learning BPNN evaluation model and the above quantitative
growth measurement system, the statistical results of the population composition and area changes of
urban construction and urban sprawl in the Yangtze River Economic Belt between 2005 and 2019 are
shown in Figure 7 below.
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After analyzing the data in the figure, it is found that the population composition of the Yangtze
River Economic Belt and the area of the urban construction area show a trend of increasing year by
year, which indicates that the urbanization process of cities in the Yangtze River Economic Belt is
rapidly occurring. From the perspective of changes in urban sprawl, the urban sprawl of the Yangtze
River Economic Belt is above 1 throughout. From 2005 to 2019, the urban sprawl of the Yangtze
River Economic Belt is in rapid development. However, at the same time, the urban sprawl of the
Yangtze River Economic Belt shows staged development characteristics. The specific manifestations
are as follows. From 2005 to 2019, the urban sprawl situation of cities in the Yangtze River Economic
Belt shows a process from rapid increase to decrease, and then to a slow increase and slow decrease.
From 2005 to 2009, the urban sprawl in the Yangtze River Economic Belt has the fastest growth rate.
The sprawl of the cities in the Yangtze River Economic Belt in 2010–2016 shows a slower increase,
while in 2009 and 2016–2019, the sprawl of the cities in the Yangtze River Economic Belt shows a
decreasing trend. Therefore, for the urban areas of the Yangtze River Economic Belt, the population
composition and built-up urban land can indicate the changes in urban sprawl well.

4. Discussion

Due to the special geographical location of cities in the Yangtze River Economic Belt,
their development and transformation are relatively fast, and the phenomenon of urban sprawl
is also more significant. The smart growth theory is selected as the control method for the urban sprawl
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in the Yangtze River Economic Belt. The BPNN based on deep supervised learning is innovatively
applied to the construction of the urban land use the smart growth evaluation model. For the deep
supervised learning neural network model, when the corresponding value of MSE is below 0.001 and
the corresponding training number is below 10 k, the network model will continue to be passed forward.
Besides, when the value corresponding to MSE is not less than 0.001, and the corresponding training
times are more than 10 k, it means that the training of the neural network model fails. The above
training results show that the land smart growth evaluation model, based on deep supervised learning,
has good evaluation accuracy and the error of the model is small, which is of great significance
for the construction of the urban sprawl measurement system in the Yangtze River Economic Belt.
The smart growth of land use can enable the land resources in the corresponding regions to realize
their values effectively. At the same time, it plays an important role in promoting the compact and
coordinated development of the corresponding regions and alleviating the unfriendly spread of urban
land. The land smart growth evaluation model of deep learning fusion neural network algorithm is
applied to the regulation of urban sprawl in the Yangtze River Economic Belt, which is different from
the traditional qualitative smart growth evaluation model [42]. The measurement results obtained
by both evaluation methods are the same; however, in comparison, the proposed method is more
scientific. The evaluation method based on the deep learning fusion neural network algorithm has
an active role in effectively regulating the relationship between urban sprawl and economic-social
development in the Yangtze River Economic Belt.

At present, there are many measurement methods for urban sprawl, but a unified standard or
system has not yet been formed. Considering the actual development of cities in the Yangtze River
Economic Belt, the quantity growth measurement method is chosen as the measurement standard for
cities in the Yangtze River Economic Belt, which takes the spread index, the total amount of urban
construction land, the expansion speed of urban construction land, and the population area elasticity
index as the measurement indexes. Based on the changes in the corresponding data of the cities in
the Yangtze River Economic Belt in recent years, the sprawl measurement system for the cities in
the Yangtze River Economic Belt is constructed. It is found that the urban sprawl in the Yangtze
River Economic Belt has significant characteristics, but the changes in urban construction land vary
between different years. This may be due to the different emphasis of urban development; thus, there
will be differences in the choice of construction land, resulting in the changes in urban construction
land of the Yangtze River Economic Belt in different years. The quantitative growth measurement
system based on the measurement standard and measurement index pays more attention to changes
in urban population density and construction land. This is not applicable to regional cities or cities
with low economic development levels. The reason is that for cities under such an equal level of
development, population increase is not the main reason for their urban sprawl. Even if there is no
population increase, there will still be urban sprawl. Cities in the Yangtze River Economic Belt belong
to regions with rapid economic development. Population growth is the key factor that causes their
cities to spread or continue to spread. It is reasonable to build an urban sprawl measurement system
based on quantitative growth measurements. However, considering this from another perspective,
the continuous increase in population will also bring some pressure to the development of the city,
leading to the occurrence of disordered urban sprawl. Therefore, it is also very important to regulate
the population. Only a reasonable population composition can aid with the development and growth
of the cities.

As for the empirical analysis results, compared with the urban spread in recent years in the
country, in the first few years of the entire research process, the urban sprawl rate corresponding to the
Yangtze River Economic Belt is lower than the national urban sprawl rate. The degree of contagion is
not very high, and urban sprawl is mainly concentrated in other regional cities. However, in the latter
part of the research process, the spread of cities in the Yangtze River Economic Belt is rising rapidly,
and it is much higher than the spread of cities in the country. In recent years, it is in a state of rapid
development. The urban sprawl can reflect the development of the corresponding regional economy
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and the composition of the population, to some extent. Compared with other cities or urban clusters,
the cities in the Yangtze River Economic Belt are very prominent in urban sprawl. The spreading
phenomenon has some reference values for digging out the development rule of China’s urban sprawl
and understanding the corresponding regional characteristics. In recent years, intelligent algorithm
tools, including neural network models, have developed rapidly and are widely used. It is of great
significance to apply deep learning fusion neural network algorithms to the construction of the urban
sprawl measurement system. In recent years, changes in the population composition of the cities in
the Yangtze River Economic Belt and changes in the area of newly built cities show that changes in
population and building areas have played an important role in the sprawl of cities in the Yangtze River
Economic Belt. The sprawling development of cities in the Yangtze River Economic Belt is essentially a
microcosm of domestic urban development. Through rational planning and layout, the agglomeration
and promotion of new industries are optimized to improve the economic scale and development level
of large cities, thereby formulating relevant countermeasures according to the actual situations. At the
same time, 6reasonable planning of all aspects of urban production and life is of great significance to
delaying urban sprawl and promoting coordinated and orderly economic development.

5. Conclusions

By introducing the deep-supervised learning BPNN algorithm into urban sprawl regulation, it is
found that the smart algorithm-based land use smart growth evaluation model has good accuracy and
applicability in the evaluation of urban sprawl regulation. In recent years, the sprawl of cities in the
Yangtze River Economic Belt has shown a gradual change. However, the overall development rate is
very fast, which is closely related to the continuous growth of the urban population in the Yangtze
River Economic Belt and the increase in the area of new urban land. Affected by various factors,
the above analysis is based on the actual situation of the cities in the Yangtze River Economic Belt,
while the selected measurement standards and indices have some limitations in the applications of
other regional cities with large differences in economic development. Therefore, an in-depth discussion
and research on this aspect will be carried out in the future.
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