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Silver nanostructures synthesis via 
optically induced electrochemical 
deposition
Pan Li1,2, Na Liu1,2,3, Haibo Yu1, Feifei Wang1,2, Lianqing Liu1, Gwo-Bin Lee4, Yuechao Wang1 & 
Wen Jung Li1,5

We present a new digitally controlled, optically induced electrochemical deposition (OED) method 
for fabricating silver nanostructures. Projected light patterns were used to induce an electrochemical 
reaction in a specialized sandwich-like microfluidic device composed of one indium tin oxide (ITO) 
glass electrode and an optically sensitive-layer-covered ITO electrode. Silver polyhedral nanoparticles, 
triangular and hexagonal nanoplates, and nanobelts were controllably synthesized in specific positions 
at which projected light was illuminated. The silver nanobelts had rectangular cross-sections with 
an average width of 300 nm and an average thickness of 100 nm. By controlling the applied voltage, 
frequency, and time, different silver nanostructure morphologies were obtained. Based on the classic 
electric double-layer theory, a dynamic process of reduction and crystallization can be described in 
terms of three phases. Because it is template- and surfactant-free, the digitally controlled OED method 
facilitates the easy, low cost, efficient, and flexible synthesis of functional silver nanostructures, 
especially quasi-one-dimensional nanobelts.

Compared with their bulk counterparts, nanostructured materials (NSMs) are fascinating topics of research 
because of their size-dependent novel physical, chemical, optical, and magnetic properties1. The dimensionality 
of NSMs and its influence on their applications have been fully studied2, especially one-dimensional (1D) nano-
structures3,4. Besides dimensionality, morphology is another important factor that influences the unique proper-
ties of NSMs5,6. Metallic nanostructures with fine size- and shape-controllability show great potential applications 
in electronic nanodevices, biological diagnostics, and surface-enhanced Raman scattering (SERS) detection7–9. 
For example, the controllability of the dimensions and aspect ratios of one-dimensional silver nanostructures 
such as nanowires and nanorods has been extensively studied for applications in flexible conductors and sen-
sors10–13. Nanobelts, or nanoribbons, as quasi-one-dimensional nanostructures, were first proposed for semicon-
ducting oxides14, and have attracted extensive attention for those substrates15 as well as various metal materials16,17 
because of their well-defined geometrical morphologies with rectangular cross-sections, potential applications in 
bio-nanodevices18,19, and better inherent high-temperature stability20.

To date, a wealth of methods is available for generating silver nanobelts, including template-directed meth-
ods, seed-mediated methods, galvanic-cell reaction approaches, and electrochemical reduction methods. Liu 
et al. presented an electrochemical silver mirror reaction in anodic aluminum oxide (AAO) nanochannel tem-
plates to grow silver nanobelts with dimensions that depended on the AAO template21. It has been demonstrated 
that large-scale ultralong silver nanobelts can be synthesized at the interface between dibutyl sebacate (DBS) 
and silver nitrate solutions, which serves as a soft template, via a chemical electro-deposition technique22. By 
using biomass-derived monolithic activated carbon (MAC) as a template, Zhao et al. reported a galvanic-cell 
reaction method to obtain silver nanobelts with widths of 1.09 μ m and a thickness of 0.29 μ m, in high yield23. 
Recently, they improved the method by forming metallic particles on the MAC surface as growth initiators prior 
to nanobelt growth, and harvested silver nanobelts with widths as low as tens of nanometers and thicknesses of ca.  
13 nm24. Zhu et al. reported an electrochemically modulated reduction method using a sacrificial cathode 
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electrode with a nanochannel template to fabricate silver nanobelt-bundle arrays that were 25 nm thick, 300 nm 
wide, and 50 μ m long25. These methods always require templates, or complex surfactants as capping agents, to 
guide the anisotropic quasi-1D nanobelt growth, which makes the fabrication process complex and inflexible. 
Additionally, external templates and agents have the potential to introduce impurities and contaminants into 
the final product. In this paper, we present a template- and surfactant-free method for producing different silver 
nanostructure morphologies, especially silver nanobelts with rectangular cross-sections, via optically induced 
electrochemical deposition (OED) in a microfluidic device. By virtue of an optically induced electrokinetics 
(OEK) platform26,27 previously developed by our group, we use programmable light patterns to produce con-
trolled and localized electric fields in a photosensitive microfluidic chip, thus inducing the local electrochemical 
deposition of silver nanostructures. This new method has several advantages over traditional electrochemi-
cal reduction approaches: it offers a significant reduction in fabrication time (in terms of several seconds), is 
reagent-free (without the need for extra reductant or surfactant), and is template-free (with no lithographic pro-
cess or complicated pre-elaboration). We have studied the parameters to controllably tune the final morphology 
of the silver nanostructures. We believe that this simple approach provides new opportunities to flexibly produce 
structured and functional nanomaterials for applications in fields such as photonics, biology, electronics, and 
other interdisciplinary areas.

Methods
Materials and OED system. Silver nitrate (AgNO3, > 99.8%; AR), purchased from Sigma Aldrich, was 
dissolved in Millipore water (resistivity, 18.2 MΩ, Millipore Systems) to prepare sample precursor solutions at 
concentrations of 10, 50, 100, and 200 mmol/L. The solutions were degassed in an ultrasonic cleaner at 40 kHz 
for 20 min (KUDOS, SK5210LHC) and further filtered through a 0.22 μ m Millipore filter to remove undissolved 
solute. Figure 1 shows a schematic diagram of the experimental OED system, which includes three modules, as 
described in our earlier papers26,27. In brief, we use a computer equipped with graphics software to generate pro-
grammable light patterns on demand, which are projected on the sandwiched OEK microfluidic chip by an LCD 
projector (VPL-F400X, Sony, Japan) and an objective (CF Plan 50 X/0.55 EPI ELWD, Nikon, Japan). As shown in 
the enlarged circular area (Fig. 1), the sandwich-like OEK microfluidic chip, assembled from a top layer of indium 
tin oxide (ITO) glass and a bottom layer of ITO glass coated with a 1 μ m film of hydrogenated amorphous silicon 
(α -Si:H) by the plasma-enhanced chemical vapor deposition (PECVD) method, is separated by a 60 μ m spacer to 
form a reaction chamber. The α -Si:H film is a photoconductive layer which has a low dark conductivity of 10−11 
S/m and an augmented illuminated conductivity of 10−5 S/m due to its photo-activated electron-hole pairs28. The 
entire microfluidic module is mounted on a three-dimensional adjustable platform for automatic motion control, 
monitored by a charge-coupled device camera (CCD, DaHeng Image DH-SV1411FC, China), and the alternating 
current (AC) voltage is applied by a signal generator (Agilent 33522A, USA).

Preparation and characterization of silver nanostructures. The formulated silver precursors 
with different concentrations were injected into the OEK chip and powered by a sinusoidal AC voltage with a  
frequency and magnitude in the range of 1 to 100 kHz and 2 to 15 Vpp, respectively. After the fabrication process, 
the prepared silver nanostructures were placed on the substrate, gently rinsed with anhydrous ethanol, and air 
dried at room temperature. Morphology observation was performed on a scanning electron microscope (SEM, 
Zeiss EVO MA, Germany). Dimensional data were characterized and collected via atomic force microscopy 
(AFM, Bruker Dimensional Icon, USA).

Figure 1. Schematic diagram of OED system. The enlarged circular area illustrates the structure of the OEK 
chip and the silver nanostructures (Ag NS) fabricated on the chip.
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Results and Discussion
Virtual electrode-solution interface process. In an electrochemical reduction system, the kinetics at the 
interface between the electrode and bulk solution plays a pivotal role in the formation of the final products29,30. In 
our OED system, at the interface between the illuminated solid α -Si:H substrate (namely, the virtual electrode) 
and bulk solution, a thin electric double layer (EDL, typically several nanometers) provides the voltage potential, 
reactive species, and environment for the overall reaction. Figure 2(a) shows a simplified equivalent circuit model 
of the OEK chip, where Ca and Ra denote the capacitance and resistance of the α -Si:H layer, CL and RL denote 
the capacitance and resistance of the bulk solution, and CEDL and REDL indicate the equivalent capacitance and 
resistance of the EDL between the solid electrode and bulk solution, respectively, which vary depending on the 
applied voltage. The OED process described in Fig. 2(b) can be divided into three phases. Phase I represents the 
reduction of silver ions (Ag(I)) to elemental silver atoms (Ag(0)). This stage includes the mass transfer of Ag(I) 
from the bulk solution to the electrode-solution interface, and the electrochemical reduction of Ag(I) into Ag(0) 
at the EDL layer close to the virtual electrode under the effects of dynamic electron transfer. Phase II encompasses 
the nucleation and growth of the reduced silver atoms to form nuclei, seeds, and primary silver crystal structures. 
These silver atoms are transferred to the illuminated substrate and interact with each other, aggregating into 
small clusters. The clusters initially formed by the random collisions of the reduced silver atoms are too small to 
be stable, and are re-dissolved into the precursor solution. With continuous reduction, oversaturation occurs, 
and at a certain point defined by the nucleation energy barrier, the clusters grow beyond a critical size to form 
stable nuclei. These nuclei will serve as crystallization seeds for subsequent deposition. We are able to control the 
external applied voltage parameters to tune the reduction speed and kinetically control the nucleation process. 
Phase III depicts the crystal growth stage, in which the final silver nanostructures are formed. The growth process 
is a complex thermodynamically and kinetically controlled process that cannot be clearly divided31. When the 
reduction speed is fast, nuclei are formed in large quantity, which suppresses the continuing growth of the already 
formed nucleation sites. As a result, the final silver deposition products are homogenous small nanoparticles. 
When the reduction speed is relatively slow, the subsequent reduced silver atoms are deposited on the previously 
formed seeds (nucleation sites) and crystal growth proceeds, which is energetically favorable. The primary crys-
tal seeds included silver nanospheres, polyhedral nanoparticles, and triangular or hexagonal nanoplates. As the 
seeding and growth continued, the final nanostructures included larger polyhedra, nanoplates, and nanobelts.

Optimal parameters for synthesis of silver nanostructures. We examined the influence of the 
external parameters on silver deposition in the OED system. The concentration of the silver nitrate precursor 
solution was important for the formation of silver nanostructures. For the concentration series 10, 50, 100, and 

Figure 2. The equivalent circuit model of the OEK chip and OED process of silver nanostructure deposition. 
(a) Equivalent circuit of the series combination of α -Si:H virtual electrode impedance, EDL impedance, and the 
solution impedance. The EDL impedance is composed of a parallel combination of the capacitance,CEDL, and the 
resistance, REDL, both of which are frequency-dependent. (b) Phase I describes the transfer of oxidized ions from 
the bulk solution +(M )bulk

n  to the EDL surface +(M )surf
n  close to the virtual electrode to form adsorbed ions +(M )ads

n , the 
subsequent electrochemical reaction to form the reduced adsorbed atoms (M )ads

0 , and the dynamic process of 
electron transfer. Phase II describes the nucleation and primary crystallization processes for the reduced ad-atoms 
(M )ads

0  from seeds to nanoparticles (NPs). Phase III describes the crystal growth of the primary crystal 
nanostructures. The enlarged circular area shows the detailed structure of the bottom α -Si:H substrate. This figure 
has been enlarged in one direction for clarity.
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200 mmol/L, larger precursor concentrations were found to increase the deposition speed, which is favorable for 
silver electrode deposition, as described in our previous paper27. On the other hand, the synthesis of silver nano-
belts requires anisotropic control over the deposition process, which needs a relatively slow deposition speed, so 
the medium concentration of 50 mmol/L was selected for further experiments.

As the voltage was increased from 2 to 15 Vpp, the silver reduction speed was increased. When the voltage was 
below 2 Vpp, the current density in the EDL near the virtual electrode was insufficient for reduction of the Ag(I) 
into Ag(0). In contrast, when the voltage exceeded 15 Vpp, the stronger voltage potential usually damaged the 
α -Si:H layer, which should preferably be avoided. The voltage range of 5 to 10 Vpp was selected as favorable.

The frequency of the applied voltage is a key factor in the control of the final product’s nano-structural mor-
phology, because it greatly influences the properties of the EDL. As shown in Fig. 3, we investigated the influence 
of the frequency on the deposition sites of the silver nanostructures. When the voltage frequency is below 10 kHz, 
the reduced silver nanostructures seem to be repelled from the grid-shaped illuminated virtual electrode area, 
and settle instead at the boundaries of the illuminated pattern. When the voltage frequency exceeds 10 kHz, 
deposition occurs mainly in the illuminated areas, in accordance with the defined virtual electrode. From our 
experimental results, a frequency between 20 and 50 kHz should be optimal for silver electrode deposition and 
will reproduce the designed light pattern with high fidelity. When the frequency is increased above 50 kHz but 
below 100 kHz, the silver deposition is somewhat sparse due to the reduced deposition cycle. In this range of 
frequency, the depositions tend to form anisotropic nanostructures such as thin silver nanosheets, triangular 
nanoplates and nanobelts.

The deposition time was another important factor. The deposition thickness of the silver structures is  
positively correlated to the deposition time, at the proper frequency and amplitude of the applied voltage27. Here, 
we focused on the fabrication of silver nanobelts at a frequency of 50 kHz and amplitude of 5 Vpp. Figure 4 shows 
a sequence of silver deposition images recorded at times from 1 to 13 s by SEM. Over time, the continuously 
reduced Ag(0) is adsorbed on the active sites of already formed primary seeds, crystallizes, and grows into tiny 
silver fragments, and then, thin silver sheets. These freshly formed silver thin sheets are potential sites for the 
subsequent growth of silver nanobelts, which can be found in Fig. 4(e–m).

Morphologically controlled synthesis of silver nanostructures. Compared to traditional electro-
chemical systems, our OED system is sufficiently flexible and programmable for producing optically defined 
diverse virtual electrodes to control the growth of silver nanostructures. Figure 5 shows silver nanostructures 
deposited in different electrode configurations, which were defined by optical patterns. The large illuminated 
area of a solid circle in Fig. 5(a) resulted in massive polyhedral nanoparticles, whereas the relatively focused and 
reduced areas in Fig. 5(c) obtained larger polyhedral nanoparticles including octahedra and stacked hexago-
nal nanoplates under a voltage amplitude of 5 Vpp. Figure 5(b,d) reveal denser and larger structures assembled 
from plate-like silver polyhedra under augmented voltage amplitudes of 10 Vpp. Larger light pattern areas provide  

Figure 3. Silver deposition kinetics depends on the applied voltage frequency. (a–h) The silver deposition 
morphologies were dependent on the applied voltage frequency of 3, 4, 5, 6, 10, 20, 50, and 100 kHz, 
respectively. (i) The projected grid-shaped light pattern with green coloration reveals the illuminated area. The 
amplitude and time were set at 5 Vpp and 3 s, respectively, and the scale bars represent 20 μ m. The insets show 
enlargements of the rectangular areas, and the scale bars represent 10 μ m.
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correspondingly larger virtual electrode areas which simultaneously increase the quantity of reduced silver atoms 
at the same solution concentration, and thus favor homogenous nucleation and the synthesis of small nano-
particles. With decreased virtual electrode areas triggered by focused light patterns, the deposited silver nano-
structures tend to ripen and form larger nanostructures, such as silver octahedral nanoparticles and hexagonal 
nanoplates.

To obtain silver nanobelts, we set the applied voltage at 50 kHz and 5 Vpp, which is favorable for the synthesis 
of silver anisotropic nanostructures rather than compact silver electrodes. By kinetically controlling the deposi-
tion process, the reduced silver atoms were deposited on already formed seeds in phase II and crystallized into 
primary polyhedral nanostructures, rather than forming fresh nucleation sites and resulting in massive silver 

Figure 4. Time-dependent growth morphology during silver deposition. (a–m) show the detailed deposition 
densities based on times of 1–13 s, in sequence. The amplitude and frequency were 5 Vpp and 50 kHz, respectively. 
All scale bars represent 1 μ m.

Figure 5. Primary silver crystallization structures under local electrochemical reaction defined by program-
mable virtual electrodes. (a) Silver crystal nanoparticles with a solid circular virtual electrode. (b) Stacked 
silver hexagonal nanoplates with a crossed virtual electrode. (c) Crystallized silver octahedra and hexagonal 
silver nanoplates with focused dot-shaped virtual electrodes. (d) An array of silver nanoparticles assembled into 
dense micropillars with focused dot-shaped virtual electrodes. The delamination was caused by the post-rinsing 
process. The insets show the enlarged detailed morphologies of the silver deposits with different virtual electrodes. 
The deposits in images (a,c) were formed at voltage conditions of 20 kHz/5 Vpp, whereas (b,d) were formed at 
20 kHz/10 Vpp. Inset scale bars in (a–c) represent 1  μ m. Inset scale bar in (d) represents 2 μ m.
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nanoparticles. Figure 6(a) displays a grid-shaped silver deposit decorated with interconnected silver nanobelts, 
and Fig. 6(b) presents an array of silver nanobelts stemming from dot-shaped silver deposits, which form a func-
tional silver nanobelt network and probe array that could have potential applications in biosensors and nanode-
vices. These results show that silver nanobelts with different configurations can be obtained by simply tuning the 
projected light pattern, which is a flexible and time-saving approach. Figure 6(c) shows silver nanobelts as long as 
300 μ m that were fabricated by our method. Figure 6(d,e) show the details of the silver nanobelts. Figure 6(d1,d2) 
show close-ups of the stem and terminal tip of the silver nanobelt in Fig. 6(d), which demonstrate that the silver 
nanobelts originate from a sheet-like structure and end with a tip of 120°. Figure 6(e) shows a curled silver nano-
belt, confirming its flexibility. Figure 6(f–h) show the supposed growth process for the silver nanobelts. The silver 
nanobelts are formed from 2D silver nanosheets in accord with a specific crystallographic orientation. Some silver 
nanobelts were found to alter their growth direction under dislocation fluctuations, forming silver nanobelts with 
zigzag shapes and a constant angle of 120°. This phenomenon implies that the silver nanobelts originate from the 
primary hexagonal nanoplates and grow along two adjacent edges to form the anisotropic belt-like structures. The 
AFM images of two crossed silver nanobelts in Fig. 6(i,j) show a smooth surface and a rectangular cross section, 
with a width of ca. 500 nm and thickness of ca. 50 nm.

Figure 6. Crystal growth and morphological evolution of the primary silver deposits under local 
electrochemical reaction defined by programmable virtual electrodes. (a) Crossed and long silver nanobelts 
decorate a silver grid deposited over a grid-shaped virtual electrode. The enlarged area shows the crossing point 
and silver nanobelt origin point. (b) An array of single silver nanobelts extruded from a single dot deposited 
with a dot-shaped virtual electrode. The enlarged area shows the details. (c) The maximum length of the silver 
nanobelt was ca. 300 μ m. (d) A single straight silver nanobelt originating from a silver dot deposit. (d1) and 
(d2) show the enlarged original point and terminal morphology of the single silver nanobelt in (d). (e) A curled 
silver nanobelt, which shows the material’s flexibility. (f) SEM image showing a single silver nanobelt with a 
120° turn. (g) Possible growth mechanism of silver nanobelts along two neighboring edges of the primary silver 
hexagonal nanoplates. The nanobelts exhibit 120° turns in the growth direction under the possible fluctuation of 
conditions. (h) AFM image of two interconnected nanobelts. (j) Rectangular cross-section of a single nanobelt 
(indicated by the red dashed line in (i)) shows a width of 500 nm and thickness of 50 nm. The inset shows 3D 
AFM image of the nanobelts in (i).
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Conclusion
In summary, we have presented a flexible OED system for the controllable synthesis of silver nanostructures with 
various morphologies and configurations. By fine-tuning the applied voltage and deposition time, silver polyhe-
dral nanoparticles, hexagonal silver nanoplates, and especially, silver nanobelts, were synthesized. The fabrication 
process is template-free and agentless. The obtained silver nanobelts were rectangular in cross-section with an 
average width of 300 nm, average thickness of 100 nm, and length of about 300 μ m. A possible theory of silver 
nanobelt formation process is also discussed in this paper in terms of growth along two neighboring sides of a 
primary hexagonal silver nanoplate. We believe that the OED system described in this paper has the potential for 
use in the deposition of other metals as well as nanostructure synthesis with diverse functional configurations.
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