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Abstract

Oxaliplatin-induced peripheral neuropathy (OIPN) is a common and dose-limiting toxic

effect that markedly limits the use of oxaliplatin and affects the quality of life. Although

it is common, the underlying mechanisms of OIPN remain ambiguous. Recent studies

have shown that the platinum accumulation in peripheral nervous system, especially in

dorsal root ganglion, is a significant mechanism of OIPN. Several specific transporters,

including organic cation transporters, high-affinity copper uptake protein1 (CTR1),

ATPase copper transporting alpha (ATP7A) and multidrug and toxin extrusion protein

1 (MATE1), could be associated with this mechanism. This review summarizes the cur-

rent research progress about the relationship between platinum accumulation and

OIPN, as well as suggests trend for the future research.
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1 | INTRODUCTION

Oxaliplatin is widely used in the treatment of various malignant

tumors and is the standard drug for adjuvant chemotherapy for colo-

rectal cancer.1 However, oxaliplatin can cause peripheral neuropathy

during administration, including acute and chronic peripheral

neuropathy. Acute peripheral neuropathy is mainly sensory abnormali-

ties related to cold stimuli, usually occurring in the distal extremities.

Some patients will have discomfort in the oral cavity, throat, jaw, and

muscle spasm, with an incidence of 85% to 95%. It can occur within

hours to days after the treatment, with the peak value 3 days and

generally recovering within 1 week. It is a well-established risk factor

of chronic oxaliplatin-induced peripheral neuropathy (OIPN).2,3

Chronic peripheral neuropathy is characterized by bilateral symmetricZhancheng Gu contributed equally to this study.
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paresthesia, dysesthesia and pain, mainly on both feet and/or at the

ends of both hands (in a “glove-sock” distribution). Which signifi-

cantly reduces the quality of life of cancer survivor. Due to its dose-

dependent characteristic, symptoms of the chronic OIPN may appear

in 42.1% to 69% of patients after 4 to 6 cycles after chemother-

apy.4-8 Despite intense preclinical and clinical work, no drug gets rec-

ognition to prevent OIPN, and duloxetine is recommended for the

treatment of OIPN by the American Society of Clinical Oncology

(ASCO), but adverse drug reactions make it controversial.9

For seeking truly effective treatment of OIPN, studies have been

committed to explore the potential mechanisms for years. Oxaliplatin

accumulation in the peripheral nervous system (PNS) is considered a

key step in neurotoxicity development, but the exact mechanisms are

unclear.10 The aim of this review is to summarize the current the cur-

rent research progress and describe how platinum accumulation is

responsible for neuropathy onset and progression.

2 | PLATINUM ACCUMULATION
AND OIPN

2.1 | Where does platinum accumulate in the PNS

Once entering systemic circulation, oxaliplatin rapidly hydrolyzed

to oxalate ligand and Pt-diaminocyclohexane (Dach).11,12 As the

major platinum complex in circulation, Pt-(dach) reaches the organs

and tissues by binding to endogenous low-molecular-weight

species like cysteine, methionine, and glutathione (GSH) and high-

molecular-weight compounds like albumin, globulin, and hemoglo-

bin.13 Dorsal root ganglion is composed of centripetal sensory

fibroblasts, which transduce somatosensory and visceral sensations

into to the spinal cord.14 Unlike the central nervous system (CNS),

dorsal root ganglion (DRG) lacks the protection of the blood-brain

barrier, so chemotherapy drugs and other toxic drugs can easily

enter the sensory neuron cell body of DRG. Accumulation of

these drugs in DRG results in neurological damage.15-18 Recent

studies have indicated that platinum concentration dose-

dependently increased in the rat DRG and correlated with the

degree of neurotoxicity after repeated oxaliplatin administra-

tion.19-23 Therefore, platinum accumulation in the PNS, especially

in DRG, is one of the important mechanisms of OIPN (Figure 1).

2.2 | How does platinum accumulation lead
to OIPN

After oxaliplatin enters DRG, it can interact with the DNA of organ-

elles such as the nucleus and mitochondria of neuron cells and form

DNA adducts. These changes can affect DNA replication, block cell

cycle, inhibit DNA repair, and induce neuronal apoptosis.24 Platinum

accumulation in DRG is considered as a key step in OIPN.17,25 Several

hypotheses regarding how platinum accumulation leads to OIPN have

been proposed, including nucleolar damage, mitochondrial dysfunc-

tion, and oxidative stress (Figure 1).

2.2.1 | Nucleolar damage

Once oxaliplatin accumulates in DRG neurons, it interacts with the

nuclear DNA to form DNA-platinum adducts.15 DRG neurons require a

high level of active transcription to maintain their normal structure and

function. However, oxaliplatin-induced nucleolar DNA damage leads to

global transcriptional arrest of neuronal cells, which may activate apo-

ptosis pathways, leading to neuronal atrophy.26-29 Several preclinical

studies in mice models have shown increased numbers of DRG neurons

with atypical morphological nuclear features (eg, nucleolar eccentricity,

multinucleolation) are smaller nucleolar size after repeated oxaliplatin

administration, and these are associated with OIPN severity.15,30-33

2.2.2 | Mitochondrial dysfunction

Mitochondria have its own round mitochondrial DNA (mtDNA),

encoding 13 proteins that are involved in the synthesis of

F IGURE 1 Once oxaliplatin (OXA) enters systemic circulation, it will accumulate in DRG which lacks the protection of the blood-brain barrier.
Platinum accumulation will lead to oxaliplatin-induced peripheral neuropathy (OIPN) by nucleolar damage, mitochondrial dysfunction and oxidative stress
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mitochondrial electron transport chain subunits and the production

of cellular energy.34-36 Mitochondrial dysfunction plays a key role in

the pathophysiology of platinum-induced peripheral neuropa-

thy.37,38 After entering neuronal cells, platinum combine with mito-

chondrial DNA to form DNA-platinum adducts. The combination

could modify the permeability of mitochondrial membrane through

affecting proteins such as voltage-dependent anion-selective

channels,39,40 and also inhibit the transcription and replication of

mitochondrial DNA that induce the mitochondrial morphological

changes, dysfunction, and final apoptosis.41 In the PNS, 95% mito-

chondria are located in axons, mitochondrial dysfunction would lead

to chronic energy deficiency of neurons, further result in abnormal

spontaneous discharge and compartmental degeneration of DRG

primary afferent neurons.25,42,43 In recent years, several in vitro and

in vivo OIPN models focused attention on the “mitochondrial toxic-

ity hypothesis” which suggests that impaired mitochondrial function

leads to afferent sensory neuron damage.37,39-42 Mitochondrial dys-

function is a major promoter of OIPN and may be a potential thera-

peutic target.44-46

2.2.3 | Oxidative stress

Excessive production of reactive oxygen species (ROS) leads to an

imbalance between oxidation and antioxidant systems. It is a key

pathogenic mechanism involved in OIPN.47 Mitochondria and perox-

isomes help maintain the redox cellular state in that they produce

and scavenge ROS, respectively.42 The mitochondrial structure and

function impairment caused by oxaliplatin increases the production

of free radicals and bioenergy depletion, antioxidant depletion, bio-

molecular damage, demyelination, neuroinflammation, mitophagy

impairment, and alterations of cellular protein, lipid, and DNA that

ultimately lead to apoptosis.42,46,48-51 It is demonstrated that

oxaliplatin treatment in rats results in a decrease in antioxidant

enzymes (eg, malondialdehyde, glutathione, and superoxide dis-

mutase), inhibition of mitochondrial enzymes (eg, citrate synthase

and ATP synthase), and an increase in superoxide anion production,

lipid peroxidation, protein and DNA oxidation in DRG neurons.52-59

Several studies confirmed that the co-treatment with oxaliplatin and

antioxidant compounds can prevent oxidative phenomena and

decrease OIPN in rats.55-59

3 | MECHANISMS OF PLATINUM
ACCUMULATION

It is crucial to understand the mechanism of oxaliplatin accumulation

in DRG to elucidate the etiology of OIPN and to develop new thera-

peutic interventions. Several proteins have been implicated in

oxaliplatin influx or efflux in the DRG. We summarize the current

research progress of the various transporters that have been corre-

lated with facilitating oxaliplatin movement across cell membranes

(Figure 2).

3.1 | Organic cation transporter2 (OCT2)

OCT2 is a member of the SLC22 transporter family, encoded by the

SLC22A2 gene, which mediates the uptake of a variety of organic cat-

ions in cells.60 It is a key factor of platinum drug uptake and cytotoxic-

ity, and contributes to platinum accumulation in the kidneys, inner ear

and PNS, leading to nephrotoxicity, ototoxicity, and peripheral neu-

ropathy.61-64 The highest expression of human OCT2 (hOCT2) mRNA

is reported in the kidney, whereas less in other organs (eg, lungs, blad-

der, brain, spinal cord, placenta, testis, nasal mucosa, etc.).60,65 It has

been confirmed that OCT2 is expressed in 20% DRG neurons, small

to medium size neurons, belonging to the myelin free hurtful neurons

(substance P or calcitonin gene-related peptide positive) and myelin

neuron subgroup (TrkC or TrkB positive).66-68

Oxaliplatin is an excellent substrate of OCT2 and can be effectively

transported by OCT2 from the extracellular space into the DRG neuron

cell bodies.69 Researches reported that OCT2 significantly increased

oxaliplatin accumulation and cytotoxicity, and OCT2-mediated

oxaliplatin accumulation was related to time and concentration, but not

saturated.70 Oxaliplatin uptake, DNA-platinum adduct formation, and

HEK293 drug sensitivity were significantly increased in HEK293/hOCT2

F IGURE 2 Several proteins have been implicated in oxaliplatin
influx or efflux in the DRG. OCT2, OCTN1/2, CTR1 may participate in
the oxaliplatin influx. ATP7A and MATE1 may participate in the
oxaliplatin efflux. Multiple proteins working together lead to the
accumulation of platinum
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overexpressed cells compared with HEK293/Neo control cells. Addi-

tionally, cimetidine, a competitive inhibitor of OCT2, is known to signifi-

cantly reduce platinum uptake in neuronal cells.71 Notably, thermal

sensitivity or mechanical allodynia induced by oxaliplatin can be elimi-

nated by knockout of OCT1/2 and concurrent administration of cimeti-

dine in animal models.64 Several proteins can affect the functional

activity and expression of OCT2. hOCT2 can be inhibited by pho-

sphoinositide 3-kinase, protein kinase C, and protein kinase and acti-

vated by calmodulin (CaM) or calcium/CaM-dependent kinase II by

changing substrate affinity.72-74 However, it is not clear whether these

signaling pathways are related to OCT2-mediated oxaliplatin accumula-

tion.53,75-78 Lysosomal-associated transmembrane protein 4A

(LAPTM4A) regulates the function of hOCT2 by influencing hOCT2

transport on the cell membrane and processing it through an intracellular

sorting mechanism.79 The regulatory protein RS1 and the ischemia/

reperfusion inducible protein (IRIP) are also involved in hOCT2 intracel-

lular transport.80 To date, there has been no study on OIPN and

LAPTM4A, RS1, or IRIP. Recently, it has been reported that the phos-

phorylation of SRC family kinase Yes1 tyrosine can increase the func-

tional activity of hOCT2 in the plasma membrane. In mouse models,

inhibition of Yes1 can reduce OCT2 transport oxaliplatin in DRG cells

and reduce acute OIPN without affecting oxaliplatin's antitumor

activity.81

Interestingly, OCT2 expression was reported to be low or

unexpressed in tumor cell lines and patient tumor samples, and it was

then not associated with oxaliplatin antitumor efficacy in cell lines or

patients.64,71,81,82 Thus, OCT2 plays an important role in the oxaliplatin

accumulation in DRG neurons and may be the optimal therapeutic tar-

get for OIPN without altering oxaliplatin antitumor efficacy.

3.2 | Organic cation transporter, novel type
1 (OCTN1), and OCTN2

OCTN1 (encoded by SLC22A4) and OCTN2 (encoded by SLC22A5),

located on chromosome 5q31, are also belong to the SLC22 trans-

porter family.83,84 Their expression can be detected in multiple organs

and tissues (eg, kidney, ileum, colon, spleen, brain, heart, skeletal mus-

cle, etc).85 They are polyspecific transporters that can transport a vari-

ety of organic cations, zwitterions, and uncharged compounds.86,87

Human OCTN1 and OCTN2 (hOCTN1 and hOCTN2) are localized in

both plasma membranes and mitochondria.88 OCTN1 and OCTN2 are

expressed in all types of DRG neurons, especially small and medium-

sized DRG neurons (about 10% of small and medium-sized neurons).23

HEK293 cells overexpressed rats OCTN1, OCTN2, hOCTN1, and

hOCTN2 showed higher oxaliplatin uptake than mock-transfected

control cells, and the uptake and toxicity of oxaliplatin in primary cul-

tured rat DRG neurons were mediated by OCTN1 more than

OCTN2.21 Recently, two studies have reported that both OCTN1 and

OCTN2 affect platinum accumulation, cytotoxicity, and neurotoxicity

in HEK293, PC12, and FLP-in-293 cells, whereas only OCTN1 knock-

down or co-administration of ergothioneine (an OCTN1 inhibitor) can

reduce platinum accumulation and OIPN in rat DRG neurons.22,23

Despite these results, there is no existing evidence on whether

OCTN1 inhibition will affect the antitumor efficacy of oxaliplatin

because OCTN1 is also expressed by normal colon cells and tumor cell

lines including colorectal SW480 cells.83,89,90 The binding of runt-

related transcription factor 1 (RUNX1) to SLC22A4 intron 1 is

involved in the transcriptional regulation of hOCTN1, but whether

RUNX1 is involved in OIPN has not been investigated.91 Taken

together, the evidence indicates that OCTN1 contributes to

oxaliplatin influx and may be responsible for OIPN in the rat model.

Future studies are required to assess this attractive molecule as a

therapeutic target.

3.3 | High-affinity copper uptake protein 1 (CTR1)

Human CTR1 (hCTR1), encoded by the gene SLC31A1 located on

9q31, was first cloned in 1997.92 It is a major mammalian transporter

with a high affinity for copper uptake and contains three transmem-

brane domains with metal binding sites rich in methionine and histi-

dine.93 In humans and rodents, CTR1 is expressed in specific tissues

and cells.94-96 In the PNS, CTR1 was mainly expressed in the large

DRG neuron subsets (13.6% ± 3.1%), and immunohistochemical

staining showed that CTR1 was localized in the plasma membrane and

vesicular cytoplasm of the large DRG neuron bodies.97,98

Evidence shows that CTR1 plays an important role in oxaliplatin

uptake and toxicity and loss of CTR1 function in yeast affects

oxaliplatin uptake.99 Platinum drug therapy can lead to atrophy of

CTR1-positive DRG neuron cell body of rats, oxaliplatin is the most

toxic, followed by cisplatin and carboplatin. Oxaliplatin significantly

reduced the mean cell volume and the percentage of CTR1-positive

neurons.97,98 Therefore, different affinities of CTR1-mediated uptake

can also explain the different neurotoxicity characteristics of platinum

drugs.100 Compared with the isogenic vector-transfected control cells,

the HEK293 cells with the overexpression of rat CTR1 ingested about

four times of platinum accumulation and the sensitivity to growth

inhibition was increased by about three times. On the other hand,

platinum accumulation in HEK293 cells expressing CTR1 could be

inhibited by hypothermia, copper, and copper histidine (a chelating

formula for copper that is clinically used to treat disorders of copper

metabolism), in HEK293 cells expressing CTR1, suggesting that CTR1

was involved in oxaliplatin transport. However, when used in combi-

nation with oxaliplatin, copper histidine did not alter platinum accu-

mulation or oxaliplatin neurotoxicity in DRG tissues.101,102 These

findings suggest that CTR1 is associated with oxaliplatin uptake and

neurotoxicity, but more studies are needed to elucidate its specific

mechanism.

3.4 | ATPase copper transporting alpha (ATP7A)

ATP7A is a copper exocrine membrane transporter expressed in intes-

tinal epithelium, endometrium, prostate, testis, kidneys, and other tis-

sues than liver.103-105 Studies have demonstrated that ATP7A was
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expressed in smaller DRG neurons and co-located with phosphory-

lated heavy neurofilament subunit.98,102

ATP7A mediates the exudation of cisplatin, carboplatin and

oxaliplatin in cells, thus reducing the platinum accumulation.106-108 An

in vivo study revealed that oxaliplatin treatment did not change the

size of ATP7A-immunoreactive strong positive neurons, but signifi-

cantly reduced the size of CTR1 strong positive neurons.102 This may

be related to the increase of oxaliplatin efflux mediated by ATP7A.

However, ATP7A has been detected in several types of human malig-

nancies, and high ATP7A expression is associated with poor tumor

response in patients treated with platinum-based drugs.105,108-111 In

summary, ATP7A is a participant of OIPN but may not be an ideal

drug target as it may dampen the antitumor effect of oxaliplatin.

3.5 | Multidrug and toxin extrusion protein
1 (MATE1)

Human hMATE1 (hMATE1), encoded by SLC47A1 gene on chromosome

17P11.2, was first cloned in 2005.112,113 The main functions of this sol-

ute carrier are the exportation of various organic cations, organic anions,

uncharged compounds and zwitterions.65,114 Expression of MATE1 can

be detected in liver, kidney, skeletal muscle, adrenal gland and testis.112

The expression of MATE1 in DRG neurons has been reported, but the

distribution of MATE1 in DRG neurons has not been studied in detail.22

Oxaliplatin and cisplatin are relatively good substrates of

hMATE1.69,115-117 Previous studies have shown that the knockout of

MATE1 increases platinum accumulation in mouse kidneys and leads to

increased nephrotoxicity compared to wild-type controls.118 Oxaliplatin

uptake, platinum accumulation, cytotoxicity and neurotoxicity were

reported to be regulated by MATE1 in transporter-expressing HEK293,

PC12 and Flp-in-293 cells, and the MATE1 small interfering-RNA-

injected rats developed more severe OIPN and DRG platinum accumula-

tion than the control group.22 Oxaliplatin is also considered as the

substrate of MATE2-K, but no studies have confirmed that MATE2-K is

related to OIPN.117,119 Based on these findings, it is presumed that

MATE1 is an efflux transporter that can induce OIPN. Further studies are

needed to clarify the location of MATE1 in DRG and its role in OIPN.

4 | DRUG TREATMENT TARGETING
PLATINUM ACCUMULATION

Cimetidine is a known OCT2 inhibitor that reduces oxaliplatin uptake

in vitro and protects wild-type mice from oxaliplatin-induced mechan-

ical allodynia and cold hypersensitivity.64 However, there is no clinical

evidence for cimetidine to date. Dasatinib, which has been regarded

as a inhibitor the function of OCT2 transporter, may be an effective

neuroprotective OIPN drug without affecting the antitumor effect of

oxaliplatin in vitro and in vivo, and meanwhile it is currently undergo-

ing phase Ib trials.81,120 Ergothionine is a substrate/inhibitor of

OCTN1, when administered in combination with oxaliplatin, OIPN can

be improved by reducing the platinum accumulation in rat DRG

neurons.23 As a chelating formula of copper, copper histidine can

inhibit CTR1-mediated oxaliplatin uptake in vitro, but when combined

with oxaliplatin, it cannot reduce platinum accumulation in DRG neu-

rons or prevent OIPN.102 Although preclinical studies have suggested

many potential therapeutic agents, none has been clinically recognized

to treat or prevent OIPN.9

5 | CONCLUSIONS

OIPN is a dose-limiting side effect of oxaliplatin, and there are few

preventive or treatment measures. Evidences have shown that plati-

num accumulation plays an important pathogenic role in OIPN and

may be a valuable therapeutic target. Studies indicate that platinum

accumulation in DRG neurons is mediated by multiple drug trans-

porters including OCT2, OCTN1/2, CTR1, ATP7A, MATE1, and so

on. There are two key issues that need to be addressed: one is iden-

tifying transporters that play key roles in the platinum accumulation,

the other is whether up- or downregulation of these transporters will

alter the antitumor effect of oxaliplatin. Future studies should focus

on the specific mechanisms of platinum accumulation following

oxaliplatin treatment and searching for therapies to prevent platinum

accumulation or treat OIPN.
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