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Abstract

Oscillatory neural activities are prevalent in the brain with their phase realignment contribut-

ing to the coordination of neural communication. Phase realignments may have especially

strong (or weak) impact when neural activities are strongly synchronized (or desynchro-

nized) within the interacting populations. We report that the spatiotemporal dynamics of

strong regional synchronization measured as maximal EEG spectral power—referred to as

activation—and strong regional desynchronization measured as minimal EEG spectral

power—referred to as suppression—are characterized by the spatial segregation of small-

scale and large-scale networks. Specifically, small-scale spectral-power activations and

suppressions involving only 2–7% (1–4 of 60) of EEG scalp sites were prolonged (relative to

stochastic dynamics) and consistently co-localized in a frequency specific manner. For

example, the small-scale networks for θ, α, β1, and β2 bands (4–30 Hz) consistently included

frontal sites when the eyes were closed, whereas the small-scale network for γ band (31–55

Hz) consistently clustered in medial-central-posterior sites whether the eyes were open or

closed. Large-scale activations and suppressions involving over 17–30% (10–18 of 60) of

EEG sites were also prolonged and generally clustered in regions complementary to where

small-scale activations and suppressions clustered. In contrast, intermediate-scale activa-

tions and suppressions (involving 7–17% of EEG sites) tended to follow stochastic dynamics

and were less consistently localized. These results suggest that strong synchronizations

and desynchronizations tend to occur in small-scale and large-scale networks that are spa-

tially segregated and frequency specific. These synchronization networks may broadly seg-

regate the relatively independent and highly cooperative oscillatory processes while phase

realignments fine-tune the network configurations based on behavioral demands.

Introduction

Many studies have investigated macroscopic networks of oscillatory neural activity in humans

by examining the spatiotemporal patterns of spectral amplitude, phase, and phase-amplitude

relations within and across frequency bands and brain regions using EEG and MEG methods.
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Those studies typically examined oscillatory interactions in specific regions of interest or char-

acterized networks of oscillatory activities and their connectivity by analyzing the structures of

correlation matrices (derived from pairwise temporal associations of spectral amplitude and/

or phase across space and/or frequencies), often utilizing clustering methods and/or graph the-

oretic measures derived from correlation matrices [1–9; see 10 for a review]. These approaches

have productively characterized frequency-specific interactions in targeted regions as well as

features of frequency-specific networks that correlate with a variety of behavioral functions

[11–23] and mental states [24–27]. Nevertheless, for characterizing networks, correlation-

matrix based approaches (utilizing pairwise temporal associations) trade time dimension for

revealing (static, time-averaged) spatial connectivity structures. As a complementary approach,

the current study investigated general rules governing the spatiotemporal dynamics of EEG

spectral power.

EEG recorded at each scalp electrode is thought to reflect the macroscopically summed

field potentials arising from the current sources/sinks generated by the regional population of

large cortical pyramidal cells that are aligned in parallel and perpendicular to the cortical sur-

face [e.g., 28]. Thus, it is reasonable to infer that larger spectral power at a scalp site reflects

more extensive oscillatory synchronization within the accessible regional pyramidal-cell popu-

lation (resulting in less cancellation of field oscillations), whereas smaller spectral power

reflects less extensive oscillatory synchronization which may result from less cells being

engaged in oscillatory activity and/or desynchronization of oscillations (resulting in greater

cancellation of field oscillations). Thus, spectral power at each scalp electrode reflects the

degree of oscillatory synchronization of the regional population of the contributing cortical

pyramidal cells (though non-oscillatory components and some artifacts may also contribute to

spectral power; see Caveats). Our spatial resolution was 1–2 cm after surface-Laplacian trans-

forming the scalp-recorded EEG to infer the macroscopic current-source/sink densities at the

electrode sites (see Materials and methods; also referred to as dura potential; e.g., [28]).

Phenomenologically, we became intrigued by the observation that spectral power some-

times spontaneously maximized or minimized in isolation exclusively at a single site, whereas

at other times, spectral power globally maximized or minimized over a large number of sites.

For convenience, we refer to maximal spectral power (defined by an upper percentile thresh-

old; see Results and discussion) as activation in the sense of activation of extensive regional

oscillatory synchronization, and minimal spectral power (defined by a lower percentile thresh-

old) as suppression in the sense of suppression of regional oscillatory synchronization.

Are there general rules governing the spontaneous fluctuations in the spatial extent and

clustering of spectral-power activations and suppressions? Our strategy was to examine the

number of concurrently activated or suppressed sites as a function of time. In particular, we

determined whether consistent spatial patterns of activations and suppressions emerged as a

function of the number of concurrently activated or suppressed sites. For example, if a specific

group of n sites formed a network, that is, if a specific group of n sites tended to be concur-

rently activated or suppressed, whenever the number of concurrently activated or suppressed

sites happened to be n, a specific group of sites should be consistently included with elevated

probability.

This approach may appear similar to finding clusters in a correlation matrix (e.g., con-

structed from binarized values, +1 for activation and –1 for suppression), but there are some

crucial differences. First, the current method allows direct examinations of the spatial consis-

tency and temporal dynamics of the clusters of activations and suppressions of different sizes

that actually occur (rather than inferring time-averaged clusters from correlation matrices by

using cluster number as a fitting parameter). For instance, suppose activations at site A were

variously correlated with activations at other sites, but rare isolated activations consistently
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occurred at site A. Analyses of correlation matrices would miss it (because pairwise correla-

tions do not track instantaneous spatial patterns), but the current analysis would detect it. The

current analysis would also reveal the dynamics (e.g., average duration) of such rare but con-

sistently isolated activations occurring at site A. Second, the current method allows examina-

tions of how temporal contexts influence the clustering of activations and suppressions. For

instance, the composition of a small cluster of activations may differ depending on whether it

occurs in the midst of a persisting period of small-cluster activations, immediately following a

period of widespread activations, or immediately preceding an emergence of widespread acti-

vations. Information about temporal contexts is unavailable in correlation matrices. Overall,

the current analysis is complementary to structural analyses applied to correlation matrices.

To increase the generalizability of our results, we examined spontaneous spatiotemporal

fluctuations in spectral-power activations and suppressions while participants rested with their

eyes closed, rested with their eyes open in a dark room, or casually viewed a silent nature

video.

The results provided converging evidence suggesting that the spatiotemporal dynamics of

spectral-power activations and suppressions are characterized by the spatial segregation of

small-scale and large-scale networks. Specifically, small-scale spectral-power activations and

suppressions involving only 2–7% (1–4 of 60) of EEG scalp sites were prolonged (relative to

stochastic dynamics), consistently co-localized in a frequency specific manner, and were stable

while the spatial extent of activations/suppressions remained in the small-scale range. Large-

scale activations and suppressions involving over 17–30% (over 10–18 of 60) of EEG sites were

also prolonged, generally clustered in regions complementary to where small-scale activations

and suppressions clustered, and were stable while the spatial extent of activations/suppressions

remained in the large-scale range. These macroscopic networks of strong synchronization and

desynchronization may broadly segregate the relatively independent and highly cooperative

oscillatory processes while phase realignments may fine-tune the network configurations

based on behavioral demands.

Materials and methods

Participants

Fifty-two Northwestern University students (35 women, 1 non-binary who declined to identify

their gender as either woman or man; mean age of 20.8 years, ranging from 18 to 29 years,

standard deviation of 2.5 years) signed a written consent form to participate for monetary

compensation ($10/hr). All were right-handed, had normal hearing and normal or corrected-

to-normal vision, and had no history of concussion. They were tested individually in a dimly

lit or dark room. The study protocol was approved by the Northwestern University Institu-

tional Review Board. Participants p1-p7 and p12-p28 (N = 24) participated in a rest-with-eyes-

closed condition in which EEG was recorded for ~5 min while participants rested with their

eyes closed and freely engaged in spontaneous thoughts. Participants p8-p28 (N = 21) subse-

quently participated in a silent-nature-video condition in which EEG was recorded for ~5 min

while they viewed a silent nature video. To evaluate test-retest reliability, the silent-nature-

video condition was run twice (20–30 min apart), labeled as earlier viewing and later viewing

in the analyses. A generic nature video was presented on a 13-inch, 2017 MacBook Pro, 2880

(H)-by-1800(V)-pixel-resolution LCD monitor with normal brightness and contrast settings,

placed 100 cm away from participants, subtending approximately 16˚(H)-by-10˚(V) of visual

angle. Participants p29-p52 (N = 24) participated in the replication of the rest-with-eyes-closed

condition and subsequently participated in a rest-with-eyes-open-in-dark condition which

was the same as the former except that the room was darkened and participants kept their eyes
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open while blinking naturally. Subsets of these EEG data were previously analyzed for a differ-

ent purpose [29–31].

EEG recording and pre-processing

While participants rested with their eyes closed, rested with their eyes open in dark, or viewed

a silent nature video for approximately 5 min, EEG was recorded from 64 scalp electrodes

(although we used a 64-electrode montage, we excluded signals from noise-prone electrodes,

Fpz, Iz, T9, and T10, from analyses) at a sampling rate of 512 Hz using a BioSemi ActiveTwo

system (see www.biosemi.com for details). Electrooculographic (EOG) activity was monitored

using four face electrodes, one placed lateral to each eye and one placed beneath each eye. Two

additional electrodes were placed on the left and right mastoid area. The EEG data were pre-

processed using EEGLAB and ERPLAB toolboxes for MATLAB [32, 33]. The data were re-ref-

erenced offline to the average of the two mastoid electrodes, bandpass-filtered at 0.01 Hz-80

Hz, and notch-filtered at 60 Hz (to remove power-line noise that affected the EEG signals

from some participants). For the EEG signals recorded while participants rested with the eyes

open in dark or while they viewed a silent nature video, an Independent Component Analysis

(ICA) was conducted using EEGLABs’ runica function [34, 35]. Blink related components

were visually identified (apparent based on characteristic topography) and removed (no more

than two components were removed per participant).

We surface-Laplacian transformed all EEG data for the following reasons. The transform

(1) substantially reduces volume conduction (reducing the electrode-distance dependent com-

ponent of phase alignment to within adjacent sites, or 1–2 cm, for a 64-channel montage [36]),

(2) virtually eliminates the effects of reference electrode choices (theoretically; we also verified

this for our data), and (3) provides a data-driven method to fairly accurately map scalp-

recorded EEG to macroscopic current-source/sink densities over the cortical surface [37–39].

We used Perrin and colleagues’ algorithm [40–42] with the “smoothness” value, λ = 10−5 (rec-

ommended for 64 channels [36]). We refer to the surface-Laplacian transformed EEG signals

that represent the macroscopic current source/sink densities under the 60 scalp sites (with the

4 noise-prone sites removed from analyses; see above) simply as EEG signals. These EEG-

recording and pre-processing procedures were identical to those used in our prior study [29].

EEG analysis. We used the temporal derivative of EEG as in our prior studies that exam-

ined all [29] or a subset [31] of the current EEG data for different purposes. While the rationale

for taking the temporal derivative of EEG is detailed in [29], it offers the following advantages.

First, EEG temporal derivatives may highlight oscillatory dynamics by reducing the non-oscil-

latory 1/fβ spectral backgrounds when β~1, which was the case for our EEG data on the time-

scale of several seconds [29]. Second, EEG temporal derivatives may be considered a "deeper"

measure of neural activity than EEG in the sense that scalp-recorded potentials are caused by

the underlying neural currents and taking EEG temporal derivative macroscopically estimates

those currents (as currents in RC circuits are proportional to the temporal derivative of the

corresponding potentials). Third, EEG temporal derivatives are drift free. Prior studies used

EEG temporal derivatives for similar reasons [e.g., 43–45], providing some evidence suggest-

ing that EEG temporal derivatives yield more effective neural features than EEG for brain-

computer interface [45].

We generated phase-scrambled controls whose spectral power fluctuated stochastically

while maintaining the time-averaged spectral-amplitude profiles of the actual EEG data. While

phase-scrambling can be performed using several different methods, we chose discrete cosine

transform, DCT [46]. In short, we transformed each ~5 min EEG waveform with type-2 DCT,

randomly shuffled the signs of the coefficients, and then inverse-transformed it with type-3
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DCT (the “inverse DCT”), which yielded a phase-scrambled version. DCT phase-scrambling is

similar to DFT (discrete Fourier transform) phase-scrambling except that it is less susceptible

to edge effects. We previously verified that DCT phase-scrambling generated waveforms

whose spectral-power fluctuations conformed to exponential distributions [29, Fig 2] indica-

tive of a Poisson point process (an unpredictable and memory-free process), with negligible

distortions to the time-averaged spectral-amplitude profiles of the actual EEG data [29, Fig 1].

To investigate how spectral power (amplitude squared of sinusoidal components) fluctu-

ated over time, we used a Morlet wavelet-convolution method suitable for time-frequency

decomposition of signals containing multiple oscillatory sources of different frequencies (see

[36] for a review of different methods for time-frequency decomposition). Each Morlet wavelet

is a Gaussian-windowed sinusoidal templet characterized by its center frequency as well as its

temporal and spectral widths that limit its temporal and spectral resolution. We decomposed

each EEG waveform (i.e., its temporal derivative) into a time series of spectral power using

Morlet wavelets with 200 center frequencies, fc’s, between 3 Hz and 60 Hz. The fc’s were loga-

rithmically spaced because neural temporal-frequency tunings tend to be approximately loga-

rithmically scaled [47, 48]. The accompanying n factors (roughly the number of cycles per

wavelet, n = 2πf�SD, where SD is the wavelet standard deviation) were also logarithmically

spaced between 3 and 16, yielding temporal resolutions ranging from SD = 159 ms (at 3 Hz) to

SD = 42 ms (at 60 Hz) and spectral resolutions of FWHM (full width at half maximum) = 2.36

Hz (at 3 Hz) to FWHM = 8.83 Hz (at 60 Hz). These values struck a good balance for the time-

frequency trade-off, and are typically reported in the literature [36]. The spectral-power values

were then averaged within the commonly considered frequency bands, θ (4–7 Hz), α (8–12

Hz), β (13–30 Hz), and γ (31–55 Hz). For some analyses, we subdivided the β band into lower,

β1 (13–20 Hz), and higher, β2 (21–30 Hz), portions.

Results and discussion

Setting thresholds to define maximal and minimal spectral power

The goal of this study was to uncover rules (if any) that govern the spatiotemporal dynamics of

maximal and minimal spectral power. To this end, we first operationalized maximal and mini-

mal spectral power as the top-ith-percentile and the bottom-jth-percentile spectral power,

which we refer to as activation and suppression (see Introduction).

The number of concurrently activated/suppressed sites dynamically increases and

decreases, making the spatial extent of spectral-power activations/suppressions dynamically

expand and contract. In this context, focal activations/suppressions occurring exclusively at

single sites are special in that they may reflect the instances of relatively independent controls

of activation/suppression. Thus, as a first step, we calibrated activation and suppression thresh-

olds so that the instances of focal activation and focal suppression were detected with maximal

sensitivity. Specifically, we determined the percentile thresholds (applied per scalp site per fre-

quency band per condition per participant) that maximized the prevalence of focal activations

and suppressions relative to chance levels.

For a broad range of thresholds, the instances of focal activations (the upper row in Fig 1)

and focal suppressions (the lower row in Fig 1) were elevated relative to the corresponding

Binomial probabilities given by 60�p(1−p)60−1, where p is the percentile threshold and 60 is the

number of sites. Notably, the 8th-percentile threshold clearly maximized the instances of both

focal activations and suppressions for all frequency bands across all conditions (Fig 1). We

thus defined activation as yielding the top-8th-percentile spectral power and suppression as

yielding the bottom-8th-percentile spectral power (per scalp site per frequency band per
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condition per participant). As expected, all phase-scrambled controls conformed to the Bino-

mial probabilities (not shown, but they would yield straight horizontal lines at y = 0 in Fig 1).

Dynamics of the spatial scale of spectral-power activations and

suppressions

To examine the dynamics of the spatial scale of spectral-power activations and suppressions,

we examined the time series of the number of activated or suppressed sites, nsites. Increases (or

decreases) in nsites indicate expansions (or contractions) in the spatial scale of activations or

suppressions. An example time series of nsites (from 50 sec to 100 sec) for activations and sup-

pressions for α power for one participant in the rest-with-eyes-closed condition are shown in

Fig 2A–2D. The instances of small-scale (involving 1–4 sites) and large-scale (involving 10

+ sites) activations and suppressions are highlighted (in red for activations and blue for sup-

pressions). Note that we assigned these small-scale and large-scale designations based on the

fact (see below) that activations and suppressions involving 1–4 sites and those involving 10

+ sites exhibited distinct spatial distributions.

Even from the illustrative example shown in Fig 2A–2D it is clear that the typical intervals

of large-scale activations (the red highlighted portions above nsites = 10) were substantially lon-

ger for the actual data (Fig 2A) than for the phase-scrambled control (Fig 2B). Though less

apparent, one can also see that the typical intervals of small-scale activations (the red

highlighted portions below nsites = 4) were longer for the actual data (Fig 2A) than for the

phase-scrambled control (Fig 2B). These observations also apply to suppression. The typical

intervals of large-scale suppressions (the blue highlighted sections above nsites = 10) were sub-

stantially longer for the actual data (Fig 2C) than for the phase-scrambled control (Fig 2D),

and the typical intervals of small-scale suppressions (the blue highlighted portions below nsites

= 4) were also longer for the actual data (Fig 2C) than for the phase-scrambled control (Fig

2D), albeit less apparent.

Fig 1. Proportions of focal activations (top-percentile spectral power occurring exclusively at only one site; top row) and focal suppressions (bottom-percentile

spectral power occurring exclusively at only one site; bottom row) as a function of percentile threshold (relative to binomial chance levels). The cooler and warmer

colors indicate the lower and higher frequency bands, θ (4–7 Hz), α (8–12 Hz), β (13–30 Hz) and γ (31–55 Hz). The black lines with open circles show averages across

the frequency bands. The columns correspond to the five behavioral conditions. For all frequency bands across all conditions, the instances of focal activations and focal

suppressions were consistently maximized with the 8th-percentile threshold. We thus defined activation as yielding the top 8% spectral power and suppression as

yielding the bottom 8% spectral power.

https://doi.org/10.1371/journal.pone.0253813.g001
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Average durations of small-scale (nsites� 4, involving 1–4 sites), large-scale (nsites� 10,

involving 10+ sites), and intermediate-scale (5� nsites� 9, involving 5–9 sites) activations and

suppressions as well as the probability distributions of nsites for the rest-with-eyes-closed con-

dition are summarized for the four representative frequency bands (θ, α, β, and γ) in Fig 2E–

2L. For all frequency bands, the probabilities of nsites� 2 and nsites� 10 were elevated for both

activations (Fig 2E) and suppressions (Fig 2I) relative to the binomial predictions (the black

dotted curves in Fig 2E and 2I: PBinom nsitesð Þ ¼ N!

ðN� nsitesÞ!nsites!
pnsitesð1 � pÞN� nsites , where N = 60 is the

total number of sites, p = 0.08 is the threshold percentile, and nsites is the number of concur-

rently activated or suppressed sites by chance (the data for the phase-scrambled controls con-

formed to the Binomial predictions; not shown). These results suggest that focal (nsites� 2)

and large-scale (nsites� 10) activations and suppressions are actively maintained.

Fig 2. Elevated instances of focal (involving 1–2 sites) and large-scale (involving 10+ sites) activations and suppressions, as well as extended average durations of

small-scale (involving 1–4 sites) and large-scale (involving 10+ sites) activations and suppressions. Activation is defined as spectral power in the top 8% and

suppression is defined as spectral power in the bottom 8% (see main text and Fig 1). A-D. An example of the temporal fluctuations of the number of concurrently

activated or suppressed sites for a representative participant for α power. The instances of small-scale (involving 1–4 sites) and large-scale (involving 10+ sites)

activations and suppressions are highlighted. A. The number of activated sites as a function of time. B. The same as A but for the phase-scrambled control. C. The

number of suppressed sites as a function of time. D. The same as C but for the phase-scrambled control. E-L. The probabilities and average durations of small-scale

(involving 1–4 sites), intermediate-scale (involving 5–9 sites), and large-scale (involving 10+ sites) activations and suppressions for the rest-with-eyes-closed condition.

The cooler and warmer colors indicate the lower and higher frequency bands, θ (4–7 Hz), α (8–12 Hz), β (13–30 Hz) and γ (31–55 Hz). The solid lines indicate the

means while the faint lines show the data from individual participants. E. The probabilities of concurrent activations of different numbers of sites. The thick black dotted

curve shows the chance (binomial) distribution. Only the actual data are shown because the phase-scrambled controls conformed to the binomial distribution. Note that

the instances of focal (involving 1–2 sites) and large-scale (involving 10+ sites) activations were elevated relative to chance. F-H. The average durations of small-scale (F),

intermediate-scale (G), and large-scale (H) activations. Note that the average durations were extended for small- and large-scale (but not intermediate-scale) activations

relative to their phase-scrambled controls. I and J-L. The same as E and F-H, but for suppression, showing the same pattern as activation. The remaining panels in the

bottom row parallel E-L, showing the results for the four remaining conditions, which are all virtually identical.

https://doi.org/10.1371/journal.pone.0253813.g002
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Consistent with our observations above (Fig 2A–2D), the average durations of small-scale

(nsites� 4) activations (Fig 2F), small-scale suppressions (Fig 2J), large-scale (nsites� 10) acti-

vations (Fig 2H), and large-scale suppressions (Fig 2L) were all extended relative to their

phase-scrambled controls (actually, three phase-scrambled controls were averaged for greater

reliability) for all frequency bands and for all participants (faint lines). In contrast, the average

durations of intermediate-scale (5� nsites� 9) activations (Fig 2G) and suppressions (Fig 2K)

were equivalent to their phase-scrambled controls. We note that the average-duration results

should be interpreted with the caveat that higher- (or lower-) probability events tend to yield

longer (or shorter) average durations even for stochastic variations. Nevertheless, the average-

duration results still provide unique information in that a higher temporal probability of acti-

vations/suppressions does not necessarily imply longer average durations because a higher

temporal probability may result from an increased frequency of unextended activation/sup-

pression intervals. We also note that the average durations were generally shorter for higher-

frequency bands for both the actual data and their phase-scrambled controls. This reflects the

fact that the temporal resolutions of Morlet wavelets were set to be higher for the wavelets with

higher center frequencies to achieve a reasonable time-frequency trade-off (see Materials and

methods). Nevertheless, the approximately parallel lines seen in Fig 2F–2H and 2J–2L indicate

that the average durations of small-scale and large-scale activations and suppressions were

extended (relative to their phase-scrambled controls) by similar factors (note the logarithmic

scale) regardless of frequency band.

All these results characterizing the dynamics of nsites in the rest-with-eyes-closed condition

replicated in the remaining behavioral conditions: the replication of the rest-with-eyes-closed

condition, the rest-with-eyes-open-in-dark condition, and the earlier and later instances of the

silent-nature-video condition (the lower four panels in Fig 2).

The results so far have shown that the occurrences of focal (involving 1–2 sites) and large-

scale (involving 10+ sites) activations and suppressions were increased and that the average

durations of small-scale (involving 1–4 sites) and large-scale (involving 10+ sites) activations

and suppressions were extended relative to stochastic dynamics while the average durations of

intermediate-scale (involving 5–9 sites) activations and suppressions were equivalent to sto-

chastic dynamics (though the average duration results need to be interpreted with a caveat; see

above). These results, consistent across all frequency bands, behavioral conditions, and partici-

pants, suggest that the brain actively maintains relatively isolated small-scale networks (involv-

ing 1–4 sites) and highly cooperative large-scale networks (involving 10+ sites) of spectral-

power activations and suppressions while intermediate-scale activations and suppressions

tend to occur stochastically in transit.

Spatial distributions of spectral-power activations and suppressions

The next question we asked was whether small-scale (involving 1–4 sites) and large-scale

(involving 10+ sites) activations and suppressions clustered in specific regions. In other words,

were distinct neural populations preferentially involved in relatively isolated versus highly

coordinated spectral-power activations and suppressions? To address this question, we exam-

ined the spatial probability distribution of activations and suppressions as a function of nsites

(the number of concurrently activated or suppressed sites) relative to the chance probability of

1/60 (because we used 60 sites).

The spatial probability distributions are shown for each frequency band in Fig 3 (θ), Fig 4

(α), Fig 5 (β1), Fig 6 (β2), and Fig 7 (γ). We split β band (13–30 Hz) into the lower β1 (13–20

Hz) and upper β2 (21–30 Hz) sub-bands because they yielded distinct spatial probability distri-

butions. In each figure, the rows of spatial-probability-distribution plots are organized by
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Fig 3. Spatial-probability distributions of spectral-power activations and suppressions as a function of the number of concurrently activated/suppressed sites,

nsites, for the θ band (4–7 Hz). Activation and suppression are defined as spectral power in the top and bottom 8% (see main text and Fig 1). The designations of small-

scale (involving 1–4 sites) and large-scale (involving 10+ sites) clusters are based on their topographic complementarity (shown here) and their extended average

durations (Fig 2). The major row divisions correspond to the three behavioral conditions. For each condition, the spatial-probability-distribution plots are presented in

four rows (row 1-row 4). Rows 1 and 2 show the spatial-probability distributions of activations and suppressions, respectively, for increasing numbers of concurrently

activated sites, nsites. The above- and below-chance occurrences of activations/suppressions are color-coded with warmer and cooler colors, with the green color

indicating the chance level. The values indicate the proportions of deviations from the chance level (1/60); for example, +0.3 indicates 30% more frequent occurrences

than expected by chance, whereas –0.6 indicates 60% less frequent occurrences than expected by chance. Rows 3 and 4 are identical to rows 1 and 2 except that they

present the inter-participant consistency of deviations from the chance level as t-values with the critical values for Bonferroni-corrected statistical significance (α = 0.05,

2-tailed) shown on the color bars. We focused on these t-value plots (highlighted and labeled A-F) for making inferences (see main text). In most cases, all participants

yielded concurrent activations and suppressions involving up to 18 sites, but in some cases some participants yielded concurrent activations or suppressions involving

fewer sites. In those cases, the spatial-probability-distribution plots are presented up to the maximum number of concurrently activated or suppressed sites to which all

participants contributed. One can see that small-scale activations and suppressions (columns 1–4) occurred in specific regions while large-scale activations and

suppressions (columns 10+) generally occurred in the complementary regions (A-F). This spatial complementarity between small- and large-scale activations and

suppressions is quantified in the accompanying line graphs on the right, plotting A, the vector angles (in degrees) between the spatial distribution of focal activations/

suppressions and the spatial distributions of multi-site activations/suppressions involving increasing numbers of sites (see main text). A< 90˚ indicates that multi-site

activation/suppression distributions were spatially similar to focal activation/suppression distributions (with A = 0˚ indicating that they were identical up to a scalar

factor), A = 90˚ indicates that multi-site distributions were orthogonal (unrelated) to focal distributions, and A> 90˚ indicate that multi-site distributions were

increasingly spatially complementary to focal distributions (with A = 180˚ indicating a complete red-blue reversal). The thick lines with filled circles indicate the mean

angles and the gray lines show the data from individual participants. Bonferroni-corrected statistical significance (α = 0.05, 2-tailied) for the negative and positive

deviations from A = 90˚ are indicated with the horizontal lines just below and above the dashed line indicating 90˚. The lines with open circles show the vector angles

computed from the participant-averaged spatial-probability distributions.

https://doi.org/10.1371/journal.pone.0253813.g003
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three behavioral conditions, resting with eyes closed (with the original and replication data

combined), resting with eyes open in dark, and watching a silent nature video (with the earlier

and later viewing data averaged). For each condition, the top two rows show the spatial proba-

bility distributions of activations (the upper row) and suppressions (the lower row) for increas-

ing values of nsites, measured as the proportion difference from the chance level (1/60). For

instance, a value of 0.4 indicates 40% more frequent occurrences of activations or suppressions

than expected by chance; a value of –0.8 indicates 80% less frequent occurrences of activations

or suppressions than expected by chance. Although this provides a reasonable measure of posi-

tive and negative deviations from the chance level, the positive deviations are necessarily

diluted for larger values of nsites (capped at 1/nsites−1/60 because, for example, if triple activa-

tion, nsites = 3, always occurred at the same group of three sites, the spatial probability of activa-

tion at each of the three sites would be 1/3 and 0 elsewhere) and negative deviations are

floored at –1 (cannot be lower than 100% below the chance level). We thus made our infer-

ences based on the robustness of the positive and negative deviations from the chance level

Fig 4. Spatial-probability distributions of spectral-power activations and suppressions as a function of the number of activated/suppressed sites, nsites, for the α
band (8–12 Hz). The formatting is the same as in Fig 3.

https://doi.org/10.1371/journal.pone.0253813.g004
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computed as t-values (the mean probability difference from the chance level divided by the

standard error with participants as the random effect). Spatial probability distributions based

on t-values are shown in the bottom two rows for each behavioral condition (highlighted with

gray-shaded rectangles and labeled A-F in Figs 3–7). The values required for Bonferroni-cor-

rected significant deviations from the chance level (α = 0.05, 2-tailed, accounting for compari-

sons at 60 sites) are indicated on the color bars. Cooler colors indicate below-chance

probabilities, warmer colors indicate above-chance probabilities, and the green color indicates

the chance level.

Spatial distributions of small-scale spectral-power activations and suppressions.

Small-scale (involving 1–4 sites) activations and suppressions consistently clustered in overlap-

ping and frequency-specific regions in each condition. For the θ band, small-scale activations

and suppressions clustered in the frontal and lateral-anterior regions in the eyes-closed condi-

tion (Fig 3A and 3B, left columns labeled "Small-scale"), whereas they clustered in the lateral-

central regions in the eyes-open conditions (Fig 3C–3F). For the α band, small-scale

Fig 5. Spatial-probability distributions of spectral-power activations and suppressions as a function of the number of activated/suppressed sites, nsites, for the β1

band (13–20 Hz). The formatting is the same as in Figs 3 and 4.

https://doi.org/10.1371/journal.pone.0253813.g005
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activations and suppressions clustered in the frontal and lateral-anterior regions largely across

all conditions (Fig 4A–4F). For the β1 band, small-scale activations and suppressions clustered

in the frontal regions in the eyes-closed condition (Fig 5A and 5B), whereas they only weakly

clustered in the frontal, medial-central, and/or posterior regions in the eyes-open conditions

(Fig 5C–5F). For the β2 band, small-scale activations and suppressions primarily clustered in

the frontal regions (potentially also in the medial-central-posterior regions) in the eyes-closed

condition (Fig 6A and 6B), whereas they clustered in the medial-central-posterior regions

in the eyes-open conditions (Fig 6C–6F). For the γ band, small-scale activations and suppres-

sions consistently clustered in the medial-central-posterior regions across all conditions

(Fig 7A–7F).

Overall, small-scale activations and suppressions clustered similarly across all conditions

for the γ band (in the medial-central-posterior regions; Fig 7A–7F, left columns labeled

"Small-scale") and also for the α band (in the frontal and lateral-anterior regions; Fig 4A–4F,)

to some degree. In the eyes-closed condition, small-scale activations and suppressions for the

Fig 6. Spatial-probability distributions of spectral-power activations and suppressions as a function of the number of activated/suppressed sites, nsites, for the β2

band (21–30 Hz). The formatting is the same as in Figs 3–5.

https://doi.org/10.1371/journal.pone.0253813.g006
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θ, α, β1, and β2 bands consistently included the frontal sites (Figs 3–6, parts A-B). Interestingly,

small-scale activations and suppressions for the β2 band clustered similarly to the β1 band in

the eyes-closed condition (prominently in the frontal regions; compare Figs 6A, 6B with 5A,

5B), whereas they clustered similarly to the γ band in the eyes-open conditions (in the medial-

central-posterior regions; compare Figs 6C–6F with 7C–7F). Further, for the β2 band in the

eyes-open conditions and the γ band in all conditions, focal-to-intermediate-scale activations

systematically shifted from the medial-central-posterior regions to the posterior regions as the

number of activated sites increased from 1 to about 9 (highlighted with red trapezoids in Fig

6C and 6E, and Fig 7A, 7C and 7E), though suppressions did not show this shift (Fig 6D and

6F, and Fig 7B, 7D and 7F).

Complementary spatial distributions of small-scale and large-scale spectral-power acti-

vations and suppressions. The red-blue regions in the spatial-probability-distribution plots

are roughly reversed between small-scale (involving 1–4 sites) and large-scale (involving 10

+ sites) activations/suppressions (Figs 3–7, parts A-F), suggesting that large-scale (involving 10

Fig 7. Spatial-probability distributions of spectral-power activations and suppressions as a function of the number of activated/suppressed sites, nsites, for the γ
band (31–55 Hz). The formatting is the same as in Figs 3–6.

https://doi.org/10.1371/journal.pone.0253813.g007
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+ sites) activations and suppressions tended to cluster in the regions complementary to where

small-scale activations and suppressions clustered. To statistically evaluate this spatial comple-

mentarity, we computed the vector similarity between the spatial distribution of focal activa-

tions/suppressions (involving only one activated/suppressed site) and the spatial distributions

involving larger numbers of activated/suppressed sites. We first vectorized the spatial probabil-

ity distribution for each number of activated/suppressed sites (per frequency band per condi-

tion per participant) by assigning the probability values (relative to the chance level of 1/60) at

the 60 sites to a 60-dimensional vector. We then computed the angle, An, between the vector

corresponding to the focal-activation (or focal-suppression) distribution, V!focal, and the vector

corresponding to the activation (or suppression) distribution involving n sites, V!n, that is,

An ¼ acos V!focal �V
!

n

jV!focal jjV
!

n j

 !

. Note that, because the spatial probability distributions (computed rel-

ative to 1/60) have zero means, An is equivalent to Pearson’s correlation except for the acos
transform. For example, An = 0˚ indicates that the distribution of n-site activations/suppres-

sions is identical to the distribution of focal activation/suppression (up to a scalar multiplica-

tion factor), with 0˚<An<90˚ indicating that they are increasingly spatially dissimilar, An =

90˚ indicating that they are orthogonal (unrelated), An>90˚ indicating that they are increas-

ingly spatially complementary, and An = 180˚ indicating a complete pattern reversal (red-blue

reversal).

We note that even if the dynamics of activations and suppressions were stochastic, some

focal activations/suppressions would occur by chance, which could be weakly clustered in arbi-

trary regions; then, multi-site activations/suppressions would be statistically less likely to be

detected in those regions due to our use of percentile-based thresholds to define activations

and suppressions. This statistical bias may raise An for multi-site activations/suppressions to

be slightly above 90˚ even when the underlying dynamics of activations and suppressions were

stochastic. To discount this bias, we subtracted the An values computed for the phase-scram-

bled controls (for increased reliability, three sets of control An values were computed based on

three independent versions of the phase-scrambled controls, then averaged) from those com-

puted for the actual data. Nevertheless, the statistical bias considered here has little impact

when evaluating the spatial distributions of activations/suppressions averaged across partici-

pants such as those shown in Figs 3–7 because any arbitrary (stochastic) clustering of focal

activations/suppressions would have been inconsistent across participants so that they would

have averaged out.

The A values (corrected for statistical bias) are plotted for activations and suppressions as a

function of the number of concurrently activated or suppressed sites (nsites) for each condition

in Figs 3–7 (see the line graphs on the right side). The thick lines with filled circles show the

mean angles and the gray lines show the angles for the individual participants. The horizontal

lines (red for activation and blue for suppression) just below and above 90˚ indicate statisti-

cally significant negative and positive deviations from 90˚ (Bonferroni-corrected, α = 0.05,

2-tailed, with participant as the random effect). The switch from significantly below 90˚ to sig-

nificantly above 90˚ indicates the transition of multi-site-activation/suppression distributions

from being similar to the focal-activation/suppression distributions to being complementary

to them. For all frequency bands across all conditions, small-scale multi-site-activation/sup-

pression distributions for nsites� ~ 4 remained similar to the focal-activation/suppression dis-

tributions (A values significantly below 90˚), whereas large-scale distributions for nsites� 10

became complementary to the focal-activation/suppression distributions (A values signifi-

cantly above 90˚) (Figs 3–7).
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The lines with open circles show the A values computed based on participant-averaged spa-

tial-distribution vectors (rather than computing the A values per participant then averaging

them across participants). They generally swing more widely from approaching 0˚ to

approaching 180˚, exaggerating the distribution similarity and complementarity. This means

that the spatial distributions of small-scale activations/suppressions (involving 1–4 concur-

rently activated/suppressed sites) and the complementary spatial distributions of large-scale

activations/suppressions (involving 10+ concurrently activated/suppressed sites) were consis-

tent across participants (thus some of the measurement noise averaged out when the A values

were computed based on the participant-averaged spatial distributions). In contrast, if each

participant had his/her unique complementary distributions of small-scale and large-scale acti-

vations/suppressions, the open-circle lines would have tended to converge to a flat line at

y = 90˚. This analysis confirms that large-scale (involving 10+ sites) spectral-power activa-

tions/suppressions clustered in regions that were complementary to where small-scale (involv-

ing 1–4 sites) spectral-power activations/suppressions clustered.

Spatial distributions of large-scale spectral-power activations and suppressions. Where

did large-scale (involving 10+ sites) activations and suppressions cluster by frequency band?

For the θ band, large-scale activations and suppressions clustered in the posterior regions in

the rest-with-eyes-closed condition (Fig 3A and 3B, right columns labeled "Large-scale"),

whereas they clustered in the frontal and/or lateral-anterior regions in the rest-with-eyes-

open-in-dark condition (Fig 3C and 3D). In the silent-nature-video condition, intermediate-

to large-scale activations clustered in the posterior to lateral-anterior regions (Fig 3E), whereas

large-scale suppressions clustered in the posterior regions (Fig 3F).

For the α band, large-scale activations and suppressions clustered in the posterior and

medial-anterior regions in the rest-with-eyes-closed condition (Fig 4A and 4B). These patterns

overall replicated in the two eyes-open conditions except that the medial-anterior cluster was

weak in the rest-with-eyes-open-in-dark condition (Fig 4C and 4D) and both the posterior

and medial-anterior clusters were weaker and the posterior cluster for activations was centrally

shifted in the silent-nature-video condition (Fig 4E and 4F).

For the β1 band, large-scale activations clustered in the posterior-to-lateral-posterior and

lateral-anterior regions (Fig 5A), whereas large-scale suppressions clustered in the posterior

regions (Fig 5B) in the rest-with-eyes-closed condition. Large-scale activations also clustered

in the posterior and lateral-anterior regions in the rest-with-eyes-open-in-dark condition (Fig

5C), whereas large-scale suppressions primarily clustered in the lateral-anterior regions (Fig

5D). In the silent-nature-video condition, large-scale activations clustered in the posterior and

lateral-posterior regions (Fig 5E), whereas large-scale suppressions clustered in the lateral-

anterior regions (Fig 5F).

For the β2 band, large-scale activations and suppressions clustered in the lateral-posterior

and lateral-anterior regions (Fig 6A and 6B) in the rest-with-eyes-closed condition. In the two

eyes-open conditions large-scale activations and suppressions both clustered in the lateral-

anterior regions (Fig 6C–6F).

For the γ band, the spatial distributions of large-scale activations and suppressions in all

conditions (Fig 7A–7F) were essentially the same as those for the β2 band in the two eyes-open

conditions (Fig 6C–6F), clustering in the lateral-anterior regions (Fig 7A–7F).

Contextual effects on the spatial distributions of spectral-power activations

and suppressions

How did the spatial clustering of spectral-power activations and suppressions depend on con-

text? The spatial scale of activations and suppressions (as indexed by the number of
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concurrently activated/suppressed sites, nsites) remained small or large sometimes, but rapidly

expanded from small to large or contracted from large to small at other times (e.g., Fig 2A–

2D). Are the distributions of activations and suppressions influenced by these temporal con-

texts? We examined the spatial distributions of spectral-power activations and suppressions

under three representative contexts, (1) when the spatial extent of activations/suppressions

remained within a given range of spatial scale (small, intermediate, or large), (2) when it fluctu-

ated between the small-scale and intermediate-scale ranges, and (3) when it extensively

expanded or contracted between the small-scale and large-scale ranges (Figs 8–12).

Both activations and suppressions yielded their characteristic average spatial distributions

(i.e., averaged across all contexts; see Fig 3–7) when they fluctuated within the small-scale (1–4

sites) range or within the large-scale (10+ sites) range (see the thick horizontal arrows in Fig 8

[for the θ band], Fig 9 [for the α band], Fig 10 [for the β1 band], Fig 11 [for the β2 band], and

Fig 12 [for the γ band], part A [for activations] and part E [for suppressions], for each condi-

tion). In some cases, activations also yielded consistent spatial distributions when they fluctu-

ated within the intermediate-scale (5–9 sites) range (see the thin horizontal arrows in Figs 8–

12, part A, for each condition), though suppressions rarely yielded consistent distributions

while fluctuating within the intermediate-scale range (see the thin horizontal arrows in Figs 8–

12, part E, for each condition). When activations and suppressions fluctuated between the

small-scale (1–4 sites) and intermediate-scale (5–9 sites) ranges (e.g., monotonically increasing

from 2 sites to 8 sites, monotonically decreasing from 7 sites to 1 site, etc.), they tended to yield

the characteristic small-scale distributions (see the curved arrows in Figs 8–12, part B [for acti-

vations] and part F [for suppressions], for each condition). In all these cases where activations

and suppressions fluctuated within a specific spatial-scale range (small, intermediate, or large)

or fluctuated between the small- and intermediate-scale ranges, we did not observe any direc-

tional asymmetry; that is, the spatial distributions of activations and suppressions were virtu-

ally identical in the contexts of their spatial expansions and contractions (not shown).

For extensive expansions and contractions of activations and suppressions, we observed

some directional dependence so that the expansions from the small-scale (1–4 sites) to large-

scale (10+ sites) range (e.g., monotonically increasing from 3 sites to 15 sites) and the contrac-

tions from the large-scale (10+ sites) to small-scale (1–4 sites) range (e.g., monotonically

decreasing from 12 sites to 2 sites) are shown separately. Nevertheless, general characteristics

are observed for both expansions and contractions. During the extensive spatial expansions

and contractions of activations (see the unidirectional curved arrows in Figs 8–12, part C [for

expansions] and part D [for contractions], for each condition), some consistent distributions

were observed in the intermediate- and large-scale ranges including some of the characteristic

large-scale distributions we saw in Figs 3–7, but no consistent distributions were observed in

the small-scale range. During the extensive spatial expansions and contractions of suppres-

sions (see the unidirectional curved arrows in Figs 8–12, parts G [for expansions] and H [for

contractions], for each condition), no consistent spatial distributions were observed in any

spatial scale.

Overall, the temporal-context analysis yielded some notable results. First, the characteristic

spatial distributions of activations and suppressions shown in Figs 3–7 were especially consis-

tent while the spatial scale of activations and suppressions remained within the small-scale or

large-scale range, with the intermediate-scale distributions largely being transitional. Second,

some of the characteristic large-scale spatial distributions of activations shown in Figs 3–7, but

not suppressions, occurred during extensive expansions and contractions of activations.

Third, none of the characteristic small-scale spatial distributions of activations or suppressions

shown in Figs 3–7 occurred during extensive expansions or contractions of activations or sup-

pressions. These results suggest that the characteristic small-scale and large-scale clusters of
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activations and suppressions, especially the small-scale clusters, emerge and dissolve while the

spatial scale of activations and suppressions fluctuate within the corresponding range.

Temporal correlations of the number of activated/suppressed sites between

frequency bands

We have seen that the spatial scale of spectral-power activations and suppressions dynamically

fluctuate between the characteristic small-scale and large-scale patterns that are frequency spe-

cific (Fig 2A–2D; Figs 3–7). Are the engagements of small- and large-scale networks indepen-

dent or coordinated across frequency bands? To address this question, we computed the

temporal correlation of nsite (the number of concurrently activated or suppressed sites)

between each pair of frequency bands, using Spearman’s r, rsp (which is outlier resistant). To

reduce any effects of spectral leakage (due to the wavelets’ spectral-tuning widths; see Materials

and methods), we computed the baseline-corrected rsp by subtracting from rsp the baseline rsp

computed with phase-scrambled data (we actually computed three baseline rsp values based on

three independent versions of phase-scrambled data, then averaged them).

Fig 13 presents the correlation matrices (symmetric about the diagonal) for activations (Fig

13A–13E) and suppressions (Fig 13K–13O) for each of the five behavioral conditions. The cor-

relation patterns were generally similar for activations and suppressions. All average correla-

tions were positive (lighter colors indicating stronger correlations) and statistically significant

(based on rsp computed with Fisher-Z transformed rsp and baseline rsp values; p<0.05, two-

tailed, Bonferroni corrected), except for those indicated with the white "-" symbols. The tem-

poral correlations of nsites were generally modest (averaging less than 0.5) and diminished with

greater frequency separations; the cells farther away from the diagonal are darker. The θ–β2,

θ–γ, and α–γ correlations were especially weak as evident from the dark-colored cells in the

upper-right and lower-left corners of all correlation matrices (Fig 13).

Interestingly, the correlation matrices for both activations and suppressions characteristi-

cally differed between the eyes-closed (rest-with-eyes-closed) and eyes-open (rest-with-eyes-

open-in-dark and watch-a-silent-nature-video) conditions. Each of the eyes-closed matrices

(Fig 13A and 13B for activations, and 13K and 13L for suppressions) is characterized by a large

central region of lighter cells indicative of elevated correlations among the α, β1, and β2 bands

(highlighted with a large dashed central square), whereas each of the eyes-open matrices (Fig

13C–13E for activations, and 13M-13O for suppressions) is characterized by a pair of smaller

square regions of lighter cells indicative of elevated correlations between the α and β1 bands

and between the β2 and γ bands (highlighted with two small dashed squares). To quantitatively

evaluate the central-square and double-square patterns, we compared the rsp values (computed

with Fisher-Z transformed rsp and baseline rsp values) among the cells labeled 1, 2, and 3. The

Fig 8. Context effects on the spatial distributions of spectral-power activations and suppressions for the θ band

(4–7 Hz). As in Figs 3–7, activation and suppression are defined as spectral power in the top and bottom 8%, and the

major row divisions correspond to the three behavioral conditions. A and E per condition. Spatial distributions of

activations (A) and suppressions (E) when the number of concurrently activated or suppressed sites fluctuated within

the small-scale (1–4 sites), intermediate-scale (5–9 sites), or large-scale (10+ sites) range (highlighted). B and F per

condition. Spatial distributions of activations (B) and suppressions (F) when the number of concurrently activated or

suppressed sites fluctuated between the small-scale (1–4 sites) and intermediate-scale (5–9 sites) ranges. C and G per

condition. Spatial distributions of activations (C) and suppressions (G) when the number of concurrently activated or

suppressed sites extensively expanded from the small-scale (1–4 sites) to large-scale (10+ sites) range. D and H per

condition. Spatial distributions of activations (D) and suppressions (H) when the number of concurrently activated or

suppressed sites extensively contracted from the large-scale (10+ sites) to small-scale (1–4 sites) range. All spatial

distributions are shown in t-values as in Figs 3–7, parts A-F. Spatial-distribution plots are shown only for the cases

where all participants contributed to the corresponding data. Compare these context-specific spatial distributions with

the context-averaged distributions shown in Fig 3.

https://doi.org/10.1371/journal.pone.0253813.g008
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central-square pattern is distinguished by relatively higher rsp values in cells 1 and 2 with lower

rsp values in cells 3. Although this pattern is not particularly strong in the eyes-closed condi-

tions (Fig 13F and 13G for activations, and 13P–13Q for suppressions), the average rsp values

were always lowest in cells 3. The reason why the rsp values were not substantially lower in cells

3 is that some of the participants yielded the double-square pattern corresponding to the eyes-

open conditions with high correlations in cells 3 (see the thin lines showing the data from indi-

vidual participants in Fig 13F, 13G and 13P, 13Q). The double-square pattern is distinguished

by higher rsp values in cells 1 and 3 with lower rsp values in cells 2. This V-shaped pattern was

consistently observed in the eyes-open conditions (Fig 13H, 13J for activations, and 13R, 13T

for suppressions).

Thus, we obtained some evidence for coordinated engagements of the small-scale and

large-scale synchronization networks between frequency bands (as temporal correlations of

nsites between frequency bands). The coordination was generally modest (average rsp values

being less than 0.5) and weaker between more distant frequency bands, being absent or nearly

absent for the θ–β2, θ–γ, and α–γ pairs. Notably, the pattern of coordination depended on the

eyes being closed or open; when the eyes were closed the α, β1, and β2 bands tended to be

somewhat jointly coordinated, but when the eyes were open the α-β1 coordination tended to

dissociate from the emerging β2-γ coordination (with diminished correlations for the α-β2 and

β1-β2 pairs).

Caveats

While the current analyses used a time-frequency decomposition approach that extracted

sinusoidal components from EEG, oscillatory neural activities are not necessarily sinusoidal.

As non-sinusoidal oscillations generate harmonics [e.g., 49, 50], some of our frequency-spe-

cific results may be contaminated by such artifactual harmonics. Nevertheless, it has been

shown that macroscopic oscillatory activities from large neural populations such as those

reflected in EEG tend to approximate sinusoidal waveforms due to extensive spatial averaging

[51].

EEG spectral power reflects oscillatory as well as non-oscillatory neural activities, with the

latter primarily reflected in the 1/fβ spectral background that may include contributions from

random-walk type neuronal noise generated by the Ornstein-Uhlenbeck process [e.g., 52, 53],

interplays between excitatory and inhibitory dynamics [e.g., 54], and other processes (see [55,

56] for a review). While our use of the temporal derivative of EEG substantially reduced the

1/fβ spectral background on the timescale of several seconds for the current EEG data (see

Materials and methods), as β is known to fluctuate over time [e.g., 55], it is unclear the degree

to which taking the temporal derivative continuously reduced the 1/fβ spectral background to

highlight oscillatory activity. Thus, our results may reflect spatiotemporal fluctuations in the

1/fβ spectral background as well as spatiotemporal fluctuations in oscillatory synchronization

and desynchronization.

Might the current results reflect non-neural artifacts? In particular, activities of the ocular

and scalp muscles might have generated large spectral power at specific scalp sites. While mus-

cle artifacts tend to occur in the γ band [57, 58], we observed characteristic small-scale and

large-scale spatial distributions of spectral-power activations in all representative frequency

bands (Figs 3–7). Further, the fact that the average durations of small- and large-scale activa-

tions were extended (relative to the phase-scrambled controls) by similar factors for all fre-

quency bands (Fig 2) is inconsistent with the possibility that γ band activations may have

uniquely reflected muscle artifacts. The strongest evidence we have against any substantive

contributions of muscle artifacts to our results is that the characteristic spatial distributions of
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activations and suppressions generally overlapped, especially for small-scale activations and

suppressions and especially for γ band (Figs 3–7). Muscle artifacts would not generate consis-

tent spatial distributions of spectral-power suppressions.

General discussion

Oscillatory neural dynamics are prevalent in the brain [59–61], contributing to perceptual [17,

18, 62, 63], attentional [14, 21–23], memory [15], and cognitive [12, 13, 16, 19] processes (and

probably to many other processes), likely through controlling information flow by adjusting

phase relations within and across frequency bands [3, 10, 11, 22, 61]. While phase relations

may be intricately coordinated across neural populations depending on functional demands,

an impact of phase realignments would be particularly high (or low) when the oscillatory activ-

ities within the interacting neural populations are strongly synchronized (or desynchronized).

We thus sought to uncover rules (if any) that govern the spatiotemporal dynamics of maximal

and minimal spectral power, which may partly reflect the spatiotemporal dynamics of strong

synchronization and desynchronization of cortical neural populations (see Introduction).

To this end, it was important to define maximal and minimal spectral power with appropri-

ate thresholds. Instead of choosing the thresholds arbitrarily (e.g., top and bottom quartiles),

we defined them empirically. To characterize how regions of maximal and minimal spectral

power spontaneously expanded and contracted, isolated occurrences of maximal and minimal

spectral power (occurring exclusively at a single site) may be informative. We thus chose the

thresholds for which the occurrences of isolated maximal and minimal spectral power were

most prevalent. Interestingly, the resultant thresholds were universal (virtually identical for

different frequency bands across all behavioral conditions) and symmetric for maximal (top

8%) and minimal (bottom 8%) spectral power (Fig 1). This indicates that extreme spectral

power at the top and bottom 8% are generally the most spatially isolated in the spatiotemporal

dynamics of EEG spectral power. We thus operationally defined the top 8% spectral power as

the state of "activation" of neural synchronization and the bottom 8% spectral power as the

state of "suppression" of neural synchronization (while acknowledging the various concerns

associated with relating EEG spectral power with neural synchronization; see Introduction

and Caveats). Using these definitions, we obtained converging evidence suggesting that spec-

tral-power activations and suppressions are organized into spatially segregated networks, rela-

tively isolated small-scale networks comprising only 1–4 (2–7%) concurrently activated or

suppressed sites and highly cooperative large-scale networks comprising 10–18 (17–30%) con-

currently activated or suppressed sites.

First, instances of small-scale (involving 1–4 sites) and large-scale (involving 10+ sites), but

not intermediate-scale (involving 5–9 sites), activations and suppressions were more prevalent

and longer-lasting than expected from stochastic variations (Fig 2). This suggests that small-

scale and large-scale activations and suppressions are actively maintained. Second, small-scale

and large-scale (but not intermediate-scale) activations and suppressions consistently segre-

gated in specific regions with generally overlapping distributions for activations and suppres-

sions (Figs 3–7). This suggests that strong synchronizations and desynchronizations occur

with elevated probabilities in spatially segregated small-scale and large-scale networks. Third,

the characteristic spatial patterns of spectral-power activations and suppressions were

Fig 9. Context effects on the spatial distributions of spectral-power activations and suppressions for the α band

(8–12 Hz). The formatting is the same as in Fig 8. No spatial-distribution plots are shown in G for the rest-with-eyes-

closed condition because none of the relevant spatial distributions (for any value of nsites) had data from all

participants. Compare these context-specific spatial distributions with the context-averaged distributions shown in

Fig 4.

https://doi.org/10.1371/journal.pone.0253813.g009
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generally stable while the spatial extents of activations and suppressions fluctuated within the

small-scale or large-scale (but not intermediate-scale) range (Figs 8–12). Some of the charac-

teristic large-scale, but not small-scale, spatial patterns of activations were observed during

extensive expansions and contractions of activations, but none of the characteristic patterns of

suppressions were observed during extensive expansions or contractions of suppressions.

These contextual dependences overall suggest that the characteristic small-scale and large-

scale clusters of activations and suppressions primarily emerge and dissolve while activations

and suppressions remain within the small-scale or large-scale range.

Taken together, these results suggest that the spatiotemporal dynamics of maximal and

minimal spectral power, potentially indicative of the spatiotemporal dynamics of strong syn-

chronizations and desynchronizations of oscillatory neural activities, are partly characterized

by spatially segregated small-scale networks where regional populations are strongly synchro-

nized or desynchronized in relative isolation and large-scale networks where many regional

populations are strongly synchronized or desynchronized concurrently in a highly cooperative

manner. These small-scale and large-scale networks of concurrently synchronized/desynchro-

nized neural populations may confer an overarching dynamic structure that may constrain the

impact of task-specific realignments of phase relations within and across frequency bands and

brain regions. Future research may investigate how phase-relation realignments are coordi-

nated with the status (strongly synchronized or desynchronized) of these small- and large-

scale synchronization networks to optimize information processing.

Our results also suggest that these small-scale and large-scale networks are frequency spe-

cific (Figs 3–7 and Figs 8–12). Speculating on the potential relationships between the fre-

quency-specific networks identified here and the extensive literature on task-dependent

oscillatory activities involving different frequency bands is beyond the scope of the current dis-

cussion. Instead, we summarize some notable aspects of the frequency specificity of the small-

and large-scale synchronization/desynchronization networks. First, in the eyes-closed condi-

tion, the small-scale networks for the θ, α, β1, and β2 bands all included the frontal region,

while the large-scale networks systematically shifted from including primarily posterior

regions for the θ band, posterior and medial-anterior regions for the α band, posterior and lat-

eral-anterior regions for the β1 band, primarily lateral-anterior regions for the β2 band, and

consistently lateral-anterior regions for the γ band (Figs 3–7, parts A and B). Second, regard-

less of behavioral condition, the small-scale networks were consistently localized in the

medial-central-posterior regions and the large-scale networks were localized in the lateral-

anterior regions for the γ band (Fig 7). Third, the small- and large-scale networks for the β2

band clustered nearly identically to those for the γ band in the eyes-open conditions regardless

of visual stimulation (eyes open in dark and watching a nature video) (compare Fig 6C–6F

with Fig 7A–7F). Further, the inter-frequency temporal coordination of small- and large-scale

networks (in terms of the inter-frequency temporal correlations of nsites for both activations

and suppressions) were also uniquely elevated between the β2 and γ bands in the eyes-open

conditions (Fig 13, cells 3 on the right side labeled "Eyes open"). These results suggest that

close spatiotemporal coordination of synchronization and desynchronization between the β2

and γ bands is uniquely associated with the state of the eyes being open (regardless of visual

stimulation). In general, the engagements of small- and large-scale synchronization networks

Fig 10. Context effects on the spatial distributions of spectral-power activations and suppressions for the β1 band

(13–20 Hz). The formatting is the same as in Figs 8 and 9. Compare these context-specific spatial distributions with

the context-averaged distributions shown in Fig 5.

https://doi.org/10.1371/journal.pone.0253813.g010
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Fig 11. Context effects on the spatial distributions of spectral-power activations and suppressions for the β2 band

(21–30 Hz). The formatting is the same as in Figs 8–10. Compare these context-specific spatial distributions with the

context-averaged distributions shown in Fig 6.

https://doi.org/10.1371/journal.pone.0253813.g011
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were only modestly coordinated (rsp < 0.5) across frequency bands, and virtually uncoordi-

nated between distant frequency bands (Fig 13).

To conclude, many studies have examined the spatial structures of temporal associations

among spectral amplitudes and phases within and across frequency bands, typically analyzing

structures of correlation matrices, to identify (static, time-averaged) spatial networks and their

Fig 12. Context effects on the spatial distributions of spectral-power activations and suppressions for the γ band

(31–55 Hz). The formatting is the same as in Figs 8–11. Compare these context-specific spatial distributions with the

context-averaged distributions shown in Fig 7.

https://doi.org/10.1371/journal.pone.0253813.g012

Fig 13. Temporal correlations of nsites (the number of concurrently activated/suppressed sites) between frequency bands. The correlations were computed as

baseline-corrected Spearman’s r, rsp (rsp minus baseline-rsp computed based on phase-scrambled data) per frequency-band pair per condition per participant (see main

text). A-E. Correlation matrices of nsites (symmetric about the diagonal) for spectral-power activations for the five behavioral conditions. Larger rsp values are indicated

with lighter colors (all positive). All rsp values were statistically significant at p<0.05 (two-tailed, Bonferroni corrected). K-O. The same as A-E, but for spectral-power

suppressions. The "-" symbols indicate statistically non-significant rsp values. F-J. Line graphs comparing rsp values among the cells labeled 1, 2, and 3 in the correlation

matrices A-E (see main text). The rsp values here were computed with Fisher-Z transformed rsp and baseline- rsp values to be appropriate for statistical comparisons. The

thick lines with closed circles indicate the means and the thin lines indicate the data from individual participants (all lines have been aligned at their respective means to

highlight the inter-participant variability in cell dependence). P-T. The same as F-J but for spectral-power suppressions.

https://doi.org/10.1371/journal.pone.0253813.g013
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connectivity that may be associated with specific behavioral functions and mental states. What

was unique about the current study was to investigate general rules governing the spatiotem-

poral dynamics of strongly synchronized and desynchronized neural populations by tracking

the dynamics of spontaneously emerging and dissipating clusters of maximal and minimal

spectral power. In this way, we were able to obtain converging evidence suggesting that pro-

longed periods (compared with stochastic dynamics) of strong synchronization and desyn-

chronization occur in small-scale and large-scale networks that are spatially segregated and

frequency specific, macroscopically segregating the relatively independent and highly coopera-

tive oscillatory processes.
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