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Abstract
Background: Lung cancer is a highly aggressive cancer with a poor prognosis
and is associated with distant metastasis; however, there are no clinically recog-
nized biomarkers for the early diagnosis and prediction of lung cancer metastasis.
We sought to identify the differential mitochondrial protein profiles and under-
stand the molecular mechanisms governing lung cancer metastasis.
Methods: Mitochondrial proteomic analysis was performed to screen and iden-
tify the differential mitochondrial protein profiles between human large cell lung
cancer cell lines with high (L-9981) and low (NL-9980) metastatic potential by
two-dimensional differential gel electrophoresis. Western blot was used to vali-
date the differential mitochondrial proteins from the two cells. Bioinformatic
proteome analysis was performed using the Mascot search engine and messenger
RNA expression of the 37 genes of the differential mitochondrial proteins were
detected by real-time PCR.
Results: Two hundred and seventeen mitochondrial proteins were differentially
expressed between L-9981 and NL-9980 cells (P < 0.05). Sixty-four analyzed pro-
teins were identified by matrix-assisted laser desorption/ionization-time of flight
mass spectrometry coupled with database interrogation. Ontology analysis revealed
that these proteins were mainly involved in the regulation of translation, amino
acid metabolism, tricarboxylic acid cycle, cancer invasion and metastasis, oxidative
phosphorylation, intracellular signaling pathway, cell cycle, and apoptosis.
Conclusion: Our results suggest that the incorporation of more samples and
new datasets will permit the definition of a collection of proteins as potential bio-
markers for the prediction and diagnosis of lung cancer metastasis.

Introduction

Lung cancer is the leading cause of cancer-related death
of both men and women worldwide.1–9 Poor survival is

associated with tumor metastasis.10–15 Lung cancer metas-
tasis is not only the malignant marker but is the main
cause of treatment failure.16–20 Metastasis is a complex
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biological behavior that is correlated with many factors,
genes, signal pathways, and biological processes.21–26

Therefore, exploration of changes to molecular genetics
and cell signal transduction related to invasion and
metastasis in lung cancer will not only illuminate the
molecular mechanisms of tumor invasion and metastasis,
but also provide a new targeting molecule and route for
blocking signal transduction and reversing the metastatic
phenotype of lung cancer.27–32 Our previous studies
showed that low expression and hetero-deletion of tumor
metastasis suppressor gene nm23-H1 are closely corre-
lated with high metastatic ability and poor prognosis in
lung cancer patients.25–34 We also demonstrated that
transfection of wild type nm23-H1 complementary DNA
(cDNA) into human high-metastatic large cell lung can-
cer cells (which exhibit loss of heterozygosity [LOH] of
nm23-H1), can regulate the expression of metastatic rela-
tive genes and reverse the metastatic phenotype of lung
cancer cell lines.23–30 Our findings and other reports have
provided sufficient evidence to indicate that nm23-H1 is a
metastasis suppressor gene in many tumors.21–37 Our
studies have also proven that the nm23-H1 gene is a key
and upstream regulative gene in the “lung cancer meta-
static suppressive cascade.”23–33 However, the exact molec-
ular mechanism by which nm23-H1 suppresses or
reverses lung cancer metastasis is unclear.
Mitochondria are important organelles in cellular

physiology. They have their own genomic system inde-
pendent from the nucleus, and possess their own tran-
scription, translation, and protein assembly
machinery.13,38–47 They are the principal suppliers of
adenosine triphosphate, playing a central role in cellular
energy metabolism and apoptosis. The oxidative metab-
olism of mitochondria contributes to harmful protein
modifications, even under normal conditions.39–41 Mito-
chondrial function changes have been implicated in
tumor formation, including increased production of
reactive oxygen species (ROS), decreased oxidative phos-
phorylation, and a corresponding increase in
glycolysis.13,41–43 Recently, deregulated cellular energetics
have been considered an additional emerging hallmark
of cancer.13 Cancer cell signaling regulated by kinases
and phosphatases is guided by cellular redox status and
may be key in malignant transformation.
The protection of mitochondrial protein function is an

important aspect of cellular protein quality control. How-
ever, mitochondrial proteins are difficult to characterize
because of their relatively low abundance. Subcellular
proteomic research would represent a significant advance-
ment in the profiling of mitochondrial changes in dis-
eased cells.43 Two-dimensional differential in gel
electrophoresis (2D-DIGE), coupled with matrix assisted
laser desorption-ionization-time of flight (MALDI-TOF)

mass spectrometry (MS) has is frequently been applied in
this field.29,30,44 However, mitochondrial proteomic pro-
files in non-small cell lung cancer (NSCLC) remain
poorly defined, particularly related to lung cancer metas-
tasis. We conducted differential profiling of mitochon-
drial proteins from NSCLC cell lines with high and low
metastatic potential and analyzed mitochondria-related
metabolic pathways to identify the possible molecular
markers of NSCLC metastasis.

Methods

Cell lines and reagents

A human high metastatic large cell lung cancer cell line
(L9981) and low metastatic large cell lung cancer cell line
(NL9980) were established from a human lung large cell
carcinoma cell line (WCQH-9801) in our laboratory.48

Cell lines were cultured in RMPI 1640 medium con-
taining 10% fetal bovine serum (Gibco, Grand Island, NY,
USA) at 37�C with 5% CO2 incubator. Cy2, Cy3, and Cy5
were purchased from GE Healthcare (Piscataway, NJ,
USA). Immobiline pH-gradient (IPG) DryStrips
(pH 3–10,24 cm), IPG buffer (pH 3–10), DryStrip cover
fluid, thiourea, urea, dithiothreitol (DTT) , Pharmalyte
(pH 3-10), bromophenol blue, Commassie Brilliant Blue
G-250, Tris base, sodium dodecyl sulfate (SDS), and
molecular weight marker were purchased from Amer-
sham Biosciences (Uppsala, Sweden).
Modified trypsin (sequencing grade) was obtained

from Promega (Madison, IL, USA). Sucrose and manni-
tol were purchased from Sango (Shanghai, China). All
analytical grade chemicals and biochemicals were pre-
pared with Milli-Q deionized water (Millipore, Bedford,
MA, USA).
Primary anti-fumarate hydratase (sc-27995), PRDX3

(sc-23969), HSP75 (TR1) (sc-13557), ERAB (sc-58525),
PCNA (sc-56), and cytochrome c (SC-13560) antibodies
were purchased from Santa Cruz Biotechnology (Santa
Cruz, CA, USA), and anti-PHB (#2426) and COX IV
(#4844) antibodies were purchased from Cell Signaling
Technology (Danvers, MA, USA).

Isolation and purification of mitochondria

Cells were collected by centrifugation at 700 g for 10 minutes
and the pellets were resuspended in homogenization
medium A (20 mM Hepes-KOH, 1 mM ethylene-diamine-
tetraacetic acid [EDTA], 1 mM phenylmethylsulfonyl fluo-
ride [PMSF], 50 mM sucrose, 200 mM mannitol, pH7.4).
The suspension was left on ice for 10 minutes. Cells were
then dounce-homogenized and the lysis was monitored for
quality by using phase-contrast microscopy until at least
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90% of the cells were broken. The homogenate was cen-
trifuged at 1000g for 10 minutes at 4�C and supernatant A
was collected. The pellets were then washed twice with
homogenization Medium B (20 mM Hepes-KOH, 25 mM
KCl, 5 mM MgCl2, 1 mM PMSF, 250 mM sucrose,
pH7.4), and saved as the nuclear fraction. Supernatant A
was centrifuged at 12 500g for 15 minutes at 4�C, and the
pellet was collected and then washed once as a heavy
membrane pellet. The heavy membrane pellet was
resuspended in homogenization Medium A and spun
again at 4000 g for 15 minutes to obtain the heavy mito-
chondrial pellet.
The heavy mitochondrial pellet was overlaid on a sucrose

step density gradient (1.0 M sucrose over 1.5 M sucrose in
10 mM Tris_HCl [pH 7.4], 1 mM EDTA). The preparation
was ultracentrifuged at 60 000 g for 20 minutes at 4�C to
obtain mitochondria-enriched pellets. The pellets were
washed twice in homogenization medium A.

Sodium dodecyl sulfate-
polyacrylamide gel electrophoresis

The mitochondria-enriched pellets were suspended in the
loading buffer (50 mM Tris-HCl, pH 6.8, 100 mM DTT,
2% SDS, 0.1% bromophenol blue, 10% glycerol) and run
on SDS-polyacrylamide gel electrophoresis (PAGE,
T = 12%) in Tris-glycine running buffer with 50 ug of pro-
tein per lane.

Western blot analysis

The mitochondria proteins were transferred to nitrocel-
lulose membrane (Amersham Biosciences) under wet
conditions at 80 V for two hours. Blots were blocked
with blocking buffer (20 mM Tris-HCl, pH 7.5, 150 mM
NaCl, 0.05% Tween-20, 5% nonfat dried milk) for one
hour at room temperature. Different organelle marker
protein antibodies and other primary antibodies were
then added and the proteins were incubated overnight at
4�C. The blot was washed with TBST (20 mM Tris-HCl,
150 mM NaCl, 0.05% Tween-20, pH 7.5). The films were
scanned using the Powerlook scanner (UMAX Technol-
ogies, Dallas, TX, USA) and quantified by Image Quant
software (TL 7.0).

Two-dimensional differential in gel
electrophoresis of mitochondria proteins

The mitochondria-enriched pellets were dissolved in lysis
buffer (7 M urea, 2 M thiourea, 4% 3-((3-cholamidopropyl)
dimethylammonio)-1-propanesulfonate [CHAPS], 30 mM
Tris, 1 mM PMSF, pH8.5) at 4�C for one hour with inter-
mittent sonication and then centrifuged at 20 000g for

30 minutes at 4�C. Protein extracts were purified using the
Ettan 2D CleanUp kit (Amersham Biosciences) according to
manufacturer’s instructions, and adjusted to pH 8.5. The
concentration of the total proteins was measured by using a
2D Quant kit (Amersham Biosciences).
The mitochondria protein lysates from two cell lines

were labeled with Cy2, Cy3, and Cy5 following the pro-
tocols described in the Ettan DIGE User Manual
(18-1164-40 Edition AA, GE Healthcare). Typically,
50 μg lysates were labeled with 400 pmol of Cy3 or Cy5,
while the same amount of the pool standard of both
samples was labeled with Cy2. We crossed fluoro-
chromes between the pairs of analyzed samples to avoid
differences resulting from the staining effectiveness. To
achieve statistical confidence, three biological replicates
were employed. Labeling reactions were carried out in
the dark on ice for 30 minutes before quenching with
1 μL of 10 mM lysine for 10 minutes on ice. These
labeled samples were then combined for 2D-DIGE
analysis.
Cy3 and Cy5 labeled samples (50 μg) were combined

before mixing with 50 μg Cy2 labeled internal standards.
An equal volume of 2× sample buffer (7 M urea, 2 M thio-
urea, 4% CHAPS, 30 mM Tris, 1 mM PMSF, 130 mM
DTT, 2% IPG buffer) was added to the sample and the
total volume was made up to 450 μL with rehydration
buffer (7 M urea, 2 M thiourea, 2% CHAPS, 15 mM DTT,
0.5% IPG buffer). The proteins were applied to IPG strips
(pH 3-10, linear, 24 cm) and focused on an IPGphorIII
(Amersham Biosciences) for a total of 64 kVH. The
focused IPG strips were equilibrated and then applied to
12.5% SDS-PAGE using low-fluorescence glass plates on
an Ettan DALT SIX system (Amersham Biosciences). All
electrophoresis procedures were performed in the dark.
After SDS-PAGE, the gels were scanned on a Typhoon
9400 scanner (GE Healthcare) at appropriate excitation/
emission wavelengths specific for Cy2 (488/520 nm), Cy3
(532/580 nm), and Cy5 (633/670 nm) to generate spot
maps. We prepared another strip in parallel as a prepara-
tive gel for spot pickings using the same process, except
the IPG strip was loaded with 1000 μg proteins and the gel
was stained with Coomassie brilliant blue.

Imaging analysis

DeCyder 6.5 software was used for 2D-DIGE analysis,
according to the manufacturer’s recommendations. The
DeCyder differential in-gel analysis (DIA) module was
used to compare each cell line mitochondria protein sam-
ple to the internal standard in each gel. The DeCyder bio-
logical variation analysis module was then used to
simultaneously match all spot maps, using Cy3: Cy2 and
Cy5: Cy2 DIA ratios, to calculate average abundance
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changes and Student’s t-test P values for the variance of
these ratios for each protein across all samples. The differ-
ential protein spots (|ratio|NL9980/L9981 ≥ 1.2, P ≤ 0.05)
were selected for identification.

Protein identification by mass
spectrometry (MS)

Spots of interest were chosen using an Ettan Spot Picker
from the preparative gel, destained, and digested with in-
gel trypsin. Tryptic peptides (0.5 μL) were mixed with
0.5 μL matrix solution (α-cyano-4-hydroxycinnamic acid
[CHCA] in 50% acetonitrile
[ACN]/0.1% trifluoroacetic acid [TFA]) and then ana-

lyzed using an AutoFlex MALDI-TOF/TOF mass spec-
trometer with LIFT technology (Bruker Daltonics, Bremen,
Germany) to obtain the peptide mass fingerprint. Peptide
matching and protein searches against the NCBInr data-
base were performed using the Mascot search engine
(http://www.matrixscience.com/) with a mass tolerance of
�100 ppm.

Functional enrichment analyses of
mitochondrial differential proteins and
protein–protein interaction data

The gene names of mitochondrial differential expression
proteins were converted to NCBI-Entrez format for consis-
tency and saved as a text file that was input into Cytoscape
version 3.0.2 (www.cytoscape.org), BiNGO plugin 3.0.2,
and AgilentLiteratureSearch 3.0.3.beta downloaded from
Cytoscape manage plugin was used to analyze the enriched
biological processes, molecular functions, and literature
based protein–protein interaction network studies.

RNA isolation, reverse transcription
reaction, and real-time PCR

Total cellular RNA was isolated from 5 × 106 cells using
the Trizol reagent (Invitrogen, Carlsbad, CA, USA)
according to the manufacturer’s instructions, and quanti-
fied using an ultraviolet spectrophotometer (Beckman
Coulter, Fullerton, CA, USA).
RNA (2 μg) was reverse transcribed using an M-MLV

Reverse Transcriptase Kit (Promega) according to the
manufacturer’s protocol. Resultant cDNA (20 ng) was
mixed with SYBR Green Master Mix (Applied Biosystems
by Life Technologies, Foster City, CA, USA) and interest
genes primer and amplified in the ABI7500 Real-time PCR
System according to the manufacturer’s protocol. The
results of relative quantification were analyzed by compari-
son of 2−averageΔΔCT × 100%. The PCR primers are shown
in Table 1.

Statistical analysis

Data are presented as means � standard deviation and the
t-test was used to analyze the differences between NL9980
and L9981 cell lines. P < 0.05 was considered statistically
significant. PCR and Western Blot analyses were repeated
at least three times.

Results

Enrichment of mitochondrial fractions

After protein extraction, we performed Western Blot analy-
sis using cytochrome c, a mitochondrial marker, and
PCNA, a nuclear marker. Cytochrome c was enriched
while PCNA was barely detectable in the mitochondrial
fraction, indicating that mitochondrial enrichment was not
contaminated by proteins from other subcellular compart-
ments (Fig 1).

Identification of differential
proteins by MS

The mitochondria proteins of NL9980 and L9981 cell
lines were compared by DIGE analysis and the mean
number of spots detected in the three gels was
2333 � 96.2 (Fig 2). Among 1722 � 311.1 matched pro-
tein spots, 217 spots were differentially expressed in
NL9980 and L9981 cell lines (|ratio| NL9980/
L9981 ≥ 1.2). Sixty-four protein spots with the most
remarkable alteration were further analyzed by MALDI-
TOF peptide fingerprint and their molecular functions
were summarized (Table 2).

Functional enrichment analyses of
mitochondrial differential proteins and
protein–protein interaction data

Functional enrichment category analyses of mitochondrial
differential proteins were identified. The functional enrich-
ment maps of the biological process and molecular func-
tion are shown in Figures 3 and 4, respectively. The white
color shows non-significance in enrichment analysis; the
color range from yellow to orange shows an adjusted
P value from 0.05 to < 5*10-7. The statistical significantly
enriched biological processes and molecular functions
(P < 0.05, adjusted using the Bonferroni correction) are
listed in Table 3. Biological processes, such as cellular res-
piration, energy derivation by oxidation of organic com-
pounds, electron transport chain, respiratory electron
transport chain, cellular metabolic process, generation of
precursor metabolites and energy, oxidation reduction, and
the metabolic process were enriched. Molecular functions,
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such as oxidoreductase and catalytic activity, were also
enriched. The results showed that most of enriched pro-
teins of the identified mitochondrial differential proteins
were oxidoreduction-related proteins and biological pro-
cesses were oxidoreduction-related processes.
A literature based protein–protein interaction sub-

network of mitochondrial differential proteins was gener-
ated using AgilentLiteratureSearch from CytoScape. The
results are shown in Figure 5. In this subnetwork, the col-
ored circles (nodes) represent proteins, the yellow circles
represent the proteins from our results, and the grey full
lines (edges) represent protein–protein interactions. Mito-
chondrial differential proteins, such as PRDX3, SOD2,

PHB, HSP75 (TRAP1) and GLS, more frequently inter-
acted with other proteins. These interaction data provide
important insight into the molecular mechanisms of
NSCLC metastasis.

Validation of differentially expressed
proteins on gene level by real-time PCR

To verify the 2D-DIGE profiling results, we selected
37 genes and detected their expression by real time PCR.
The genetic alterations of selected mitochondria proteins
conformed to the 2D-DIGE data (Fig 6).

Table 1 Primers of real-time PCR analysis

Protein ID Gene symbol Forward Primer Reverse Primer

1405 CAMSAP1 ATATGCTGTATGCGCCATTAGTG GGGCTGAACAAAATCTGGCTT
1451 MRPL1 GGAAGGCGAACCTGAGGATG TGCCATATCCAGTGTCAAATCAA
917 GLS CACTCAAATCTACAGGATTGCGA CTCCAGACTGCTTTTTAGCACTT
1526 ATPAF1 TCAAATGTGTGGAACAGAAGACA TGCGTAGACTGTATCTTTTGCTG
799 ME 2 CTCTGTAACACCCGGCATATTAG GGTGGGTAAAGTCTCCCTTGG
1685 FAM82B TCAGTTGCTAACCCAATACAAGG CTCTTCTGAGGTTCTGCTAAGC
1088 PDHA1 TCGCAGAGCTTACAGGACGA ACTTACAGGCTAGAGCAATCCC
1172 ACADM GGAGATCACAGCATACAAAAGCC TTAGGGGGACTGGATATTCACC
1594 ABHD11 TCCGCTTTCCTACAGGCTTCT GAAGAGCCCGTGCAAAAAGA
1678 HSD17B10 AAGAAGTTAGGAAACAACTGCGT CAGGCGGATCACATTGAAGGT
1095 UQCRC1 CGGTGGGAGTGTGGATTGATG GCCGATTCTTTGTTCCCTTGA
923 DLD GAAATGTCCGAAGTTCGCTTGA TCAGCTTTCGTAGCAGTGACT
923 SAMM50 CAAGTGGACCTGATTTTGGAGG AGACGGAGCAATTTTTCACGG
1563 COQ5 AGAGCTGGACTTGCATGGGTA GGGGATTGTTCACTTGGCTAAAT
1356 MRPL39 CCGACAGAATTGACAGAAATGCG CTTCTCAGTTCGGGGAGTTAATG
1606 AK2B AAGCCTACCACACTCAAACCA GCTTGCGAACACGACATCG
740 MIPEP TCTTACCAGAACACATTCGTCG CTGCTGCTGAGCAATTCTTCTA
1664 APOA1BP GTGTCCTGAAGGGACTCACTG CCCAGGTAATGGTAGCGACC
1916 NDUFA5 AGGAAATCCCTAAAAATGCAGCA TCTTCCACTAATGGCTCCCATA
1660 UQCRFS1 TGCTTCTGTTTGTTATTCCCACA AAACCTTTCCTAGCCTCGCTG
1169 MRPL38 AACAGTGACATCGACTTGAGC CCCGAAATACTCTCGGTAGGTC
1301 TIMM50 GACGAAAATGGTGCCAAGAT TAGGGTGGCTGGTAGTACGG
1093 FH ATGGTCTTGATCCAAAGATTGCT TGATCCAGTCTGCCATACCAC
1138 CS CCATCCACAGTGACCATGAG CTTTGCCAACTTCCTTCTGC
1665 NDUFS3 ACTGTCAGACCACGGAATGAT CCCTGAGGAAAGTCAGCACTG
1932 ATP5J GTTCTCCTCTGTCATTCGGTCA CCAGCTCTTGCTGATACTCTGAA
1553 PHB GGCTGAGCAACAGAAAAAGG GCTGGCAGGTAGGTGATGTT
1586 AK2a TGCAAGCCTACCACACTCAAA GACATCGGGGGTCTGGGAT
962 LAP3 CACACGTTTAACCCGAAGGT AGAGAGGCATCCTCCAGACA
1227 CECR5 CCACAGAGTGATCCCTGCTG CGCTTCTCATGGTACTCGGA
1589 DCI PROTEIN AACCCCAGGTACTGCATAGGA CAACCAGAAAGGGGCGATGAT
1296 Coprox AAGGCTGGGGTGAGCATTTC GATTCTTGGGGTGGATAACAGAG
971 ALDH7A1 TGGGCAGATATTCCTGCTCCA CCCACACCTTCCACTAAGATTTT
1717 PRDX3 GCCGTTGTCAATGGAGAGTTC GCAAGATGGCTAAAGTGGGAA
1139 NDUFS2 GGAGTCCGATTGCCGATTCAG GGGCTGTTTCTTTGCTTGGG
709 GPD2 TGAACCTGGCCTATGTTAAAGC GGCTGTTTTTAGTCCTCTGGTG
1756 SOD2 AACCTCAGCCCTAACGGTG AGCAGCAATTTGTAAGTGTCCC
Endogenous gene GAPDH AGCCGAGCCACATCGCT GGCAACAATATCCACTTTACCAGAGT

GAPDH, glyceraldehyde 3-phosphate dehydrogenase.
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Validation of differentially expressed
proteins by Western blotting

To further validate the 2D-DIGE profiling result from pro-
tein level, we performed Western blot analysis on several
interesting mitochondrial proteins, including FH, PRDX3,
HSP75, ERAB, and PHB. The expression of recruited pro-
teins was significantly higher in NL9980 cells compared to

L9981 cells, which was consistent with results from the
2D-DIGE data (Fig 7).

Discussion

To a large extent, the poor prognosis of lung cancer is
associated with its malignant metastatic phenotype. To bet-
ter explore and understand the mechanism of lung cancer
metastasis and to search for potential markers for early
diagnosis and reverse metastasis, we previously performed
differential proteomic analysis in two human large cell lung
cancer cell lines with high (L9981) and low (NL9980)
metastasis potential by 2D-DIGE. The data suggest that
obvious differential proteomic expression exists between
human high and low metastatic large cell lung cancer cell
lines.44 Although the molecular mechanisms have gradually
been deciphered, the function of mitochondria in the pro-
cess of lung cancer metastasis remains unknown. Some
studies have demonstrated that in certain tumors, such as
nasopharyngeal and hepatocellular carcinoma, mitochon-
drial proteins are the potential biomarkers for cancer initi-
ation and progression.45–47 Therefore, we proposed that
mitochondrial proteins might be differentially expressed in
lung cancer metastasis.

Figure 2 Differential expression of mitochondrial proteins in NL9980 and L9981 cell lines. (a–d) DeCyder software output of typical two-dimensional
differential in gel electrophoresis images of the mitochondrial proteins in NL9980 and L9981 cell lines; the protein lysates are labeled with either Cy3
(green) or Cy5 (red), respectively. (e) Identification of differentially expressed proteins. (f–g) Three-dimensional images of HSD17B10 and PRDX3,
which show that HSD17B10 and PRDX3 levels are higher in NL9980 compared to L9981 cell lines (f) Results of matrix assisted laser desorption-ioni-
zation-time of flight mass spectrometry analysis of protein spots of HSD17B10 and PRDX3 by peptide mass fingerprinting analysis.

Figure 1 Representative Western blot analysis of mitochondria-
enriched fraction. PCNA was used as a nuclear marker and cytochrome
c as a mitochondrial marker. Proteins (50 μg) were loaded per lane and
detection was performed using electrochemiluminescence.
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Routine protein analysis to detect mitochondrial pro-
teins is difficult because of their low expression com-
pared to non-mitochondrial proteins. In this study, we
conducted 2D-DIGE analysis combined with MALDI-
TOF/TOF to evaluate the differences in mitochondrial
protein expression between two human large cell lung
cancer cell lines with high (L9981) and low (NL9980)
metastatic potential. Two dimensional-DIGE revealed
217 differential spots between the two cell lines, while
MS revealed a further 64 spots with significant differ-
ences. Interestingly, a number of non-mitochondrial
proteins that presented in the enriched mitochondria
fraction were also differentially expressed between the
two cell lines. These proteins are either peripherally
associated with the mitochondria, sublocated in the
mitochondria, or present as possible contaminants in
the preparation. Nevertheless, according to Swiss-Prot
annotation, the majority of the differentially expressed
proteins were localized in the mitochondria. Among
these candidates, six proteins piqued our interest,
including FH, HSP75, ERAB, PHB, and PRDX3, which
have previously been reported to be involved in cancer
development and metastasis.

Loss-of-function of FH, a metabolic tumor suppressor,
is associated with hereditary leiomyomatosis and renal
cell carcinoma.49 Studies have shown that FH-deficient
cancer is characterized by impaired oxidative phosphory-
lation and a metabolic shift to aerobic glycolysis, a form
of metabolic reprogramming referred to as the Warburg
effect. These changes represent multiple biochemical
adaptations in the glucose and fatty acid metabolism that
supports malignant proliferation.50,51 To date, no reports
have identified the relevance of FH in lung cancer devel-
opment and metastasis; however, in our study, we
observed that L9981 cells showed significantly low
expression of FH compared to NL9980 cells. As FH is
reported to be a metabolic tumor suppressor, we assumed
that FH might negatively regulate lung cancer invasion
and metastasis.
HSP75, also called tumor necrosis factor type 1 recep-

tor-associated protein (TRAP-1), is another down-
regulated mitochondrial protein with high metastatic
ability in L9981 cells. HSP75 is a negative regulator of
mitochondrial respiration that can modulate the balance
between oxidative phosphorylation and aerobic glycoly-
sis. The impact of HSP75 on mitochondrial respiration
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Figure 3 Enriched biological processes of differentially expressed mitochondrial proteins between NL9980 and L9981 cell lines with low and high
metastatic potential. Color circles represent biological processes, arrows represent the relationship between two biological processes, white circles
show non-significance in enrichment analysis, and the color range from yellow to orange shows adjusted P values from 0.05 to < 5*10-7.
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is probably mediated by the modulation of mitochon-
drial spare respiratory capacity (SRC) and the inhibition
of SDHA. Previous studies have indicated that HSP75
expression is significantly reduced in bladder cancer and
renal cell carcinoma compared to healthy tissues, but is
increased in other types of tumors.52–54 Recently,
Agorreta et al. reported that HSP75 impacts the viability
of NSCLC cells, and that its expression is prognostic in

NSCLC.55 Liu et al. confirmed that HSP75 could stimu-
late the proliferation of lung cancer cells but inhibits
metastatic spread.56 However, Caino et al. reported con-
tradictory findings, reporting that HSP75 favors meta-
static dissemination in disease models in mice, and
shortens overall survival in patients with NSCLC,57 indi-
cating that the role of HSP75 is complex in lung cancer
metastasis.
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ERAB is characterized as a NAD +-dependent dehydro-
genase that is constitutively expressed in tissues and over-
expressed in neurons affected in Alzheimer’s disease. Cells
overexpressing ERAB in vitro are more sensitive to β-Amy-
loid-induced stress, and blocking ERAB activity has been
shown to inhibit this cell death, indicating that β-Amyloid
induced cell death is mediated by ERAB.58,59 The role of
ERAB in tumors has rarely been reported. The only study
we located by Shen et al. indicated that ERAB is differen-
tially expressed in HOXA13 knockdown esophageal squa-
mous cell carcinoma cells.60

PHB is an evolutionary conserved protein that responds
to mitochondrial stress and plays a role in regulating mito-
chondrial respiration activity.61 It is considered a regulator
of cell growth, proliferation, differentiation, aging, and
apoptosis.62 The role of PHB in cancer cell growth remains
controversial. Many reports have shown evidence that
PHB overexpression results in the inhibition of cancer cell
growth, but the knockdown of PHB by small interfering
RNA (siRNA) accelerates tumor growth in prostate, gas-
tric, and liver cancers.63–65 However, other studies have
suggested that PHB plays a protumorigenic role. PHB is
necessary for the activation of C-Raf by the oncogene Ras
in HeLa cells.66 In the present study, L9981 cells showed
slightly decreased expression of PHB compared to NL9980
cells. The exact of role of PHB in lung cancer metastasis
remains under investigation.
PRDX3 functions as an antioxidant and is localized in

the mitochondrion. PRDX3 overexpression is associated
with the cancer development, progression, and drug resis-
tance. Results suggest that PRDX3 is upregulated in pros-
tate cancer and plays an essential role in regulating
oxidation-induced apoptosis in anti-androgen-resistant
prostate cancer cells.67,68 Moreover, PRDX3 is reported to
be involved in drug resistance in ovarian cancer. Wang
et al. reported that PRDX3 protein expression is signifi-
cantly higher in platinum-resistant ovarian cancer patients
than in platinum-sensitive patients.69 Recently, Duan et al.
further demonstrated that downregulation of PRDX3 by
siRNA enhanced cisplatin induced ovarian cancer cell apo-
ptosis, providing new evidence of the potential application
of PRDX3-siRNA in cancer therapy.70 Regarding PRDX3
lung cancer, Kim et al. showed that PRDX3 was markedly
overexpressed in human squamous cell carcinoma,
suggesting that it may play a protective role against oxida-
tive injury in lung cancer.71 Our mRNA and protein level
results confirm that PRDX3 expression is remarkably
decreased in high metastatic lung cancer L9981 compared
to low metastatic lung cancer NL9980 cell lines, indicating
that PRDX3 might also be involved in the lung cancer met-
astatic process.
In summary, for the first time, we have identified mito-

chondrial differential expression profiling between lung

Table 3 Functional enrichment category analyses of mitochondrial dif-
ferential proteins

GO ID GO term P Number of genes

Biological Process
6732 Coenzyme metabolic process 2.75E-03 6
6082 Organic acid metabolic

process
1.81E-03 10

45333 Cellular respiration 1.35E-07 8
7005 Mitochondrion organization 1.07E-03 6
15980 Energy derivation by

oxidation of organic
compounds

3.68E-06 8

22900 Electron transport chain 1.85E-05 7
22904 Respiratory electron transport

chain
1.62E-05 6

19752 Carboxylic acid metabolic
process

1.62E-03 10

42180 Cellular ketone metabolic
process

2.25E-04 11

42773 ATP synthesis coupled
electron transport

3.40E-04 5

43648 Dicarboxylic acid metabolic
process

3.72E-03 4

44237 Cellular metabolic process 2.92E-05 31
51186 Cofactor metabolic process 9.28E-04 7
6091 Generation of precursor

metabolites and energy
4.03E-07 11

44281 Small molecule metabolic
process

1.31E-03 15

6119 Oxidative phosphorylation 2.45E-04 6
55114 Oxidation reduction 3.92E-09 16
43436 Oxoacid metabolic process 1.62E-03 10
42775 Mitochondrial ATP synthesis

coupled electron transport
3.40E-04 5

8152 Metabolic process 1.31E-05 34
6120 Mitochondrial electron

transport, NADH to
ubiquinone

4.09E-03 4

Molecular Function
51287 NAD or NADH binding 1.83E-03 4
16903 Oxidoreductase activity,

acting on the aldehyde
or oxo

2.10E-02 3

16681 Oxidoreductase activity,
acting on diphenols and its
analogues

4.35E-02 2

8137 NADH dehydrogenase
(ubiquinone) activity

4.98E-02 3

8121 Ubiquinol-cytochrome-c
reductase activity

4.35E-02 2

16491 Oxidoreductase activity 2.34E-09 16
3954 NADH dehydrogenase activity 4.98E-02 3
50136 NADH dehydrogenase

(quinone) activity
4.98E-02 3

3824 Catalytic activity 2.55E-06 32
16651 Oxidoreductase activity,

acting on NADH or NADPH
6.29E-04 5

50662 Coenzyme binding 2.65E-02 5

GO, gene ontology.
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Figure 5 A protein–protein inter-
action subnetwork of differentially
expressed mitochondrial proteins
between NL9980 and L9981 cell
lines with low and high metastatic
potential. In this subnetwork, the
colored circles (nodes) represent
proteins, the yellow circles repre-
sent the proteins from our results,
and the grey full lines (edges) repre-
sent protein–protein interactions.
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cancer cells with high and low metastatic potential by
screening mitochondrial protein expression.
Further investigation is necessary to determine the biological
function and the relevance of the identified mitochondrial
proteins in the metastatic process of lung cancer.
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