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Abstract: The current study aimed to compare differences in the cognitive development of children
with and without upper limb motor disorders. The study involved 89 children from 3 to 15 years old;
57 children with similar upper limb motor disorders and 32 healthy children. Our results showed
that motor disorders could impair cognitive functions, especially memory. In particular, we found
that children between 8 and 11 years old with upper limb disorders differed significantly from their
healthy peers in both auditory and visual memory scales. These results can be explained by the
fact that the development of cognitive functions depends on the normal development of motor
skills, and the developmental delay of motor skills affects cognitive functions. Correlation analysis
did not reveal any significant relationship between other cognitive functions (attention, thinking,
intelligence) and motor function. Altogether, these findings point to the need to adapt general
habilitation programs for children with motor disorders, considering the cognitive impairment
during their development. The evaluation of children with motor impairment is often limited to their
motor dysfunction, leaving their cognitive development neglected. The current study showed the
importance of cognitive issues for these children. Moreover, early intervention, particularly focused
on memory, can prevent some of the accompanying difficulties in learning and daily life functioning
of children with movement disorders.

Keywords: cognitive function; arthrogryposis; obstetrics palsy; children; motor disorder

1. Introduction

The relationship between cognitive and motor development has long been the focus of
psychology and psychophysiology. Nonetheless, no consensus has been reached regarding
the connection between motor and cognitive skills [1–4]. Moreover, the neural mechanisms
underlying this link remain elusive. Studies have shown significant correlations between
particular categories of motor and cognitive function, including complex motor skills
and higher-order cognitive abilities. For example, Stöckel and Hughes [5] showed a
strong association between anticipatory motor planning and working memory. This motor–
cognitive interaction during development was also shown in Abdelkarim’s study [6], which
reported that fostering children’s physical fitness during primary school age could enhance
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both motor and cognitive learning abilities related to academic achievement. However, the
authors of one of the most recent reviews on this topic [1] report no significant correlation
between motor and cognitive skills in 4 to 16-year-old healthy children. Other studies
have revealed that middle school children show a stronger relationship between the main
categories of motor and cognitive skills compared to older school children [1].

Importantly, the evidence for a strong connection between cognitive and motor de-
velopment is not limited to the behavioral domain. Several neurobiological studies have
shown co-activation among the cerebellum, basal ganglia, and prefrontal cortex during dif-
ferent motor and cognitive tasks, especially those that are complex, new, have changeable
conditions, or require quick responses and concentration to be completed [7,8]. Further-
more, functional studies using fMRI showed the activation of the cerebellum during
cognitive tasks in which no movement is involved [9]. A number of anatomical and func-
tional imaging studies have shown that cerebellum function is affected in several cognitive
and behavioral developmental disorders, such as attention deficit hyperactivity disorder,
autism, and schizophrenia [7]. Importantly, this neurophysiological evidence corroborates
the association between motor and cognitive development in children [10].

Thus, cognitive and motor development seem to be particularly interrelated. Indeed,
motor and cognitive skills show a similar developmental timeline, especially between the
ages of 5 and 10 years old [11], and share several main psychophysiological processes, such
as sequencing, monitoring, and planning [12].

Considering the inconsistencies among previous findings, it is crucial to explicitly
assess the connection between motor and cognitive development beyond correlational
indices. In this sense, the study of clinical populations, in particular children with motor
impairment, would significantly contribute to the understanding of the interplay between
motor and cognitive function during development. Moreover, the establishment of a clear
link between the development of motor and cognitive abilities as well as its underlying
brain mechanisms would enable new and integrative rehabilitation approaches for the
improvement of both cognitive and motor skills.

To address this question, this study assessed the cognitive function of children with
upper limb motor disorders, in particular subjects with arthrogryposis multiplex congenita
(AMC) and obstetric brachial plexus palsy (OBPL). Among motor-related diseases, AMC
is known to be one of the most serious congenital malformations and is characterized
by the presence of two or more major joint contractures, muscle aplasia or hypoplasia,
and motoneuronal dysfunction in the anterior horns of the spinal cord. The lack of active
movement in the joints of the upper extremities is one of the main problems causing
the limitation or inability to self-care. In clinical practice, these motor skills are restored
by autotransplantation of muscles from various donor areas. Rehabilitation after such
operations is associated with, among other things, neuronal rearrangements in the central
nervous system, both in the spinal cord and in the cerebral cortex [13]. OBPL is an injury to
the brachial plexus that occurs during birth, usually as a result of a stretching injury from
a difficult vaginal delivery. This results in paralysis of the upper limb, which is therefore
non-congenital, unlike in the case of AMC [13].

Although the prognosis is generally considered to be good, 20–30% of individuals
with OBPL have a residual deficit [14], severe OBPL can result in permanent impairment
of arm function, skeletal malformation, cosmetic deformity, behavioral problems, and
socioeconomic limitations [15,16]. Individuals with OBPL reportedly have defective mo-
tor programming [17]. For example, OBPL infants “forget their arm” during automatic
movements [16], supporting the concept of impaired central motor programs in OBPL. Dif-
ferences in automatic movements between the affected and unaffected sides are caused by
incomplete central program development and may contribute to incomplete arm function
recovery following OBPL [16]. To further contribute to the discussion of the intertwining of
cognitive and motor development, we specifically assessed the state of different cognitive
functions, such as attention/concentration, memory, and intelligence, in children with
AMC and OBPL as compared with a control group of healthy children. The outcomes
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obtained in this study may be particularly useful for the development of rehabilitation
programs aimed at improving both motor and cognitive skills in children with upper
limb motor disorders. Furthermore, these findings confirm the affectation of the central
nervous system in this clinical population, as previously suggested in recent studies, thus
demonstrating the causal relationship between peripheral motor dysfunction and cognitive
impairment [18]. From our point of view, the evaluation of children with motor impair-
ment is often limited to their motor dysfunction, leaving their cognitive development
neglected. Therefore, the current study was focused on the importance of cognitive issues
for these children.

2. Materials and Methods
2.1. Participants

A group of 57 children (27 girls) 3–15 years old (mean = 8.3) with upper limb motor
disorders (35 subjects with AMC and 22 subjects with OBPL) were selected from the Turner
National Medical Research Center for Children’s Orthopedics and Trauma Surgery. A
group of 32 healthy children (15 girls) 3–15 years old (mean = 9.6) with no history of
visual, hearing, or cognitive disorders were selected as a control group (see Table S1 in
Supplementary Materials). Children in the control and motor-impaired groups received
the same education according to state standards of general education, thus following the
school curriculum for normally developing children.

Regarding their clinical characteristics, children with AMC and OPBL have the fol-
lowing common pathology as per orthopedic classification:

They have the presence of contractures in two or more large joints, hypoplasia or
aplasia of muscles, and signs of problems with motoneurons in the anterior horns of the
spinal cord. At the same time, the upper limb of a patient has a characteristic profile with
the following characteristics: an adductor contracture in the shoulder joint, an extensor
(less often, flexion) contracture in the elbow joint, a flexion contracture in the wrist joint,
flexion contractures in the fingers, an adduction contracture of the thumb, hypoplasia
or aplasia of the muscle of the upper limbs, and restriction or lack of self-service. The
muscles of the upper limbs are hypoplastic or absent. Therefore, both AMC and OBPL were
included in our research as the clinical group. All patients had symptoms associated with
diagnosed diseases and other disorders (for example, brain damage) were not identified.

Children with upper motor disorders were then split into three groups according to
their age: Group A (22 children, 3–7 years old), Group B (24 children, 8–10 years old),
and Group C (11 children, 11–15 years old) (see Table S2 in Supplementary Materials).
Groups were determined in accordance with the most generally accepted age subdivisions
in developmental psychology and Elkonin’s periodization, and in correspondence with
the three main developmental periods—that is, preschool, primary school, and secondary
school age. The same age subdivision was applied to children in the control group, resulting
in Group A (6 children), Group B (13 children), and Group C (13 children).

2.2. Assessment of Cognitive Functions

A battery of diagnostic techniques was selected to assess children’s cognitive functions
of attention span, auditory memory, visual memory, conceptual development, and intelli-
gence. Assessments were conducted individually with each child in a quiet room specially
prepared for psychological testing. Two psychologists participated in the evaluation and
interpretation of the results.

Attention and auditory working memory were assessed using the Wechsler Intelli-
gence Scale for Children. The WISC-IV was used for children from six years and WPPSI
was used for the 3–6-year age group [19,20]. Selected subtests consisted of the repetition of
a set of numbers in forward and backward order. The child repeated after the experimenter
a set of numbers, first in forward order, then in reverse order, with the opportunity to
make one mistake. The total number of memorized digits was recorded on the form and
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then converted into points, by which the level of attention and memory development
was determined.

Attention is the behavioral and cognitive process of selective concentration on a
discrete stimulus [21]. In this case, the attention is reflected in the child’s ability to repeat
backward the numbers he or she has heard.

Auditory working memory reflects an individual’s ability to listen to information
presented orally, encode it, immediately repeat it, and recall it after [21]. In this case, the
number of digits the child has memorized reflects the volume of auditory working memory.

Short-term visual working memory was measured using Shipitsina’s “Psychological
diagnostics of deviations in the development of children of primary school age.” [22].
Within the framework of this method, 10 pictures were presented one at a time (one picture
per second), after which the participant was asked to recall and name the objects presented
in the pictures. Visual working memory is a cognitive system that maintains a limited
amount of visual information so that it can be quickly accessed to serve the needs of an
ongoing task. The number of memorized pictures was recorded on the form and then
translated into points, which determined the level of visual short-term memory.

Verbal logical thinking, an aspect of conceptual development that includes general-
ization processes and the ability to highlight essential features, was measured using the
set of sequential pictures of Shipitsina’s “Psychological diagnostics of deviations in the
development of children of primary school age.” [22]. After a randomly arranged set of
pictures was displayed, children were required to put the pictures in order, making up a
logical story. The complexity of the pictures was a function of the age of the participant: the
higher the age, the greater the complexity. Thinking was assessed on a point scale, where
important evaluation factors were the child’s ability to identify cause-and-effect connec-
tions and ways of verbally conveying these connections (number of sentences, number of
parts of speech used for this purpose, etc.).

These two tests from the set of Shipitsina were published by decision of the Scien-
tific Council of the Institute of Special Pedagogy and Psychology at the R. Vollenberg
International University for Family and Children.

The test for visual memory is very similar to the test VISMEM: Recovery Test (Tombaugh,
T. N (1996). Test of memory retention: the TOMM. North Tonawanda, NY: Multi-Health
Systems.) Furthermore, the test we have used is more appropriate for our age group.

The test for verbal logical thinking is similar to one of the sets of the Wechsler test
(Wechsler, D. Wechsler Intelligence Scale for Children-IV Conceptual and Interpretive
Guide. Indiana Univ.-Purdue Univ. Indianap. 2003.), but we did not take it exactly, again,
because of the age range, which limited our choice of methods.

Finally, intelligence was evaluated using Raven’s progressive matrices (A, B, C) [23].
We used two types of tests-CPM/CVS kit and SPM+/MHV, because of the age period of
the children group. All children in group A are very close to four-year-old, therefore they
were included into group A (older than three years and seven months). Participants were
shown a series of pictures with progressive patterns and asked to choose the piece that
logically fit the picture. Intelligence is the ability to think, learn from experience, solve
problems, and adapt to new situations. The number of correct answers was converted to a
point system adapted for each age period.

The tests containing this assessment battery were chosen partly based on the age
range of the sample (from 3 to 15 years old) and in consideration of the time constraints
for the diagnosis of each child (that is, 60 min, due to medical reasons). These methods
thus allowed us to fully assess the main cognitive functions of motor-impaired and healthy
children representing a wide range of ages.

General motor development (GMD) refers to a person’s functional abilities, which
were evaluated by a neurologist based on the ball system of self-care skills. The maximum
number of points is 21. Subjects with a mild extent of functional impairment (level 3)
scored 17–20 points on the self-care scale ovals. A moderate extent of severity (level 2)
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corresponds to 9–16 points on the self-care scale, and a severe extent (level 1) corresponds
to a self-care score of 8 or lower.

2.3. Statistical Analysis

All cognitive tests that were used to assess the performance of the participants pro-
vided balanced, non-skewed scores. Accordingly, we treated the participants’ scores as
interval data, which allowed us to evaluate the results by means of quantitative analysis.
Specifically, the modulation of cognitive performance by the factors of group (either sub-
jects with motor impairment or control children) and age (younger, medium, and older
children) was tested by the means of a series of 2 × 3 univariate analyses of variance
(ANOVA). To account for the family-wise error rate, the resulting p-values were corrected
with respect to the false discovery rate (FDR) according to Benjamini and Hochberg [24],
with a critical q-value of 0.15.

Further, the link between GMD and performance in each cognitive task was evaluated
by means of Kerndall’s correlation coefficient (Kendall’s tau), which is recommended by
Khamis [24] for data sets of our type. Similar to the series of univariate ANOVAs, the
revealed p-values were corrected with respect to the FDR according to Benjamini and
Hochberg [25], with a critical q-value of 0.15.

3. Results

The ANOVA showed that nearly all cognitive indices obtained across different tests
were significantly affected by the age of the participants (see Table 1). In particular, older
children were characterized by higher scores in attention, auditory and visual memory,
storytelling, and average cognitive score (ACS) (see Table S3 in Supplementary Materials).

Table 1. Statistical results for cognitive performance (ANOVA) as a function of factors Group (df = 1; either patient or
control), and Age (df = 2: either 3–7 years, 8-10 years, or 11–15 years).* p < 0.05, ** p < 0.01, *** p < 0.001.

Group Age Interaction
F (1,64) p η2

p q F (2,64) p η2
p q F (2.64) p η2

p q

Attention 2.64 0.11 0.04 0.15 15.63 < 0.001 *** 0.32 < 0.001 0.72 0.49 0.02 0.57
Auditory
Memory 11.72 < 0.01 ** 0.15 < 0.01 15.01 < 0.001 *** 0.32 < 0.001 0.94 0.4 0.03 0.56

Visual
Memory 15.59 < 0.001 *** 0.19 < 0.001 11.07 < 0.001 *** 0.25 < 0.001 1.06 0.35 0.03 0.82

Intelligence 0.32 0.57 0 0.57 0.58 0.57 0.02 0.57 0.64 0.53 0.02 0.53
Storytelling 1.45 0.23 0.02 0.27 4.87 < 0.05 * 0.13 < 0.05 1.75 0.18 0.05 1

Thinking 16.55 < 0.001 *** 0.2 < 0.001 1.34 0.27 0.04 0.31 1.09 0.34 0.03 1
ACS 18.51 < 0.001 *** 0.22 < 0.001 22.19 < 0.001 *** 0.41 < 0.001 1.02 0.37 0.03 0.64

Importantly, results revealed that scores obtained in both auditory and visual memory
tests, the verbal-logical aspect of thinking, and the ACS were significantly different between
the two groups (see Table S4 in Supplementary Materials). Specifically, across all these
tests, the performance of subjects with motor impairments was significantly lower than
that of the control group (see Figure 1 for the score distributions in auditory and visual
memory tasks).

Further, we examined the interaction of GMD of the subjects and their performance
in various cognitive tasks. As can be seen in Table 2, these analyses showed that auditory
memory was significantly correlated with the GMD of children (rτ = 0.26; p = 0.02, q = 0.13),
as well as the attention span (rτ = 0.24; p = 0.04, q = 0.11). Moreover, we also observed
a relation between participant’s visual memory and their GMD as a trend (rτ = 0.20;
p = 0.08; q = 0.16). Therefore, although we do technically reject the hypothesis regarding
the correlation between participants’ motor function and visual memory performance, we
consider that a particular link between those variables might still be possible as a trend.
Performances on the other tests were not significantly explained by GMD scores.
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Figure 1. Scores in memory-assessment scales for patients (blue) and control children group (orange).
Upper panel: Auditory Memory performance; lower panel: Visual Memory performance. Control
group is characterized with higher memory performance despite the age of participants. �- points
outside of 1.5 interquartile range (IQR), which were identified as outliers.

Table 2. Correlation analysis (Kendall’s tau) between the general motor development (GMD) of
patients and their performance across the different cognitive tasks. * p ≤ 0.05 and satisfies the FDR
control (q ≤ 0.15).

rτ p q

Attention 0.24 0.04 * 0.11
Auditory Memory 0.26 0.02 * 0.13

Visual Memory 0.2 0.08 0.16
Intelligence −0.05 0.66 0.8
Storytelling 0.04 0.76 0.76

Thinking −0.09 0.42 0.63

4. Discussion

In the present study, we analyzed the effects of upper limb motor disorders on the
development of cognitive functions as assessed with neuropsychological tests. Our results
showed the difference in cognitive performance between subjects with motor disorders
and age-matched healthy controls. Specifically, we report a significant effect of motor
impairment on memory performance in both auditory and visual domains, as well as
in thinking and ACS. At the same time, performance on the tests evaluating attention,
intelligence, and storytelling did not differ between children with upper limb motor
disorders and their peers in the control group. Overall, we emphasize that ACS was
significantly decreased in children with upper limb motor disorders.

We compared the performance of cognitive tasks between children with upper limb
motor disorders and healthy controls across three age groups: preschool, primary school,
and secondary school. We assessed the span of auditory and visual memory, attention,
intelligence, VLT, and ACS. We also ran a separate regression analysis of GMD and subjects’
cognitive development.
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A separate analysis of different age groups allowed us to trace cognitive development
in children with upper limb motor disorders and control children dynamically. As a
result, we observed the delay of cognitive development in children with upper limb motor
disorders on their memory performance in both visual and auditory domains. Specifically,
the difference in memory performance between subjects with upper limb motor disorders
and control children was most prominent in the range of 8–10 years, whereas older children
caught up to their control peers.

It is noteworthy that in this age range, cognitive learning styles and personality are
actively formed, which allows the child to form their own individual behavioral programs.
Overall, this age is referred to as the period of active formation of voluntary regulation
of behavior, reflection, and self-control [26]. Basically, children of this age are actively
growing, and their brains are developing intensively. At a deeper level, subtler functional
connections are being formed between different brain areas, which will ensure the complex
work of the whole organism [27]. It has also been shown that children 8–10 years of age
undergo the accelerated formation of those brain areas that are responsible for motor
activity. Accordingly, their movements become more accurate and varied [28,29]. Our
results show that these processes might not fully occur in children with motor development
disorders at this age and essentially are shifted to an older age. Most importantly, our
findings reveal that such motor impairment is likely responsible for the cognitive delay
shown in these children, particularly with respect to visual and auditory memory.

Previous studies have shown that motor and cognitive development can be funda-
mentally attributed to ages 8–10 [12]. Moreover, contrary to the previously widespread
belief that motor development begins and ends earlier than cognitive development, studies
have shown that both motor and cognitive development have equally long and likely
interconnected developmental schedules [29–31]. Considering the present findings, a par-
ticular connection between cognitive and motor development seems plausible. Specifically,
impaired cognitive development (e.g., in the case of a mental disorder) is likely to lead to
impaired motor development. However, in the case of children with upper limb motor
disorders, an inverse relationship might be assumed: if motor development is delayed, the
development of cognitive functions (especially memory) seems to be affected too. Studies
suggest that some aspects of cognitive and motor control are highly correlated, especially
in the age range of 8–10 years old [12,32]. The difference in memory performance between
children with upper limb motor disorders and healthy children, as well as the significantly
different VLT performance between these groups, also implies such a connection.

To reveal this motor–cognitive link in detail, we further attempted to explicitly analyze
the association between motor development in children with upper limb motor disorders
and their cognitive development assessed by means of a wide battery of tests. Impor-
tantly, we found a significant correlation between subjects’ GMD and auditory memory
performance. Moreover, we observed a correlation between the visual memory and the
GMD at the level of the trend. However, we observed a correlation between the visual
memory and the GMD at the level of the trend. Moreover, we suggest that the significant
correlation between attention and general motor development might also be connected to
the processes underlying decreased memory performance due to the strong link between
attention and memory [33]. Of note, had we only focused on memory performance as the
main aspect of cognitive development affected by impaired motor development, we would
have found a significant connection between motor development and both modalities of
memory. Accordingly, although we could not find a significant correlation between visual
memory performance and cognitive development, a particular link between them might
still persist. At the same time, our findings with regard to auditory memory are fully in
line with previous studies showing the link between memory and motor skills [27,32,34].
We also suggest that GMD might be connected with other modalities of memory during a
particular age range, and hence its effect could be blurred since the correlation analyses in
the current study could not be performed separately for specific age ranges but rather were
performed for the whole group of children. Future studies might attempt to clarify the link
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between the motor development of children and their memory function in more detail; in
this vein, we suggest using a larger sample size, which would allow us to conduct separate
correlation analyses of different age groups.

We found no significant correlation between motor development and intelligence.
The absence of such a relationship is in line with other studies confirming that motor
and intellectual levels in healthy children are largely independent [35]. Likewise, no
correlation was observed between motor development and attention, which is also in line
with previous studies [30]. Moreover, VLT did not correlate with motor development in
children with upper limb motor disorders, despite the fact that we observed a significant
difference in VLT performance between this group and the control group. We suggest
that the lack of such correlation might be because VLT is an indicator of a broad range of
cognitive functions, not limited to memory. VLT begins to develop when more and more
words are memorized, speech is embedded in children’s activities, and they start to perform
a planning function. Thus, VLT performance might be dependent on memory performance,
but not determined by it, as it is also affected by other domains of cognitive functions.

Summing up, our results indicate that a connection between children’s motor devel-
opment and memory performance does exist, at least in the auditory domain. In order to
account for a possible explanation for that phenomenon, developmental changes in both
motor and cognitive function must be considered.

First, children participating in this study were experiencing a period of active improve-
ment of motor skills, coordination, muscle control and reaction time, and facilitation of the
coordination of the biggest muscles, which altogether leads to success in organized sports
and games, improved coordination of small muscles, the mastery of complex own skills,
and improved fine control [36]. Moreover, around the age of 8–10 years old, one might
observe a noticeably smoother combination of motor actions and motor skills compared to
younger children. Specifically, normal children can rotate, twirl and jump, and perform
tasks that help them in sports [37,38]. In the cognitive sphere, this period is referred to
as the concrete operational stage, a term proposed by the Swiss psychologist Jean Piaget.
The concrete operational stage refers to the developmental period at which children begin
to apply logic and goals to specific events [39]. It is also the time when an infant’s brain
undergoes a series of significant changes. Information passes through the nervous system
at a faster rate, and different parts of the brain begin to work in concert with each other in
new combinations [40].

We suggest that the delay in the cognitive development of children with upper limb
motor disorders, particularly observed in memory performance, might occur because the
simultaneous development of the aforementioned motor skills, which is necessary during
the concrete operational stage, does not occur in children with upper limb motor disorders.
Moreover, motor and cognitive functions might be connected on a deeper level, and hence
may depend on the development of the same cortical and subcortical structures [41].

The interconnection of memory and motor development has also been observed in
other studies, which have shown the effect of motor memory in action choice and in
procedural learning. Thus, motor memory, considered an intrinsic property of the motor
system, can impact not only motor behavior, depending on the constraints, but also higher
cognitive functions [42]. Indeed, current theories on memory function consider that both
declarative knowledge and procedural skills might be acquired based on sensorimotor
interaction and interactive behavior [43–45].

Altogether, the assessment of cognitive skills in children with impaired motor abilities
in the current study contributes to a better understanding of the complex interconnection
between motor and cognitive development. Our analysis shows that memory seems to be
the primary aspect of cognitive development affected by impaired motor function. For a
more detailed understanding of such a link between memory and motor development, a
more specific study is required [46].

Regarding the practical implications of this study, these results should be reflected in
individualized educational and rehabilitation approaches for children with motor disorders.
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Whereas special rehabilitation programs designed for children with different disabilities are
widely used nowadays [47], children with motor impairments need programs specifically
adapted to their needs, considering all the nuances of their cognitive development, as
reflected in this study. The enhancement of motor development with, for example, the
help of interactive video games may be a new avenue of experimental research. Along
these lines, such games could be used to motivate children to slowly train their unde-
veloped muscles, and whether or not this influences their cognitive development could
then be evaluated [48–50]. In the future, this approach could help to understand exactly
what aspects are required to be considered during the development of rehabilitation and
habilitation programs for motor-impaired children.

5. Conclusions

• Motor dysfunction of the upper limb does impair cognitive functions, especially
auditory and visual memory.

• The link between cognitive skills and motor impairment is especially manifested
between the ages of 8 and 10 years old.

• These findings must be considered in the development of rehabilitation programs for
individuals with motor disorders.
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