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Abstract

Osteosarcoma (OS) is the most common primary bone cancer and ranks amongst the leading 

causes of cancer mortality in young adults. Jun activation domain binding protein 1 (JAB1) is 

overexpressed in many cancers and has recently emerged as a novel target for cancer treatment. 

However, the role of JAB1 in osteosarcoma was virtually unknown. In this study, we demonstrate 

that JAB1-knockdown in malignant osteosarcoma cell lines significantly reduced their oncogenic 

properties, including proliferation, colony formation, and motility. We also performed RNA-

sequencing analysis in JAB1-knockdown OS cells and identified 4110 genes that are significantly 

differentially expressed. This demonstrated for the first time that JAB1 regulates a large and 

specific transcriptome in cancer. We also found that JAB1 is overexpressed in human OS and 
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correlates with a poor prognosis. Moreover, we generated a novel mouse model that overexpresses 

Jab1 specifically in osteoblasts upon a TP53 heterozygous sensitizing background. Interestingly, 

by 13 months of age, a significant proportion of these mice spontaneously developed conventional 

OS. Finally, we demonstrate that a novel, highly specific small molecule inhibitor of JAB1, 

CSN5i-3, reduces osteosarcoma cell viability and has specific effects on the ubiquitin-proteasome 

system in OS. Thus, we show for the first time that the overexpression of JAB1 in vivo can result 

in accelerated spontaneous tumor formation in a p53-dependent manner. In summary, JAB1 might 

be a unique target for the treatment of osteosarcoma and other cancers.
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Introduction

Osteosarcoma (OS) is the most common primary bone cancer that predominately affects 

adolescents and causes the third most cancer-related deaths in young adults (1). Human 

genetic studies identified various germline mutations associated with an increased incidence 

of osteosarcomas, such as Li-Fraumeni TP53 mutations and Retinoblastoma RB1 mutations 

(2). Current osteosarcoma treatment consists of chemotherapy and aggressive surgical 

resection; however, the 5-year survival rate remains at only 70%, which is further reduced to 

as low as 20% in patients with metastases (1, 2).

Osteosarcoma is characterized by a complex karyotype with high-level genomic instability 

(2). Furthermore, a lack of mouse models renders the study of OS initiation and 

pathogenesis challenging. However, based on human and mouse genetic studies, mutant 

TP53 emerged as a major driver of OS formation (3, 4). Mice with a heterozygous deletion 

of Tp53 develop osteosarcoma with ~25% incidence rate by 18 months of age, and mouse 

models with the mesenchymal cell lineage-specific disruption of Tp53 and Rb results in 

osteosarcoma formation with a higher penetrance and a shorter latency (3–7). Thus, TP53 is 

the main driver of OS development.

Jun activation domain-binding protein 1 (JAB1), also known as COP9 signalosome subunit 5 

(CSN5/COPS5), is the fifth and enzymatic subunit of the highly conserved macromolecular 

complex, the COP9 Signalosome (CSN) (8). The importance of the CSN is underscored by 

the fact that the deletion of any individual subunits, CSN1-8, in mice, results in early 

embryonic lethality (8, 9). The CSN plays an important role in the regulation of protein 

turnover through its ability to cleave NEDD8, a small ubiquitin-like protein, from the active 

form of the largest family of E3 ubiquitin ligases, the Cullin-RING ligases (CRLs), thus 

inactivating them (8, 10). Intriguingly, Jab1 has been shown to play an essential role in 

cellular differentiation, cell cycle regulation, apoptosis, and DNA damage repair (9, 11–15). 

Indeed, our previous studies have demonstrated that Jab1 is required for the successive 

stages of skeletogenesis (12, 13). Interestingly, JAB1 is also overexpressed in many human 

cancers, including breast and prostate cancer (9). Mechanistically, JAB1 is capable of 

inactivating several tumor suppressors, including p53 (16). However, the role of Jab1 in 
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osteosarcoma pathogenesis in vivo was unknown until this study. Here, we report that JAB1 
is overexpressed in human osteosarcoma patient biopsy samples, and that the knockdown of 

JAB1 in highly malignant human OS cancer cell lines reduces their oncogenic properties. 

We identified a large and specific JAB1-regulated transcriptome in OS. We also report for 

the first time that the in vivo overexpression of Jab1 in mice specifically in osteoblasts 

results in accelerated spontaneous osteosarcoma formation in a p53-dependent manner.

Results

The knockdown of JAB1 reduces osteosarcoma oncogenic properties.

To investigate the effect of the loss of JAB1 on tumorigenesis, we performed lentiviral 

shRNA knockdowns in 143B and U2OS cells, two highly malignant human osteosarcoma 

cell lines (17, 18). As for TP53 status, 143B harbors a R156P mutation and U2OS cells has 

wild-type TP53 (19). We performed experiments using a scrambled control shRNA and at 

least 2 shRNAs specifically targeting JAB1/COPS5 (Figure 1A and B). Similarly to what 

was reported in hepatocellular carcinoma, the loss of JAB1 in 143B cells had relatively little 

effect on the protein abundance of COPS3, a potential driver gene in OS (20–22), and 

COPS8, a subunit linked to gastric cancer (23, 24) (Figure S1). To further determine the 

effect of JAB1 loss on OS oncogenic properties, we performed standard functional assays in 

143B and U2OS cells. Our colony formation results indicate that JAB1-knockdown cells had 

a significantly reduced number of crystal violet stained colonies in 143B (64.6 vs. 6.4) and 

in U2OS: (90.3 vs. 31.7) (Figure 1C), (Figure S2). The MTT assay demonstrated 

significantly reduced cell viability after 48 hours in 143B and U2OS cells (Figure 1D). 

Finally, the in vitro wound assay demonstrated that JAB1 loss inhibits cell migration 

(Figures 1E and S3). JAB1 silencing in LM7 cells, another highly metastatic OS cell line in 

which TP53 is deleted, resulted in a similar functional defect (Figure S3) (19).

RNA-sequencing reveals that JAB1 regulates a unique oncogenic transcriptome in OS.

Next, we sought to obtain an unbiased JAB1-mediated transcriptome in OS to gain insights 

into the underlying mechanism of JAB1-mediated OS pathogenesis using RNA-sequencing 

in 143B JAB1-knockdown cells. Upon JAB1 depletion, there were a total of 4110 genes 

significantly differentially expressed, with 37.4% of those genes downregulated, and 62.6% 

upregulated (Figure 2A). Principal Component Analysis revealed that there is a very distinct 

set of genes that are dysregulated upon JAB1 silencing (Figure 2B).

Next, we submitted the lists of both significantly upregulated and downregulated genes to 

the Database for Annotation, Visualization, and Integrated Discovery (DAVID) (25, 26). 

Figures 2C and 2D list the top 5 most significantly altered Gene Ontology (GO) terms 

regarding molecular functions, cellular components, and biological processes. Among the 

downregulated genes, a large number are involved in protein binding for molecular function, 

and their cellular components are mainly in the cytoplasm and cytosol (Figure 2C). The 

most significantly downregulated biological processes are involved in mitosis, cell cycle 

progression, and cell-cell adhesion (Figure 2C). In contrast, the cellular component of the 

upregulated genes is mainly localized in the nucleus, and interestingly, the molecular 

function of the upregulated genes is also mainly involved in protein binding (Figure 2D). 
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This overall finding is consistent with the well-established role of JAB1 in binding to a 

diverse set of proteins (9, 10). Next, we performed standard Gene Set Enrichment Analysis 

(GSEA) to identify the key biological pathways that are regulated by JAB1 in OS (Figures 

3A and 3B). GSEA using the HALLMARK gene sets of the Molecular Signature Database 

demonstrated that the cell cycle regulation was among the most downregulated pathways 

upon JAB1-knockdown (Figure 3A and Table S1). Moreover, the G2/M Checkpoint and E2F 

Targets pathways, which are part of the Rb/E2F network involved in controlling cell cycle 

progression and OS pathogenesis (27), is significantly altered. Furthermore, the DNA Repair 

and p53 pathways were also changed upon JAB1-knockdown (Figure 3B). Therefore, GSEA 

identified very similar pathways as DAVID analysis in JAB1-knockdown cells, particularly 

the cell cycle regulation among the downregulated genes, suggesting this is among the key 

JAB1 downstream pathways in OS (Tables S1 and S2).

The knockdown of JAB1 impairs cell cycle progression, increases apoptosis, and its 
overexpression in human osteosarcoma is correlated with poor prognosis.

To determine the effect of the JAB1 loss on cell cycle progression, we conducted flow 

cytometry analysis in JAB1-knockdown 143B cells. There were significant changes in the 

percentage of cells at each phase of the cell cycle (Figure 4C). Cyclin A2 plays an important 

role in the G2/M phase transition, and is a common marker of cell proliferation (28). Cyclin 

B1 is important for entry into mitosis (29). The levels of these two cyclins were 

downregulated, indicating impaired cell cycle progression upon JAB1-knockdown (Figure 

4C). The most striking change in our flow cytometry analysis was the large increase in the 

percentage of cells in the sub G0 phase, suggesting an increased number of apoptotic cells 

(Figure 4C). Indeed, our GSEA analysis also identified an increase in the apoptosis pathway 

(Figure 4D). Notably, the levels of BAX, a key pro-apoptotic Bcl-2 family member, was 

increased upon JAB1-knockdown in 143B cells (Figure 4E). Furthermore, there was no 

change in the expression of BAK, another key pro-apoptotic Bcl-2 family member, and an 

increase in anti-apoptotic BCL-2 upon JAB1-knockdown (Figure 4D). Densitometry 

analysis revealed that there was an increased ratio of BAX:BCL-2, a key metric of apoptotic 

activity, in JAB1-knockdown 143B cells, indicating increased apoptosis and that BAX might 

be the major effector. Next, an unbiased screening identified 28 out of 45 of the most 

common signaling reporters being clearly altered (Figure 4F and Supplementary Table S3). 

These results indicate that JAB1-knockdown likely increases apoptosis and alters multiple 

major signal transduction pathways in OS cells.

JAB1 was previously reported to be overexpressed in many cancer cell types (9). Thus, we 

conducted JAB1 immunostaining using a tissue microarray containing human OS biopsy 

sections from 51 different osteosarcoma patients (Figure 4A). Interestingly, the 

quantification of the staining revealed that greater than 75% of the OS samples had high 

intensity staining (a score of 2 or 3) (Figure 4B). Of the 19 OS samples that received a 

staining score of 3, only 5 of them survived (Figure 4B). In contrast, JAB1 expression in 

normal bone was much weaker (Figure 4A). Thus, JAB1 is likely overexpressed in human 

osteosarcoma and might be correlated with poor survival outcomes.
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The overexpression of JAB1 in mice results in accelerated spontaneous bone tumor 
formation in a p53-dependent manner.

To date, JAB1-mediated animal tumor models are still very much lacking. To understand the 

role of JAB1 in oncogenesis in vivo, we generated a novel mouse model that overexpresses 

Jab1 specifically in osteoblasts (Figure 5A–B) (30). The Col1a1-Jab1 transgenic mice 

exhibited no obvious growth abnormalities and no tumor formation (Figure 5D). Both 

human and mouse genetic studies have identified mutant Tp53 as the most prominent driver 

of OS development (2). Thus, we crossed our two Col1a1-Jab1 transgenic mouse lines 

(Tg#1 and Tg#2) with Tp53 heterozygous mice. The Col1a1-Jab1; p53+/− mice were viable 

and indistinguishable from littermates prior to weaning age. However, by 13 months of age, 

these mice developed spontaneous bone tumors with a 30.4% penetrance (Figures 5C and 

5D). The average age of tumor onset for Tg#1; p53+/− and Tg#2; p53+/− was 408 days and 

392 days, respectively, with a range of 293-449 days. In contrast, only two p53+/− mice 

developed osteosarcomas by 331 days and 541 days of age respectively. In both Col1a1-
Jab1; p53+/− transgenic lines, the osteosarcomas were nearly evenly distributed between the 

hindlimb and forelimb (Figures 5D and 6A–D). Moreover, X-Ray analysis revealed mineral 

deposition in the tumors dissected from these limbs (Figure 6E–I). Overall, the tumors were 

conventional OS with hypercellularity. They can be categorized into osteoblastic and 

fibroblastic, but not chondroblastic, osteosarcomas (Figure 6J–N). Interestingly, in JAB1-

knockdown 143B cells, the HALLMARK Epithelial Mesenchymal Transition pathway was 

significantly downregulated, suggesting that JAB1 might be involved in EMT-mediated 

metastasis (Figure 6R). In support of this, some spontaneous osteosarcomas in Col1a1-
Jab1;p53+/− mice displayed local invasion into the surrounding tissue, including the muscle 

and fat, but not into the nerves (Figures 6O–6Q). This is very similar to a mouse model of 

NOTCH-mediated OS (31). Additionally, SNAI1, a transcription factor that induces EMT, is 

decreased upon JAB1-knockdown in 143B cells (Figure 6R). Thus, the osteoblast-specific 

overexpression of JAB1 accelerates spontaneous OS formation in mice in a p53-dependent 

manner, and may promote EMT.

JAB1 is a potential therapeutic target for OS treatment.

The NEDDylation pathway is known to trigger the activation of the largest family of E3 

ubiquitin ligases, the Cullin-RING ligases (CRLs) (32). As illustrated in Figure 7A, the 

NAE1 (NEDD8-Activating Enzyme E1 Regulator Subunit) initiates the NEDDylation and 

activation of CRLs through the addition of an ubiquitin-like protein NEDD8, in a cascade 

analogous to ubiquitin transfer. On the other hand, JAB1 is solely responsible for catalyzing 

the removal of NEDD8 from CRLs, thus deactivating CRLs and maintaining their cellular 

homeostasis (Figure 7A) (32). In recent years, the NEDDylation pathway has emerged as an 

attractive therapeutic target for cancer treatment (Figure 7A) (33–35). Indeed, MLN4924, a 

specific inhibitor of NAE1, is currently in clinical trials for the treatment of various cancers 

(35). Moreover, recently a highly specific small molecule inhibitor of JAB1, CSN5i-3, has 

been developed (36). CSN5i-3-mediated JAB1 inhibition reduced cell viability in a large 

panel of cell lines, as well as repressed the growth of lymphoma xenografts in mice (36), but 

CSN5i-3’s effects in OS have not been studied. Thus, we treated 143B OS cells and, as a 

control, human fetal osteoblasts (hFOBs) with CSN5i-3 and MLN4924 to determine if 

disrupting the NEDDylation pathway can prevent OS cell growth. Indeed, both drugs 
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inhibited OS cell growth in a dose-dependent manner, and 143B OS cells were more 

sensitive than hFOBs to both CSN5i-3 (3.5 uM vs 6.6 uM) and MLN4924 (0.46 uM vs. 14 

uM) (Figures 7C and 7E). Additionally, we generated three-dimensional multicellular tumor 

spheroids (sarcospheres) and determined their IC50 after 48 hours of treatment with 

CSN5i-3 (Figure 7D). This clonal, non-adherent, self-renewing, cancer stem cell like-model 

more closely represent the in vivo microenvironment, and better correlates with the in vivo 
response to chemotherapy when compared with monolayer cultures (18). Interestingly, our 

results demonstrate that 143B sarcospheres are more sensitive to treatment with CSN5i-3, 

with an IC50 of 2.9 μM (Figures 7D and 7E). In CSN5i-3 treated cells, as expected (32, 36), 

the amount of the NEDDylated forms of CUL1 and CUL4A/B had increased, whereas in 

contrast, the expression of CUL1 and CUL4A/B in MLN4924-treated cells were completely 

abolished (Figure 7B). We also examined the expression of FBXO22, a poorly characterized 

F-box protein that plays a role in substrate specificity of CRL complexes (37). Similar to a 

previous report in a colon cancer cell line (36), FBXO22 levels were also completely 

abolished in CSN5i-3-treated OS cells, but unchanged in MLN4924-treated OS cells (Figure 

7B). The expression of SKP2, another F-box protein that plays an important role in cell 

cycle progression (37), decreased in CSN5i-3-treated OS cells but increased in MLN4924-

treated OS cells (Figure 7E). These data suggest that JAB1 might be a potential therapeutic 

target for OS, and FBXO22 might be a unique CSN5i-3 downstream target in diverse cancer 

cell types.

Discussion

In this study, for the first time, we demonstrate that JAB1-knockdown in metastatic 

osteosarcoma cell lines led to reduced oncogenic properties, with significantly reduced 

proliferation, colony formation, and motility. We also showed for the first time by RNA-

sequencing that there exists a large JAB1-mediated oncogenic transcriptome in OS cells. 

Additionally, we show for the first time that in human OS patient biopsy samples, JAB1 is 

overexpressed in more than 75% of patients, and that there is likely a positive correlation 

between JAB1 expression levels and OS mortality (Figure 4B). Most importantly, we also 

show for the first time that JAB1 overexpression specifically in osteoblasts in mice on a 

p53+/− sensitizing background results in an accelerated spontaneous bone tumor formation. 

Finally, for the first time, we demonstrate that JAB1 might be a target for OS treatment using 

CSN5i-3, a novel, specific, and potent small molecule inhibitor of JAB1. Thus, our results 

strongly suggest that JAB1 might be a diagnostic and prognostic biomarker for 

osteosarcoma, and that JAB1 is a promising therapeutic target for treating osteosarcomas.

Gene ontology analysis of our RNA-seq dataset demonstrates that the molecular function of 

a significant number of the differentially expressed genes in JAB1-knockdown cells are 

involved in protein binding (Figures 2C and 2D), which is consistent with the well-

established function of JAB1 in interacting with many other proteins (9). Moreover, GSEA 

analysis confirmed that JAB1 regulates important oncogenic pathways, including the p53 

pathway, Rb pathway, cell cycle arrest, DNA repair, and cell-cell adhesion (Figure 3). 

Interestingly, JAB1 expression has previously been linked to radiation sensitivity and DNA 

damage repair in OS in vitro (38). However, the underlying mechanism of JAB1’s role in 

these processes remains to be determined.
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Our results demonstrate for the first time that Jab1 overexpression results in spontaneous OS 

formation in a p53-dependent manner in mice. The low penetrance of tumor formation in 

this model is likely due to the low-level Jab1 transgene expression achieved in osteoblasts. 

Interestingly, a previous study also reported that it was very challenging to achieve high-

level Jab1 expression in vivo (39). Therefore, generating a mouse model with high-level 

Jab1 expression will be essential to further address the role of Jab1 in tumorigenesis in 

whole animals.

In this study, we also provide evidence that JAB1 may be a suitable therapeutic target for 

clinical intervention in OS. The JAB1-containing COP9 Signalosome is an essential 

regulator of Cullin-RING Ligases (CRLs), which are central mediators of oncogenesis (8). 

CRL homeostasis is tightly regulated by NEDDylation (Figure 7A). A small molecule 

inhibitor of NAE1, MLN4924 (Figure 7A), inhibited tumor xenografts in mice, and is 

currently in many Phase I and II clinical trials for the treatment of hematologic and other 

cancers, as well as a phase III clinical trial in combination with azacitidine for the treatment 

of acute myeloid leukemia, but is associated with severe side effects, serious adverse events, 

and drug resistance (33–36, 40). CSN5i-3 is a recently developed and highly specific small 

molecule inhibitor of JAB1 (36). In contrast to the global inhibition of protein degradation 

by pan proteasome inhibitors, or the broad effect of inactivating all CRLs using MLN4924, 

CSN5i-3 might offer greater specificity, and therefore likely reduced side effects, due to its 

inactivation of only a subset of CRLs (36, 41). In this study, for the first time, we 

investigated the effect of both MLN4924 and CSN5i-3 on OS cells (Figure 7). We 

demonstrate that CSN5i-3 reduces OS cell viability, and that OS cells are more sensitive to 

treatment with both CSN5i-3 and MLN4924 compared with a human fetal osteoblast 

(hFOB) cell line (Figure 7E). Further studies are needed to determine if inhibition of JAB1 

using CSN5i-3 can overcome radio and chemotherapy resistance in OS, similarly to reports 

of JAB1 knockdown in nasopharyngeal carcinoma and OS cells (38, 42, 43).

We also found that CSN5i-3 and MLN4924 also differentially affect two CRL F-box 

proteins, FBXO22 and SKP2 (Figure 7E). SKP2, as a well-studied F-Box protein, is an 

established oncogene that is overexpressed in OS cells, and its downregulation inhibits OS 

cell growth and metastasis in vitro and in vivo (37, 44). Interestingly, MLN4924 treatment in 

fact increased the expression of SKP2, whereas CSN5i-3 treatment decreased its expression 

OS cells (Figure 7E). In contrast to SKP2, much less is known about FBXO22, which has 

both a positive and negative role in breast cancer progression and metastasis, respectively 

(45). Furthermore, Fbxo22-depletion resulted in the reduced response of ER-positive breast 

cancer cells to tamoxifen, and the overexpression of JAB1 has been shown to confer 

tamoxifen resistance in ER-positive breast cancer (46, 47). In our study, CSN5i-3 treatment 

completely abolished FBXO22 expression (Figure 7E). Thus, our results and others indicate 

that FBXO22 may be a unique target of CSN5i-3 and JAB1 in OS and other cancers. The 

specific role of FBXO22 in cancer cells, especially identification of its downstream 

substrates involved in oncogenesis, remains to be elucidated to facilitate our understanding 

of the mechanism controlling JAB1-mediated cancer pathogenesis. While our present study 

demonstrates that CSN5i-3’s inhibition of JAB1 may be suitable for the treatment of OS, 

further studies are necessary to address its in vivo efficacy in treating OS patients.
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Materials and Methods

Complete and detailed materials and methods may be found in the Supplementary Materials.

Antibodies

The antibodies and antibody dilutions used in this study are listed in Supplementary Table 

S4.

Transgenic Construct

The full-length FLAG-tagged Jab1 cDNA was cloned into a Col1a1-WPRE transgenic 

expression vector as described previously (30). Mice were maintained on a FVB/N 

background, and genotyping was performed as previously described (13). Tp53 
heterozygous mice were maintained as previously described (4).

RNA-sequencing

Total RNAs were isolated from control and JAB-knockdown 143B cells as described (48). N 

= 3 each for each group. RNA-sequencing was performed at the Genomics Core at Case 

Western Reserve University. The dataset has been deposited into the NCBI Gene Expression 

Omnibus under the accession number GSE117773.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

The authors thank Teresa Pizzuto for her expert histology work. We also thank Dr. Eva Altmann (Novartis) for the 
generous gift of CSN5i-3. This study was supported in part by the NCI R03 CA175874, the American Cancer 
Society Research Grant #119999-IRG-91-022-IRG, and the National Institute of Arthritis and Musculoskeletal and 
Skin Diseases of the National Institutes of Health R01 AR068361 to G.Z., and the T32 AR007505 to W.E.S. and 
L.A.B., as well as the Rally Foundation for Childhood Cancer Research and Open Hands Overflowing Hearts 
Fellowship to W.E.S. under award ID CON221575. This research was supported by the Cytometry & Imaging 
Microscopy Shared Resource of the Case Comprehensive Cancer Center (P30CA043703) and the Genomics Core 
Facility of the CWRU School of Medicine’s Genetics and Genome Sciences Department. The content of this study 
is solely the responsibility of the authors and does not necessarily represent the official views of the National 
Institutes of Health.

Financial Support: NCI R03 CA175874 to G.Z., ACS #119999-IRG-91-022-18-IRG to G.Z., NIAMS R01 
AR068361 to G.Z., NIAMS T32 AR7505-30 to W.E.S. and L.A.B., and the Rally Foundation for Childhood Cancer 
Research and Open Hands Overflowing Hearts Fellowship CON221575 to W.E.S.

REFERENCES

1. Mirabello L, Troisi RJ, Savage SA. Osteosarcoma incidence and survival rates from 1973 to 2004: 
data from the Surveillance, Epidemiology, and End Results Program. Cancer. 2009;115(7):1531–43. 
[PubMed: 19197972] 

2. Gianferante DM, Mirabello L, Savage SA. Germline and somatic genetics of osteosarcoma - 
connecting aetiology, biology and therapy. Nat Rev Endocrinol. 2017;13(8):480–91. [PubMed: 
28338660] 

3. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr., Butel JS, et al. Mice 
deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature. 
1992;356(6366):215–21. [PubMed: 1552940] 

Samsa et al. Page 8

Oncogene. Author manuscript; available in PMC 2020 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4. Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT, et al. Tumor spectrum 
analysis in p53-mutant mice. Curr Biol. 1994;4(1):1–7. [PubMed: 7922305] 

5. Lin PP, Pandey MK, Jin F, Raymond AK, Akiyama H, Lozano G. Targeted mutation of p53 and Rb 
in mesenchymal cells of the limb bud produces sarcomas in mice. Carcinogenesis. 
2009;30(10):1789–95. [PubMed: 19635748] 

6. Walkley CR, Qudsi R, Sankaran VG, Perry JA, Gostissa M, Roth SI, et al. Conditional mouse 
osteosarcoma, dependent on p53 loss and potentiated by loss of Rb, mimics the human disease. 
Genes & development. 2008;22(12):1662–76. [PubMed: 18559481] 

7. Berman SD, Calo E, Landman AS, Danielian PS, Miller ES, West JC, et al. Metastatic osteosarcoma 
induced by inactivation of Rb and p53 in the osteoblast lineage. P Natl Acad Sci USA. 
2008;105(33):11851–6.

8. Kato JY, Yoneda-Kato N. Mammalian COP9 signalosome. Genes Cells. 2009;14(11):1209–25. 
[PubMed: 19849719] 

9. Liu G, Claret FX, Zhou F, Pan Y. Jab1/COPS5 as a Novel Biomarker for Diagnosis, Prognosis, 
Therapy Prediction and Therapeutic Tools for Human Cancer. Front Pharmacol. 2018;9:135. 
[PubMed: 29535627] 

10. Wei N, Serino G, Deng XW. The COP9 signalosome: more than a protease. Trends Biochem Sci. 
2008;33(12):592–600. [PubMed: 18926707] 

11. Claret FX, Hibi M, Dhut S, Toda T, Karin M. A new group of conserved coactivators that increase 
the specificity of AP-1 transcription factors. Nature. 1996;383(6599):453–7. [PubMed: 8837781] 

12. Bashur LA, Chen D, Chen Z, Liang B, Pardi R, Murakami S, et al. Loss of jab1 in osteochondral 
progenitor cells severely impairs embryonic limb development in mice. J Cell Physiol. 
2014;229(11):1607–17. [PubMed: 24604556] 

13. Chen D, Bashur LA, Liang B, Panattoni M, Tamai K, Pardi R, et al. The transcriptional co-
regulator Jab1 is crucial for chondrocyte differentiation in vivo. J Cell Sci. 2013;126(Pt 1):234–43. 
[PubMed: 23203803] 

14. Sitte S, Glasner J, Jellusova J, Weisel F, Panattoni M, Pardi R, et al. JAB1 is essential for B cell 
development and germinal center formation and inversely regulates Fas ligand and Bcl6 
expression. J Immunol. 2012;188(6):2677–86. [PubMed: 22327073] 

15. Panattoni M, Sanvito F, Basso V, Doglioni C, Casorati G, Montini E, et al. Targeted inactivation of 
the COP9 signalosome impairs multiple stages of T cell development. J Exp Med. 
2008;205(2):465–77. [PubMed: 18268034] 

16. Oh W, Lee EW, Sung YH, Yang MR, Ghim J, Lee HW, et al. Jab1 induces the cytoplasmic 
localization and degradation of p53 in coordination with Hdm2. J Biol Chem. 
2006;281(25):17457–65. [PubMed: 16624822] 

17. Lauvrak SU, Munthe E, Kresse SH, Stratford EW, Namlos HM, Meza-Zepeda LA, et al. 
Functional characterisation of osteosarcoma cell lines and identification of mRNAs and miRNAs 
associated with aggressive cancer phenotypes. Br J Cancer. 2013;109(8):2228–36. [PubMed: 
24064976] 

18. Collier CD, Wirtz EC, Knafler GJ, Morris WZ, Getty PJ, Greenfield EM. Micrometastatic Drug 
Screening Platform Shows Heterogeneous Response to MAP Chemotherapy in Osteosarcoma Cell 
Lines. Clin Orthop Relat Res. 2018.

19. Ottaviano L, Schaefer KL, Gajewski M, Huckenbeck W, Baldus S, Rogel U, et al. Molecular 
characterization of commonly used cell lines for bone tumor research: a trans-European 
EuroBoNet effort. Genes Chromosomes Cancer. 2010;49(1):40–51. [PubMed: 19787792] 

20. Behjati S, Tarpey PS, Haase K, Ye H, Young MD, Alexandrov LB, et al. Recurrent mutation of IGF 
signalling genes and distinct patterns of genomic rearrangement in osteosarcoma. Nat Commun. 
2017;8:15936. [PubMed: 28643781] 

21. Perry JA, Kiezun A, Tonzi P, Van Allen EM, Carter SL, Baca SC, et al. Complementary genomic 
approaches highlight the PI3K/mTOR pathway as a common vulnerability in osteosarcoma. Proc 
Natl Acad Sci U S A. 2014;111(51):E5564–73. [PubMed: 25512523] 

22. Zhang F, Yan T, Guo W, Sun K, Wang S, Bao X, et al. Novel oncogene COPS3 interacts with 
Beclin1 and Raf-1 to regulate metastasis of osteosarcoma through autophagy. J Exp Clin Cancer 
Res. 2018;37(1):135. [PubMed: 29970115] 

Samsa et al. Page 9

Oncogene. Author manuscript; available in PMC 2020 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



23. Crone SG, Jacobsen A, Federspiel B, Bardram L, Krogh A, Lund AH, et al. microRNA-146a 
inhibits G protein-coupled receptor-mediated activation of NF-kappaB by targeting CARD10 and 
COPS8 in gastric cancer. Mol Cancer. 2012;11:71. [PubMed: 22992343] 

24. Lee YH, Judge AD, Seo D, Kitade M, Gomez-Quiroz LE, Ishikawa T, et al. Molecular targeting of 
CSN5 in human hepatocellular carcinoma: a mechanism of therapeutic response. Oncogene. 
2011;30(40):4175–84. [PubMed: 21499307] 

25. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists 
using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57. [PubMed: 19131956] 

26. Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the 
comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37(1):1–13. 
[PubMed: 19033363] 

27. Ballatori SE, Hinds PW. Osteosarcoma: prognosis plateau warrants retinoblastoma pathway 
targeted therapy. Signal Transduct Target Ther. 2016;1:16001. [PubMed: 29263893] 

28. Loukil A, Cheung CT, Bendris N, Lemmers B, Peter M, Blanchard JM. Cyclin A2: At the 
crossroads of cell cycle and cell invasion. World J Biol Chem. 2015;6(4):346–50. [PubMed: 
26629317] 

29. Gavet O, Pines J. Progressive activation of CyclinB1-Cdk1 coordinates entry to mitosis. Dev Cell. 
2010;18(4):533–43. [PubMed: 20412769] 

30. Zhou G, Zheng Q, Engin F, Munivez E, Chen Y, Sebald E, et al. Dominance of SOX9 function over 
RUNX2 during skeletogenesis. Proc Natl Acad Sci U S A. 2006;103(50):19004–9. [PubMed: 
17142326] 

31. Tao J, Jiang MM, Jiang L, Salvo JS, Zeng HC, Dawson B, et al. Notch activation as a driver of 
osteogenic sarcoma. Cancer Cell. 2014;26(3):390–401. [PubMed: 25203324] 

32. Enchev RI, Schulman BA, Peter M. Protein neddylation: beyond cullin-RING ligases. Nat Rev Mol 
Cell Biol. 2015;16(1):30–44. [PubMed: 25531226] 

33. Malhab LJ, Descamps S, Delaval B, Xirodimas DP. The use of the NEDD8 inhibitor MLN4924 
(Pevonedistat) in a cyclotherapy approach to protect wild-type p53 cells from MLN4924 induced 
toxicity. Sci Rep. 2016;6:37775. [PubMed: 27901050] 

34. Soucy TA, Smith PG, Milhollen MA, Berger AJ, Gavin JM, Adhikari S, et al. An inhibitor of 
NEDD8-activating enzyme as a new approach to treat cancer. Nature. 2009;458(7239):732–6. 
[PubMed: 19360080] 

35. Zhou L, Jiang Y, Luo Q, Li L, Jia L. Neddylation: a novel modulator of the tumor 
microenvironment. Mol Cancer. 2019;18(1):77. [PubMed: 30943988] 

36. Schlierf A, Altmann E, Quancard J, Jefferson AB, Assenberg R, Renatus M, et al. Targeted 
inhibition of the COP9 signalosome for treatment of cancer. Nat Commun. 2016;7:13166. 
[PubMed: 27774986] 

37. Wang Z, Liu P, Inuzuka H, Wei W. Roles of F-box proteins in cancer. Nat Rev Cancer. 
2014;14(4):233–47. [PubMed: 24658274] 

38. Tian L, Peng G, Parant JM, Leventaki V, Drakos E, Zhang Q, et al. Essential roles of Jab1 in cell 
survival, spontaneous DNA damage and DNA repair. Oncogene. 2010;29(46):6125–37. [PubMed: 
20802511] 

39. Mori M, Yoneda-Kato N, Yoshida A, Kato JY. Stable form of JAB1 enhances proliferation and 
maintenance of hematopoietic progenitors. J Biol Chem. 2008;283(43):29011–21. [PubMed: 
18667426] 

40. Swords RT, Watts J, Erba HP, Altman JK, Maris M, Anwer F, et al. Expanded safety analysis of 
pevonedistat, a first-in-class NEDD8-activating enzyme inhibitor, in patients with acute myeloid 
leukemia and myelodysplastic syndromes. Blood Cancer J. 2017;7(2):e520. [PubMed: 28157218] 

41. Manasanch EE, Orlowski RZ. Proteasome inhibitors in cancer therapy. Nat Rev Clin Oncol. 
2017;14(7):417–33. [PubMed: 28117417] 

42. Pan Y, Zhang Q, Atsaves V, Yang H, Claret FX. Suppression of Jab1/CSN5 induces radio- and 
chemo-sensitivity in nasopharyngeal carcinoma through changes to the DNA damage and repair 
pathways. Oncogene. 2013;32(22):2756–66. [PubMed: 22797071] 

43. Pan Y, Wang S, Su B, Zhou F, Zhang R, Xu T, et al. Stat3 contributes to cancer progression by 
regulating Jab1/Csn5 expression. Oncogene. 2017;36(8):1069–79. [PubMed: 27524414] 

Samsa et al. Page 10

Oncogene. Author manuscript; available in PMC 2020 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



44. Zhang Y, Zvi YS, Batko B, Zaphiros N, O’Donnell EF, Wang J, et al. Down-regulation of Skp2 
expression inhibits invasion and lung metastasis in osteosarcoma. Sci Rep. 2018;8(1):14294. 
[PubMed: 30250282] 

45. Sun R, Xie HY, Qian JX, Huang YN, Yang F, Zhang FL, et al. FBXO22 Possesses Both 
Protumorigenic and Antimetastatic Roles in Breast Cancer Progression. Cancer Res. 
2018;78(18):5274–86. [PubMed: 29945959] 

46. Johmura Y, Maeda I, Suzuki N, Wu W, Goda A, Morita M, et al. Fbxo22-mediated KDM4B 
degradation determines selective estrogen receptor modulator activity in breast cancer. J Clin 
Invest. 2018;128(12):5603–19. [PubMed: 30418174] 

47. Lu R, Hu X, Zhou J, Sun J, Zhu AZ, Xu X, et al. COPS5 amplification and overexpression confers 
tamoxifen-resistance in ERalpha-positive breast cancer by degradation of NCoR. Nat Commun. 
2016;7:12044. [PubMed: 27375289] 

48. Liang B, Cotter MM, Chen D, Hernandez CJ, Zhou G. Ectopic expression of SOX9 in osteoblasts 
alters bone mechanical properties. Calcif Tissue Int. 2012;90(2):76–89. [PubMed: 22143895] 

Samsa et al. Page 11

Oncogene. Author manuscript; available in PMC 2020 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. The downregulation of JAB1 inhibits 143B and U2OS osteosarcoma cell growth in vitro.
(A-B) The JAB1 silencing efficiency was confirmed to be at least 80% by RT-qPCR and 

western blot analysis (n = 3). (C) The colony formation assay demonstrated that JAB1-

knockdown significantly decreases the abilities of OS cells to form colonies (n = 3-6). (D) 

The MTT assay demonstrated that the JAB1-knockdown significantly decreased cell 

viability (n = 3-6). (E) The scrape motility assay demonstrated that JAB1-knockdown 

significantly inhibited cell migration (n = 3-6). Error bars represent means ± SD. * p < 0.05, 

** p < 0.01, *** p < 0.005. All controls in this experiment are a scrambled shRNA.
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Figure 2. The RNA-seq analysis of JAB1-depleted 143B human OS cells.
(A) The pie chart of significantly differentially expressed genes in JAB1-knockdown versus 

control 143B cells. (B) The Principal Component Analysis identified the two distinct sets of 

genes that are differentially expressed in Wild-Type (WT, gray dots) vs. JAB1-knockdown 

(KD, black dots) 143B cells. (C) Gene Ontology analysis list of the significantly 

downregulated genes and (D) upregulated genes using DAVID analysis. The x-axis denotes 

the number of genes. For all GO Terms presented here, p < 0.003.
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Figure 3. The Gene Set Enrichment Analysis identifies altered oncogenic pathways upon JAB1-
knockdown in 143B OS cells.
(A) HALLMARK enrichment plots of G2/M checkpoint (NES = 1.98, FDR = 0.013) and 

E2F Targets (NES = 2.1. FDR = 0.005) gene sets (top left and bottom left panels) with the 

corresponding heat maps of these pathways at the right. (B) HALLMARK enrichment plots 

of the DNA repair (NES = −1.91, FDR = 0.059) and p53 (NES = −1.27, FDR = 0.373) 

pathways gene sets (top left and bottom left panels) with the corresponding heat maps of 

these pathways at the right.
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Figure 4. JAB1 is overexpressed in human OS biopsies, and JAB1-knockdown increases 
apoptosis and alters multiple major signal transduction pathways in OS cells.
(A) The representative JAB1 immunohistochemistry of a human OS biopsy sample from an 

array of 51 samples, with a staining intensity score of 3 (left panel) and 0 (Middle panel). 

Right panel shows JAB1 immunohistochemistry in a normal human adult cortical bone 

sample. (B) Left panel, the percentage of each staining score across all samples. Middle 

panel, the staining intensity score was matched to the patient outcome. Right panel, the ratio 

of alive patients to dead patients for each staining intensity score. A lower number indicates 

poorer survival. (C) Left, the flow cytometry analysis of cell cycle in control and JAB1-

knockdown 143B cells. Error bars represent means ± SD (n = 3). Right, western blotting 

demonstrates decreased expression of Cyclin A2 and Cyclin B1. (D) Left, The GSEA 

identifies the apoptosis pathway (NES = −1.21, FDR = 0.421) as being upregulated in JAB1-

knockdown 143B cells. Right, Western blotting demonstrates increased expressions of Bax 

and Bcl-2, but not Bak, in 143B JAB1-knockdown cells. Densitometry analysis of the 

Bax:Bcl-2 ratio. (E) The Cignal Reporter Assay in JAB1-knockdown 143B cells. Red bars 

indicate all of the downregulated pathways; yellow bars indicate the top 4 most upregulated 

pathways. A detailed list of pathways is listed in Supplementary Table S3.
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Figure 5. The osteoblast-specific overexpression of Jab1 results in accelerated, spontaneous, p53-
dependent OS formation in mice.
(A) The schematic representation of the construct used to generate Col1a1-Jab1 transgenic 

mice. (B) The RT-qPCR analysis of Jab1 expression from 8-week-old long bones of control 

and 2 independent Col1a1-Jab1 mouse transgenic lines (n = 3). (C) The representative image 

of a hindlimb tumor from a Col1a1-Jab1; p53+/− transgenic mouse. (D) The summary table 

of the different cohorts of mice used in this study and their OS occurrence. Tg, Transgenic
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Figure 6. The characterization of spontaneous OS tumors in Col1a1-Jab1; p53+/− mice.
(A-D) Representative images of mice that formed bone tumors, with dotted lines outlining 

the tumors. (E-I) X-ray analysis of those tumors, and (J-N) corresponding H&E staining of 

the tumors at 200x magnification. Scale bars, 50 μm. Histology revealed the local invasion 

of OS cells into the (O) surrounding muscle and (P) adipose, but not (Q) nerve tissue. Scale 

bars, 100X, 100 μm, 200X, 50 μm. (R) (Left) The HALLMARK GSEA enrichment plot and 

the heat map of Epithelial Mesenchymal Transition pathway (NES = 1.35, FDR = 0.144), 

(Right) Western blot analysis of SNAI1 in JAB1-knockdown 143B OS cells.
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Figure 7. JAB1 is a potential therapeutic target in osteosarcoma.
(A) Schematic representation of Cullin-RING Ligase (CRL) activation by NAE1 and 

inactivation by JAB1, and the effects of MLN4924 and CSN5i-3 on CRL homeostasis. (B) 

Western blot analysis of 143B cells treated with CSN5i-3 or MLN4924 demonstrated their 

differential effects on representative CRL Cullin and F-Box proteins. (C) Dose-response 

curves showing the cell viability of 143B cells (top) and hFOB cells (bottom) treated with 

CSN5i-3 (left) and MLN4924 (right) for 48 hours. Each point in each graph represents mean 

± SD of 6 technical replicates. Representative curves from two independent experiments 

with similar results are shown for each cell line and drug (D) Left, dose-response curve 

showing the cell viability of 143B sarcospheres treated with CSN5i-3 for 48 hours. Each 

point represents mean ± SD for 6 technical replicates. A representative curve from two 

independent experiments is shown. Right, representative pictures of 143B sarcospheres 

treated with 0, 5, and 20 μM CSN5i-3 for 48 hours. (E) IC50 Table.
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