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Abstract: Parametric complexity of the thermomechanical shape memory alloy (SMA) model is one of
the major barriers to advanced application of the SMA actuation in adaptive architecture. This article
seeks to provide architectural practitioners with decision-making information about SMA actuator
design parameters. Simulation-based global sensitivity analysis of an SMA-bias spring actuation
model reveals that the SMA spring index (a spring’s outer diameter divided by its wire diameter) and
stiffness of the bias spring are significant factors in both displacement and force exertion. Among all
parameters, maximum output stroke and force largely depend on the temperature range at which the
SMA spring operates. These findings also indicate a trade-off between the spring diameter and wire
thickness, demonstrating that the output stroke and force tend to counter one another. Appropriate
preloading and choice of an optimal spring index should be considered for desirable SMA motion.
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1. Introduction

Shape memory alloy (SMA) as a smart material has been the subject of intensive research in
various areas, including robotics, micromechanical systems, the aerospace and automotive industries,
civil structural engineering, and biomedical sciences [1–4]. A wide range of industrial applications
are also found in medical stents, unmanned aerial vehicles (UAVs), A/C vents, and so forth [1,5,6].
Compared to conventional electromagnetic motor actuators, SMAs offer noiseless operation, design
flexibility, and resistance to functional degradation from dust or humidity with compact system
configurations. In recent years, such unique technical benefits of SMAs in actuation have attracted
considerable attention regarding their utility in building design disciplines; for instance, self-shaping
kinetic architecture or climate-adaptive building with automatic environmental responsiveness [7–10].

SMAs are highly engineered materials and it is difficult for design professionals to gain a sufficient
scientific understanding of the thermomechanical material behavior and underlying mechanisms
of actuation. In building implementation, for example, it is of great concern to determine the exact
lengths and positions of SMA parts in motion, thereby allowing for the largest possible stroke and
force of an actuator to support the substantial scales and weights of building structures. However,
many parameters related to sizing of SMA actuation are quite uncertain during the design stages of
building projects, and a majority of existing SMA application approaches deal with SMA behaviors on
smaller scales. Therefore, it is necessary to provide building designers with concise information related
to parametric choice in large-scale SMA actuator design so that they are better and more efficiently
informed of the thermomechanical SMA properties and the potential performance of SMA-driven
kinetic building.
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SME has mostly been exploited to actuate the helical coil springs or tensile wires which conjoin
other antagonistic (“bias”) mechanisms. An SMA-bias coupling mechanism has the capability to
produce sizable actuation strains (four or more times greater extension/compression than their original
lengths [11]), while the recovery strain potential of an SMA is limited to 6–8% [1]. Although complex
types of bias mechanisms, such as multi-antagonistic or multi-input SMA actuators, have recently
been developed [12,13], conventional SMA-bias coil-spring connections are preferred in architectural
and building applications because they are easy to assemble and function robustly on a large scale
(Figure 1).

Figure 1. Example of SMA-bias extension spring actuation in architecture: 3D-printed parametric
design of SMA-actuated shading [10].

Mechanical modeling can be used to predict deformation and force exertion by an SMA-bias
spring actuation system. However, such systems are complicated and involve numerous parameters
and constraints that are mutually concerned with the mechanical performance of the actuators [14].
Moreover, as the thermomechanical behavior of actuation is mainly characterized by its macroscopic
aspects, several internal variables, e.g., the ratio of martensitic volume, cannot be measured without
elaborate testing. Occasionally, a number of unknown parameters must be estimated before
or during implementation [1,5]. Ambiguous parameter identification often results in increasing
uncertainty in actuator design, which eventually propagates to a degradation in performance of an
SMA-applied building.

A fundamental approach to mitigating parametric indeterminacy and improving the efficiency of
decision-making is to conduct rigorous sensitivity analysis. By simulating a comprehensive SMA-bias
system model, this study aims to quantitatively review and clarify the importance of the parameters
through global sensitivity analysis (GSA). As shown in Figure 2, a thermomechanical design model of
a general SMA-bias actuation system is presented and simulated for GSA. Focusing on design-related
parameters, GSA is used to diagnose the sensitivity and interactive parametric influences of individual
variables. For practical convenience, low-impact variables are classified as constants so that reduction
in model complexity and parameter optimization can be further examined based on the findings of
this study.
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Figure 2. Scheme of the study scope and procedures.

2. Materials and Methods

2.1. Theoretical SMA Constitutive Model

Derivation of a general prediction model for the prediction of shape-changing behavior is
challenging because material parameters are identified with phenomenological investigation and
experimental testing. Nonetheless, theoretic thermomechanical approaches have been well established
by Tanaka [15], Brinson [16], and Liang and Rogers [17], and used to examine different types of SMA
actuators [4]. Per unit mass of a local SMA body under static/quasi-static loading, the Clausius–Duhem
inequality can be expressed in terms of specific internal energy as:

ρ
( .
u− T

.
s
)
− σ : ∇v ≤ −q·∇T

T
(1)

in which the left- and right-hand side represent the mechanical and thermal dissipation (entropy
production rate), respectively. Using the Helmholtz free energy density, Φu− Ts, and the elastic strain
(ε) rate, D∇v =

.
ε, Equation (1) becomes:

− ρ
( .
Φ+

.
Ts

)
+ σ : D− q·∇T

T
≥ 0 (2)

and

σ :
.
ε− ρ .

Φ− q·∇T
T
≥ 0 (3)

for isothermal processes, where ρ, σ, ∇v, u, q, T, ∇T, and s denote the mass density (ρ = lim
∆V→0

∆m
∆V ,

m: mass; V: volume), Cauchy stress tensor, velocity gradient, internal energy, heat flux tensor,
temperature, temperature gradient, and entropy, respectively. The superposed dot notation refers to a

time derivative, and ∇ =
(
∂
∂x , ∂

∂y , ∂∂z

)
. It is a classical assumption to decouple mechanical and thermal

contribution to dissipation, and we ignore the energy transformation into heat in the interest of the
study. Furthermore, for SMAs, the functional dependency of Φ upon the internal state variables was
proved by experiment [1] so that Φ : R3 → R , Φ(ε, ξ, T), where ξ denotes the martensitic volume
fraction (MVF; 0 ≤ ξ ≤ 1). Therefore, Equation (3) can be rewritten as:

σ :
.
ε− ρ

(
∂Φ
∂ε

:
.
ε+

∂Φ
∂ξ

.
ξ+

∂Φ
∂T

.
T
)
≥ 0 (4)

Equality is required for Equation (4) to hold for any arbitrary values. Hence,

σ =
∂2ψ

∂ε2 : dε+
∂2ψ

∂ε∂ξ
dξ+

∂2ψ

∂ε∂T
dT (5)
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where ψ is the total Helmholtz free energy. The first term on the right-hand side accounts for the
reversible elastic potential of SMA deformation. In this study, we consider linear loading evolution
over discrete phase transition starting from the full austenite (ε0 = 0, ξ0 = 0). Then, Equation (5) can
be expressed in a concise form such that:

σ = C : ε+ Ωξ+ α∆T (6)

with Ω ≡ ∂2ψ/∂ε∂ξ and α ≡ ∂2ψ/∂ε∂T, where C, Ω, and α are the stiffness, transformation,
and thermal expansion tensor, respectively. C is formulated by:

C = CA + ξ(CM −CA) (7)

where the subscripts A and M denote the austenitic and martensitic state, respectively. Importantly,
Brinson [16] suggests ΩC : εL, where εL is maximum residual (recoverable) strain, which is typically
about 4–6% and 8% at maximum in NiTi [1,5]. The thermal expansion coefficient is relatively quite small
(∼ 0.5 –1.5× 10−5/K) in most SMAs, and is therefore often neglected [1,18]. Therefore, Equation (6)
becomes:

σ �

{
[CA + ξ(CM −CA)] : (ε+ εLξ), ε < 0
[CA + ξ(CM −CA)] : (ε− εLξ), ε ≥ 0

(8)

The MVF reaches 100% in pure stress-induced martensite, whereas it becomes zero in full austenite.
In other cases (M f < T < A f ), SMAs always exist as a mixture of austenite and martensite, and ξ
is approximated by the following formulas [2,19] with experimental curve-fitting parameters in an
elementwise format

ξM→A = ξ0
2

[
cos

(
aA

(
T −As − σi j

NA

))
+ 1

]
, ξA→M = 1−ξ0

2 cos
(
aM

(
T −M f − σi j

NM

))
+ 1+ξ0

2
aA = π

A f−As
, aM = π

Ms−M f

NA
(
T −A f

)
< σi j, M→A < NA(T −As), NM(T −Ms) < σi j, A→M < NM

(
T −M f

) (9)

where ξ0 and σi j are the initial MVF at the beginning of the current transformation and the stress tensor
constituent, respectively. Note that the above are linear transformed expressions of a cosine function,
ξ = cos(T), whose amplitude is determined by ξ0. Equation (9) depends on the direction of the
transition, i.e., martensite to austenite (M→ A ; heating) or vice versa, and NA and NM represent the
influence of the loading and its direction to MVF. NA and NM can be experimentally computed from
the slope of a σ− T curve [1] or derived from the Clausius–Claperyron relation [19], such as:

NA =
ρ∆HA
TcrεL

, NM =
ρ∆HM
TcrεL

(10)

where ∆H is the specific enthalpy (latent heat per unit mass) change during the phase transition,
and the critical temperature Tcr = (As + Af)/2.

2.2. Modeling of 1-D SMA-Bias Spring Actuation

Mechanical modeling of SMA-bias coil spring actuation has been intensively explored in various
aspects [18,20,21]. Based on previous work, a concise expression of the modeling to estimate stroke
and output force during the initial stage of actuator design was developed. Figure 3 represents an
actuation scheme under investigation. Figure 3a depicts a simple actuation system with two springs
(a helical SMA and a bias spring) held on two fixed sides, and Figure 3b illustrates MVF profiles given
temperature changes. Coil springs under static axial loading produce shear stresses (τ), which consists
of torsional (τT) and direct shear (τDS) components. Hence, τ is given by:

τ = τT + τDS =
(
1 +

1
2Cs

)8FD
πd3 (11)
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where F, D, d, and Cs denote axial force acting on the spring, original spring diameter, wire diameter,
and spring index (Cs = D/d), respectively. Considering that martensite SMAs undergo a large degree
of deflection, the amount of longitudinal extension (δ) should consider both the torque and bending
effect, which results in:

δ =
8naD3

f

d4cosα f

cos2 α f

G
+

2 sin2 α f

E

F =
8
(
L(0) − d

)
D3

f

Gd5

1 + ν cos2 α f

(1 + ν)cosα f

F (12)

with L(0) = d(na + 1) and G = E/2(1 + ν). na, G, E, L(0), and ν are the number of active turns,
shear modulus, Young’s modulus, initial spring length, and Poisson’s ratio (which is typically 0.33 in
solids), respectively, and the subscripts i and f denote the initial and final geometric state, respectively.
Note that the curvature effect (stress concentration) can be neglected if Cs ≥ 4. In addition, given the
geometry of spring extension (Figure 4), D f and δ can be represented as

D f = D
cosα f

cosαi
(13)

δ =
πnaD
cosαi

(
sinα f − sinαi

)
=

π
(
L(0) − d

)
Cs

cosαi

(
sinα f − sinαi

)
(14)

Therefore, Equation (12) becomes,

δ =
8
(
L(0) − d

)
Cs

3

(1 + ν)Gd2

cos2 α f
(
1 + ν cos2 α f

)
cos3 αi

F (15)

Figure 3. Cont.
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Figure 3. Schematic configuration of (a) SMA-bias actuation system and (b) MVF-temperature cycle
(A: austenite, M: martensite).

Figure 4. Parametric configuration of spring geometry: (a) Diameter change while in elongation;
(b) Relationship between spring pitch angle and deflection [18].

Since τ = Gγ, where γ is the shear strain, Equation (11) can be expressed as:

F =
Gπd2

4(2Cs + 1)
γ (16)

For brevity of expression, let a new parameter Θ denote the trigonometric terms concerned with
the pitch angles in Equation (15). Introducing Equation (16) to Equation (15), we obtain the following
γ− δ relationship such as:

γ =
(1 + ν)(2Cs + 1)

2πCs3
(
L(0) − d

)
Θ
δ (17)

where Θ = cos2 α f
(
1 + ν cos2 α f

)
/ cos3 αi. In Equations (6)–(8), we may substitute C, σ, and ε

for G, τ, and γ, respectively, for one-dimensional tensile coil spring applications [18], such as
G = GA + ξ(GM −GA). Note that the total shear strain of the SMA spring, γS, is the sum of the
mechanical elastic (γe) and residual strain such that γS = γe ± γLξ, where γL is the maximum residual
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shear strain and γL : =
√

3
2 εL by the Lagrangian equivalent definition (εL =

√
ε2 + 4γL

2/3 and ε ≈ 0).
Representation of Equation (16) on behalf of the SMA spring force yields

FS = Fe + FR =
GSd2

8

 (1 + ν)δS

Cs, S3(L(0)
S − d)Θ

+ω

√
3π

2Cs, S + 1
εLξ

, ω =

{
1, M→ A
−1, A→M

(18)

where the subscripts S, e, and R stand for the SMA, elastic, and residual components, respectively.
As depicted in Figure 3a, the equilibrium between FS and the opposing bias force (Fb) must be satisfied
under static loading, which results in:

kbδb =
GSd2

8

 (1 + ν)δS

Cs, S3(L(0)
S − d)Θ

+ω

√
3π

2Cs, S + 1
εLξ

 (19)

δS + δb = L− L(0)
S − L(0)

b (20)

where kb, δb, and L(0)
b are the spring constant, displacement, and original length of the bias spring,

respectively, and L denotes the effective total length of the SMA-bias actuator. In Equations (18)–(20),
it is critical to constrain δS in such a way that

0 ≤ δS ≤ L− L(0)
S − L(0)

b (21)

and using Equation (17), equivalently,

2πCs, S
3Θ

(
γe + 0.5

√
3εLξ

)
(L(0)

S − d)

(1 + ν)(2Cs, S + 1)
≥ 0 (22)

2πCs, S
3Θ

(
γe + 0.5

√
3εLξ

)
(L(0)

S − d)

(1 + ν)(2Cs, S + 1)
≤ L− L(0)

S − L(0)
b (23)

For compact expression, we assume that 2Cs, S + 1 = 2Cs, S and γe + γL = γL in Equation (23).
Considering that γe > εLξ, if M→ A , and γe � εLξ, if A→M in Equations (22) and (23), we obtain

d ≤ L(0)
S ≤

(1 + ν)
(
L− L(0)

b

)
1 + 0.5

√
3πCs, S2ΘεLξ

(24)

We find the lower bound of Equation (24) trivial, but the upper bound indicates that the SMA
spring length is constrained by both the design of spring geometry (the spring constant and final pitch
angle) and the material state (MVF). In Equation (24), it should be also emphasized that the shear
modulus is not directly associated with the spring length limit. Now, introducing Equation (20) to
Equation (19), and rearranging it for δS, we obtain a comprehensive deformation function of SMA-bias
coil spring actuation:

δS =
Cs, S

3Θ(L(0)
S − d)

{
8kb(2Cs, S + 1)

(
L− L(0)

S − L(0)
b

)
−ω√3πGSd2εLξ

}
(2Cs, S + 1)

{
(1 + ν)GSd2 + 8kbCs, S3Θ(L(0)

S − d)
} (25)
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δS is assumed to be decomposed into the linear elastic and nonlinear residual terms such that:

δS = δe + δR

δe =
L−L(0)S −L(0)b

1+GSd2(1+ν)/λ , δR =
−ωλ√3πGSd2εLξ

8kb(2Cs, S+1)((1+ν)GSd2+λ)

(26)

with λ = 8kbCs
3Θ

(
L(0)

S − d
)
. Replacing σi j with shear stress in Equation (9), ξ is represented as:

ξ =

 ξ0
2

[
cos

(
aA

(
T −As − σS

NA

))
+ 1

]
, M→ A

1−ξ0
2 cos

(
aM

(
T −M f − σS

NM

))
+ 1+ξ0

2 , A→M
(27)

in which σS accounts for the axial stress-induced MVF due to mechanical elongation (δe). We may
assume that σS is zero, because the elastic strain (ε) is negligible in the axially elongated section of the
coil spring.

2.3. Sensitivity Analysis (SA) and Monte Carlo Approach to Simulation

Sensitivity analysis is used for quantitative parameter screening and significance identification.
Among several methods (OAT, WALS, FAST, etc.), Sobol’s variance-based technique is employed in
this study, because it enables us to factor in any type of nonlinear variables and high-order interactive
effects in a global domain [22,23]. The Sobol analysis results in a direct metric of sensitivity that is
obtained via decomposition of overall variance with respect to input. Given the function of a model f
and a random input vector X such as

f : X→ Y, X =
{
Xi

∣∣∣Xi ∈ [0, 1], i = 1, 2, . . . , n
}
, (28)

the total output variance, V(Y), can be decomposed as

V(Y) =
n∑

s = 1

n∑
i1<...<is

Vi1,...,is =
n∑

i = 1

Vi +
n−1∑

i = 1

n∑
j = i+1

Vi, j + V1,2,...,n, 1 ≤ i1 ≤ . . . ≤ is ≤ n (29)

and the Sobol indices are defined as the contribution of each conditional input variance to the total
variance of f (X)

Si1,...,in =
VXi1,...,in

(
EX∼i1,...,in

(
Y
∣∣∣Xi1,...,in

))
V(Y)

=
Vi1,...,in

V(Y)
(30)

where the subscripts is and i,j, . . . ,n are a generic expression of conditional and multi-dimensional
combination of variables, respectively. Note that it is assumed that each input variable is independent
and distributed uniformly in a unit hypercube space. The total-effect Sobol index (ST) considering all
high-order interactive effects of a variable Xi is calculated as

STi = 1−
VX∼i

(
EXi(Y|X∼i)

)
V(Y)

,
n∑

i = 1

STi ≥ 1 (31)

In the Sobol framework, the Monte Carlo simulation (MCS) approach is used for the evaluation
of a full range of parameter variation in high-dimensional space. The MCS is a stochastic
computational algorithm that searches randomly generated sets of variable samples. Since no
assumption is made between input and output, the MCS is numerically intuitive and any type
of probabilistic/non-probabilistic data can be put into the MCS procedure. Having determined the
parameters to be varied, the uncertainty of the model can be drawn by propagating parameter variation
through the MCS. The Latin hypercube method is employed to reduce the domain size of variable
space and increase sampling efficiency for the MCS in this experiment.
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2.4. Study Parameters

The SMA modeling parameters in 2.2 are largely divided into design and testing parameters
according to the purpose of this study. Design parameters primarily concern designers’ decision-making
on the spring details and the sizing of an actuator, while testing parameters are identified by instrumental
measurement. Each parameter contributes to the performance of SMA-bias spring actuation, and the
association of individual parameters and related dependent variables are shown in Table 1. For SA,
a numerical range of each parameter is defined with a lower and upper bound, so it is randomly
generated to run the models with the sets of parameters through MCS. Before SA, we may assume
that the design parameters are basically variables and the testing parameters are constants which
need further uncertainty investigation. In the Sobol method, when the ST value of a variable is no
greater than 0.05, we may consider it as a constant. Note that this method cannot capture the cause(s)
of the input variability or the source(s) of the contribution. The numerical finding is followed by the
interpretation of parametric impacts.

Table 1. Experimental parameter categorization.

Model
Output

Design Parameter (�) Testing Parameter (�)

L L(0)
S L(0)

b
Cs, S d kb αi αf GA GM εL ξ Mf Ms As Af

Θ1 � �

L(0)S,max
1 � � � � � � � � � � �

δS
1 � � � � � � � � � � � � � � � �

δe � � � � � � � � � �
δR � � � � � � � � � � � � � �
FS

1 � � � � � � � � � � � � �
γ � � � � � � � � � � � � �
τ � � � � � � � � � � � � �

∆δS
1 � � � � � � � � � � � � � � � �

∆FS
1 � � � � � � � � � � � � �

1 Target output variable under investigation.

3. Results and Discussion

3.1. Experimental Parameter Investigation

To determine the testing parameter values, a sample NiTi coil spring (Ni-50.9 wt.%) with a Cs,S

of 7.5 was manufactured (SME Ltd., Hwaseong, Gyeonggi, Korea), assuming L = 300 and L(0)
S ≤ 150,

and its mechanical properties were measured. The values listed in Table 2 are referenced for the model
simulation. Differential scanning calorimetry (DSC) results (Figure 5) reveal that the sample material
exhibits an Mf and Af of 26.9 ◦C and 40.1 ◦C, with an ∆HM and ∆HA of 4.82 and 13.87, respectively
(DSC apparatus: NETZSCH DSC 200 F3 Maia). Among the testing parameters, ∆HM, ∆HA and ρ are
assumed to be constant in all simulations and Sas.

Table 2. Mechanical properties of the test material.

ρ (kg/m3) D (mm) d (mm) Cs, S GA (GPa) GM (GPa) ∆HA (J/g) ∆HM (J/g)

6.45E+3 6.75 0.9 7.5 31.35 15.24 13.87 4.82

Mf (◦C) Ms (◦C) As (◦C) Af (◦C) Tcr (◦C) ν αi (◦) εL

26.9 33.8 31.6 40.1 35.9 0.33 0 0.0035
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Figure 5. DSC curves: The peak during cooling indicates a symmetric R-phase transformation (blue:
austenite upon the first heating; red: austenite during the second heating).

On the other hand, MVF is considered nearly zero in full austenite [24]. The SMA coil is simulated
by setting ξ0 = 0 for the forward cycle (A→M ) and ξ0 = 1 for the reverse (M→ A ). In Figure 6, notice
that incomplete thermal cycles (in cases in which terminal temperatures of an actuation do not reach
either Mf or Af) result in much smaller SMA extension than its full potential (Figure 6a–c). Figure 6d

demonstrates that the actuation stroke becomes greater as L(0)
S lengthens. However, the magnitude of

the available force may tend, on the contrary, to decrease.
Materials 2020, 13, 2485 11 of 22

Figure 6. Simulation of SMA phase transformation behavior (L = 300, L(0)S = 100, L(0)b = 100): (a) full
cycle; (b) incomplete cooling; (c) incomplete heating; (d) behavior of multiple length SMA springs
(black dotted lines in (b) and (c) indicate logistic approximation of recovery M→ A.

3.2. SA: Spring Pitch Angle Variation

Equation (14) indicates that a larger spring index (Cs) and pitch angle (α) are advantageous to
obtaining greater extension. However, in industrial practice, a Cs of 4–16 is recommended and 6–12 is
preferred by manufacturers so that αi and αf are less than 5◦–10◦ and 20◦–30◦, respectively, to ensure
robust contraction [25]. Figure 7 shows the variation in Θ with αi of [0◦, 10◦] and αf of [0◦, 30◦] with
10,000 samples generated using SALib. SA results in Sαi = 0.018 and Sαf = 0.982, which indicates that
αi is far less important than αf . Θ is almost constant with an αi less than 4◦, and we obtain Θ ∈ [0.94,
1.33] with mean (µ) of 1.1 and standard deviation (σ) of 0.12 on αi ∈ [0◦, 4◦].

Figure 6. Cont.
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10,000 samples generated using SALib. SA results in Sαi = 0.018 and Sαf = 0.982, which indicates that
αi is far less important than αf . Θ is almost constant with an αi less than 4◦, and we obtain Θ ∈ [0.94,
1.33] with mean (µ) of 1.1 and standard deviation (σ) of 0.12 on αi ∈ [0◦, 4◦].

Figure 6. Simulation of SMA phase transformation behavior (L = 300, L(0)S = 100, L(0)b = 100): (a) full
cycle; (b) incomplete cooling; (c) incomplete heating; (d) behavior of multiple length SMA springs
(black dotted lines in (b) and (c) indicate logistic approximation of recovery M→ A.

3.2. SA: Spring Pitch Angle Variation

Equation (14) indicates that a larger spring index (Cs) and pitch angle (α) are advantageous to
obtaining greater extension. However, in industrial practice, a Cs of 4–16 is recommended and 6–12 is
preferred by manufacturers so that αi and αf are less than 5◦–10◦ and 20◦–30◦, respectively, to ensure
robust contraction [25]. Figure 7 shows the variation in Θ with αi of [0◦, 10◦] and αf of [0◦, 30◦] with
10,000 samples generated using SALib. SA results in Sαi = 0.018 and Sαf = 0.982, which indicates that
αi is far less important than αf . Θ is almost constant with an αi less than 4◦, and we obtain Θ ∈ [0.94,
1.33] with mean (µ) of 1.1 and standard deviation (σ) of 0.12 on αi ∈ [0◦, 4◦].

Figure 7. SA result of spring pitches and Θ: Sαi = 0.018, Sα f = 0.982.

3.3. SA: Limit of Initial SMA Length (L(0)
S,max)

From the results in Section 3.2, we may consider Θ as a constant by taking its mean hereinafter
(Θ = 1.1); then, Equation (25) is simulated with L(0)

b ∈ [5, 150], Cs,S ∈ [4, 16], εL ∈ [0.002, 0.005], and ξ
∈ [0, 1]. Note that εL does not exceed 1% in R-phase transformation, and generally ranges from
0.2% to 0.5% [26]. The recommended practical limit is 4% only if stress-applied B19 martensite is
considered [1,27]. The SA results in Table 3 and Figure 8 show that ξ and Cs, S are the most constraining

variables in the determination of L(0)
S,max. The results show that L(0)

b is slightly less important and εL is
negligible because STεL < 0.05 (Table 3).
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Table 3. Total Sobol indices (ST) of L(0)S,max parametrs.

ST
L(0)

b
STCs, S STεL STξ

0.317 (0.01611) 0.347 (0.0211) 0.043 (0.00411) 0.355 (0.02311)
1 Confidence interval.

Figure 8. SA results of L(0)S, max-related variables (L = 300).

3.4. SA: SMA Displacement (δS)

For δS, it was identified through pre-examination of SA that the initial spring lengths (L(0)
S and L(0)

b )
are enormously influential (responsible for more than 90% variations in δS) in hiding the contributions
of other variables. Therefore, L(0)

S and L(0)
b are set as discretely varying constants in this experiment.

We set L(0)
S and L to 50 and 300, respectively, and Equation (25) was run on εL ∈ [0.002, 0.005], d ∈ [0.5,

1.5], kb ∈ [0.01, 0.2], GA ∈ [19.84, 32.72], and GM ∈ [5.79, 16.13] by referring to the literature [1–4,10,19].
Figure 9 shows the results of δS per parameter combinations of 10,000 samples, increasing L(0)

b by

50 mm (Case 1: L(0)
S fixed), and Figure 10 presents variation in δS when L(0)

S increases from 50 to

150 mm (Case 2: L(0)
b fixed). The SA results over L(0)

S , L(0)
b ∈ [50, 150] indicate that Cs, S and kb are the

most significant variables for SMA elongation in both cases, followed by d and ξ. In both cases (Table 4
and Figure 11), it is noteworthy that ξ is increasingly important as L(0)

b and L(0)
S lengthen, while the

contribution of kb slightly diminishes. We expect that the impact of ξ could be ignored if the SMA were
shorter. These results confirm that the variations in GA, GM, and εL exhibit very little contribution to
δS, and they can be considered constants in SMA elongation.

Table 4. Total Sobol indices (ST) of δS (L = 300): Case 1 (left) and Case 2 (right).

L(0)1
b

STCs, S STd STkb STGA STGM STεL STξ L(0)2
S

50 0.644 0.627 0.231 0.233 0.779 0.784 0.027 0.026 0.011 0.012 0 0.000 0.083 0.070 50
60 0.646 0.632 0.231 0.233 0.778 0.782 0.027 0.026 0.011 0.012 0.001 0.000 0.084 0.074 60
70 0.648 0.637 0.230 0.232 0.777 0.781 0.027 0.026 0.011 0.011 0.001 0.000 0.086 0.078 70
80 0.651 0.643 0.230 0.231 0.776 0.779 0.027 0.026 0.011 0.011 0.001 0.000 0.088 0.082 80
90 0.654 0.650 0.229 0.230 0.775 0.776 0.027 0.027 0.010 0.011 0.001 0.001 0.091 0.087 90

100 0.657 0.657 0.228 0.228 0.773 0.773 0.027 0.027 0.010 0.010 0.001 0.001 0.094 0.094 100
110 0.662 0.667 0.227 0.226 0.771 0.769 0.027 0.027 0.010 0.010 0.001 0.002 0.098 0.102 110
120 0.667 0.678 0.226 0.223 0.768 0.764 0.027 0.027 0.010 0.009 0.002 0.002 0.103 0.114 120
130 0.674 0.691 0.224 0.219 0.765 0.757 0.027 0.028 0.009 0.008 0.002 0.004 0.110 0.130 130
140 0.683 0.707 0.221 0.214 0.761 0.749 0.027 0.028 0.009 0.007 0.003 0.007 0.120 0.153 140
150 0.695 0.725 0.218 0.208 0.754 0.737 0.027 0.028 0.008 0.007 0.005 0.012 0.136 0.191 150

1 L(0)
s = 100, 1 L(0)

b = 100.
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Figure 9. SA of δS-related variables (L = 300, L(0)S = 100): (a) L(0)b = 50; (b) L(0)b = 100; (c) L(0)b = 150.

Figure 10. SA of δS-related variables (L = 300, L(0)b = 100): (a) L(0)s = 50; (b) L(0)s = 150.
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Figure 11. Parametric percentage contribution to SMA spring elongation (δS): (a) Variation in bias

spring length (L = 300, L(0)S = 100); (b) Variation in initial SMA spring length (L = 300, L(0)b = 100).

3.5. SA: Actuation Force (FS)

The actuation force equation (18) was simulated for SA with the same parameters as in δS. In the
same manner as Section 3.4, two cases were examined over FS. Figure 12 shows Case 3, in which L(0)

b

changes by 10 mm in discrete steps, and, in Figure 13 (Case 4), L(0)
S varies in the same manner. Note

that L(0)
S and L(0)

b are treated as continuous variables where appropriate, since the influence of the
initial lengths in FS is not as critical as it is in δS. The total Sobol index values in Table 5 reveal that
Cs, S is the most sensitive factor in both cases. It is important to note that kb is negligible, unlike in the
cases on displacement. In Figure 14, we find that the impact of Cs, S and d decrease, while the spring

length parameters (L(0)
S and L(0)

b ) become more important. L(0)
S is more sensitive if L(0)

b is determined.
In Case 4, the internal state factor (ξ) is slightly more sensitive than it is in Case 3. In all cases, GA, GM,
and εL are only slightly influential, and εL in particular can be ignored.

Figure 12. SA results of FS-related variables (L = 300): (a) L(0)b = 50; (b) L(0)b = 100; (c) L(0)b = 150.
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Figure 13. SA results of FS- related variables (L = 300): (a) L(0)b = 50; (b) L(0)b = 100; (c) L(0)b = 150.

Table 5. Total Sobol indices (ST) of FS (×1E-1, L = 300): Case 3 (left) and Case 4 (right).

L(0)
b

STLb STCs, S STd STkb STGA STGM STεL STξ STLS L(0)
S

50 0.50 8.09 8.43 3.27 3.34 0.00 0.00 0.19 0.19 0.15 0.14 0.00 0.00 0.85 0.89 0.87 50
60 0.58 8.08 8.41 3.26 3.31 0.00 0.00 0.19 0.19 0.15 0.14 0.00 0.00 0.85 0.92 0.88 60
70 0.67 8.06 8.39 3.25 3.28 0.00 0.00 0.19 0.19 0.15 0.13 0.00 0.00 0.86 0.94 0.89 70
80 0.78 8.03 8.36 3.24 3.25 0.00 0.00 0.19 0.18 0.15 0.13 0.00 0.00 0.86 0.98 0.90 80
90 0.93 8.00 8.32 3.23 3.22 0.00 0.00 0.19 0.18 0.15 0.13 0.00 0.01 0.87 1.01 0.92 90
100 1.12 7.97 8.27 3.22 3.18 0.00 0.00 0.19 0.18 0.15 0.13 0.00 0.01 0.88 1.06 0.93 100
110 1.37 7.93 8.19 3.20 3.13 0.00 0.00 0.19 0.18 0.15 0.13 0.01 0.01 0.88 1.11 0.95 110
120 1.71 7.88 8.09 3.18 3.07 0.00 0.00 0.19 0.18 0.15 0.12 0.01 0.02 0.89 1.18 0.97 120
130 2.17 7.82 7.95 3.16 2.99 0.00 0.00 0.18 0.18 0.15 0.12 0.01 0.03 0.90 1.26 1.00 130
140 2.81 7.74 7.73 3.13 2.89 0.00 0.00 0.18 0.17 0.15 0.11 0.01 0.04 0.91 1.36 1.02 140
150 3.70 7.64 7.42 3.10 2.78 0.00 0.00 0.18 0.16 0.14 0.11 0.01 0.06 0.92 1.47 1.05 150

Figure 14. Parametric percentage contribution to the SMA force (FS): (a) Variation in bias spring length;
(b) Variation in initial SMA spring length.
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3.6. SA: Maximum Output Stroke and Force

As illustrated in Figure 3b, the SMA spring in the presence of bias is generally expected to actuate
in temperatures ranging between Mf and Af. Thus, the cyclic deflection and force change between the
martensitic and austenitic states, and the maximum output stroke (∆δS) and force (∆FS) characterize
the final performance of the actuation. Assuming that the actuation takes place between a certain high
(TH ≤ Af) and low temperature (TL ≤Mf), ∆δS and ∆FS can be expressed as:

∆δS = δS,TL − δS, TH (32)

∆FS = FS,TH − FS,TL (33)

Since we find that STs of GA, GM, and εL are not very significant, in almost all instances of δS and
FS (Tables 4 and 5), they are set as constants (εL = 0.0035). Refer to the values in Table 2. ∆δS and
∆FS are simulated using Equations (25) and (18) on L(0)

S , L(0)
b ∈ [50, 150], Cs, S ∈ [4, 16], d ∈ [0.5, 1.5],

kb ∈ [0.01, 0.2], TH ∈ [33, 40], and TL ∈ [26, 33] with a temperature change interval of 0.01 ◦C. Figure 15
and Table 6 suggest that the terminal operation temperatures (TH and TL) are highly impactful for both
∆δS and ∆FS (especially TL), whereas L(0)

b is much less important. Furthermore, the wire diameter
(d) is not very sensitive, in contrast to Cases 1 through 4. kb and Cs, S are the third and fourth major
parameters, which are almost equally sensitive. Figure 16 displays the percentage contributions and
trends in the parameters by reintroducing L(0)

b and d as discrete variables. Figure 16a shows that the
initial SMA length gains importance gradually, reducing TL. The increasing sensitivity of TL and TH
leads to the overall contribution change in Figure 16b. The sharp decrease in the contribution of Cs, S
along with the thickening of the wire is noticeable in Figure 16d. kb gradually decreases as the wire
thickens and the bias spring lengthens. In all cases, the contribution of L(0)

S is less than 10%.

Figure 15. SA results (L = 300): (a) ∆δS; (b) ∆FS.

Table 6. Total Sobol indices (ST) of ∆δS and ∆FS parameters.

ST
L(0)

S
ST

L(0)
b

STCs, S STd STkb STTH STTL

∆δS 0.107 0.074 0.157 0.099 0.16 0.406 0.573
∆FS 0.101 0.06 0.155 0.119 0.193 0.364 0.549
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Figure 16. Trends in parametric contribution (L = 300): (a) ∆δS (d = 0.9); (b) ∆δS (L(0)b = 100); (c) ∆FS

(d = 0.9); (d) ∆FS (L(0)b = 100).

4. Discussion and Concluding Remarks

4.1. Rankings of Parameter Importance in SMA-Bias Actuator Design

Examining SMA behavior through simulation is an effective way to determine parameters and
constraints during design phases. Table 7 lists the sensitivity ranking of inputs in numbered order.
Large index springs are advantageous to the output stroke if the actuator length is limited [28], implying
that small spring diameters are likely prone to deflection, although D is concealed in the parameter
list. On the other hand, note that the spring coefficient of the bias spring is critical to SMA elongation.
This result suggests that the optimal choice of a bias spring with a proper dimension should be
emphasized to obtain desirable actuator performance. The importance of the SMA spring index and
the bias spring coefficient can also be found in ∆δS and ∆FS (Table 7). In most cases, the maximum
residual strain is insignificant, since it is too small in most SMAs undergoing R-phase transformation.
However, MVF should be considered important in the estimation of an SMA elongation limit as well
as FS, if the length of an SMA spring is predefined.

Table 7. Evaluation of parametric impact with contribution ranking.

Output L(0)
S L(0)

b
Cs, S d kb GA GM εL ξ TH TL

L(0)S,max
3 2 * 1

δS
1 - - 2 3 1 * * * 4

δS
2 - - 2 3 1 * * * 4

FS
3 2 - 1 3 * * * * 4

FS
4 - 3 1 2 * * * * 4

∆δS 5 7 4 6 3 - - - 2 1
∆FS 6 7 4 5 3 - - - 2 1

1 Case 1, 2 Case 2, 3 Case 3, 4 Case 4, -: set as a constant, *: insignificant.
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4.2. Trade-Off between Output Stroke and Force

The major parametric behavior of δS and FS (Sections 3.4 and 3.5) reflects the inherent trade-off

between actuation stroke and force. A comparison of Figures 10 and 12 indicates that the spring index,
wire diameter, and MVF show opposite tendencies in δS and FS, i.e., the greater the maximum stroke,
the smaller the output force. This finding suggests that an accurate estimate of the martensite property
(ξ) as well as optimization of the critical parameter values (Cs, S and kb) is required to predict the actual
performance of SMA-bias spring actuators.

4.3. Temperature Dependency of Actuator Performance

It is evident that MVF, a function of material temperatures, is crucial to the mechanical behavior
of SMAs (Figure 6), as it is directly involved with the elastic modulus. By the same token, actuator
output performance tends to depend mainly on the bound of the terminal operating temperatures,
which is similar to the findings of a previous study using the Ivshin–Pence model [29]. To obtain the
desired output stroke and force, Figure 6 and Section 3.6 suggest that SMA ingredients be properly
manufactured for the R-phase Ms to be no greater than As so that elongation and recovery are
clearly separated in the morphing of the internal SMA structures. Increasing the gradient of the
temperature-MVF curve can benefit sharp austenitic/martensitic transition with short temporal delay
in the kinematic regime change.

Indeed, the thermomechanical explanation of SMA behavior is complicated. An actual maximum
stroke is contingent upon the internal material state and various uncertain environmental factors,
therefore presumably being less than the maximum estimate from any model. The theoretical maximum
and minimum of ξ (1 and 0) is achievable under extremely constrained conditions (T �M f or T � A f ),
which may not be feasible with air-cooling/heating SMAs in construction applications.

4.4. Reduction in Model Complexity and Uncertainty in SA

Given the SA results, the complexity of the actuation model can be avoided by eliminating
insignificant parameters, along with dimension reduction. In particular, the small contribution of the
residual strain may reduce the nonlinearity of the SMA transformation, increasing its dependency on
the shear modulus change primarily induced by temperature. That said, the study findings should
not be exaggerated. The mechanical properties of SMAs are phenomenological, and it is not likely
that we could define a single deterministic model applicable to all types. Accordingly, the appropriate
setting of likely parameter values is important to assure that they are suitably sampled for SA within
the interest of any given investigation. Should specific upper/lower bounds of a parameter domain be
unavailable, then one may approximate them by referring to the literature. However, this may increase
output uncertainty and, as such, risk being ungeneralizable to SA outcomes. Moreover, the Sobol SA
quantifies only input variances on model output, and none of the results explain an absolute level of
parametric contribution. Thus, further study is required to quantify the propagation of parametric SA
uncertainty with probabilistic definitions of the parameter values.
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Nomenclature

Abbreviation Description Unit
Φ Specific Helmholtz free energy J/g
A, M Austenite, martensite -
CA, CM Austenitic (A) and martensitic (M) alloy stiffness N/mm2

ξ Martensite volume fraction -
NA, NM Stress-temperature curve gradient in austenite and martensite -
∆H Specific enthalpy (latent heat) J/g
Θ Coefficient of spring pitch angles -
L Total length of actuator spring connection mm

L(0)b
Original length of bias spring mm

L(0)S
Original length of shape memory alloy (SMA) spring mm

GS SMA spring shear modulus N/mm2

δS SMA spring deflection mm
∆δS Output stroke of actuation mm
FS SMA spring force N
∆FS Output force of actuation N
Cs, S SMA spring index -
kb Bias spring coefficient N/mm
εL Residual strain -
ST Total Sobol index -
Tcr Critical temperature ◦C
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29. Islam, A.B.M.R.; Karadoğan, E. Analysis of One-Dimensional Ivshin–Pence Shape Memory Alloy Constitutive
Model for Sensitivity and Uncertainty. Materials 2020, 13, 1482. [CrossRef] [PubMed]

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11012-020-01155-9
http://dx.doi.org/10.1177/1045389X9300400213
http://dx.doi.org/10.1177/1045389X9700800402
http://dx.doi.org/10.1088/0964-1726/21/5/055009
http://dx.doi.org/10.3221/IGF-ESIS.29.08
http://dx.doi.org/10.1177/1045389X12444491
http://dx.doi.org/10.1016/j.ijsolstr.2015.03.013
http://dx.doi.org/10.1051/jnwpu/20183610049
http://dx.doi.org/10.1016/j.envsoft.2013.09.031
http://dx.doi.org/10.1016/j.ijsolstr.2015.11.019
http://dx.doi.org/10.1007/s40830-015-0013-4
http://dx.doi.org/10.1016/j.msea.2004.03.013
http://dx.doi.org/10.3390/ma11112324
http://www.ncbi.nlm.nih.gov/pubmed/30463218
http://dx.doi.org/10.3390/ma13061482
http://www.ncbi.nlm.nih.gov/pubmed/32214042
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Theoretical SMA Constitutive Model 
	Modeling of 1-D SMA-Bias Spring Actuation 
	Sensitivity Analysis (SA) and Monte Carlo Approach to Simulation 
	Study Parameters 

	Results and Discussion 
	Experimental Parameter Investigation 
	SA: Spring Pitch Angle Variation 
	SA: Limit of Initial SMA Length (LS,max(0) ) 
	SA: SMA Displacement (S ) 
	SA: Actuation Force (FS ) 
	SA: Maximum Output Stroke and Force 

	Discussion and Concluding Remarks 
	Rankings of Parameter Importance in SMA-Bias Actuator Design 
	Trade-Off between Output Stroke and Force 
	Temperature Dependency of Actuator Performance 
	Reduction in Model Complexity and Uncertainty in SA 

	References

