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Abstract
Biotic	specialization	holds	information	about	the	assembly,	evolution,	and	stability	of	
biological	communities.	Partner	availabilities	can	play	an	 important	role	 in	enabling	
species	interactions,	where	uneven	partner	availabilities	can	bias	estimates	of	biotic	
specialization	when	using	phylogenetic	diversity	indices.	It	is	therefore	important	to	
account	 for	partner	availability	when	characterizing	biotic	specialization	using	phy-
logenies.	We	developed	an	index,	phylogenetic	structure	of	specialization	(PSS),	that	
avoids	bias	from	uneven	partner	availabilities	by	uncoupling	the	null	models	for	inter-
action	frequency	and	phylogenetic	distance.	We	incorporate	the	deviation	between	
observed	and	random	interaction	frequencies	as	weights	into	the	calculation	of	part-
ner	phylogenetic	α-	diversity.	To	calculate	the	PSS	index,	we	then	compare	observed	
partner	phylogenetic	α-	diversity	to	a	null	distribution	generated	by	randomizing	phy-
logenetic	distances	among	the	same	number	of	partners.	PSS	quantifies	the	phylo-
genetic	structure	(i.e.,	clustered,	overdispersed,	or	random)	of	the	partners	of	a	focal	
species.	We	show	with	simulations	that	the	PSS	index	is	not	correlated	with	network	
properties,	which	allows	comparisons	across	multiple	systems.	We	also	implemented	
PSS	on	empirical	networks	of	host–	parasite,	avian	seed-	dispersal,	 lichenized	fungi–	
cyanobacteria,	 and	 hummingbird	 pollination	 interactions.	 Across	 these	 systems,	 a	
large	proportion	of	taxa	interact	with	phylogenetically	random	partners	according	to	
PSS,	sometimes	to	a	larger	extent	than	detected	with	an	existing	method	that	does	
not	account	for	partner	availability.	We	also	found	that	many	taxa	interact	with	phy-
logenetically	clustered	partners,	while	 taxa	with	overdispersed	partners	were	 rare.	
We	argue	that	species	with	phylogenetically	overdispersed	partners	have	often	been	
misinterpreted	as	generalists	when	they	should	be	considered	specialists.	Our	results	
highlight	the	important	role	of	randomness	in	shaping	interaction	networks,	even	in	
highly	intimate	symbioses,	and	provide	a	much-	needed	quantitative	framework	to	as-
sess	 the	 role	 that	evolutionary	history	and	symbiotic	 specialization	play	 in	 shaping	
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1  |  INTRODUC TION

Species	 interactions	 display	 patterns	 of	 biotic	 specialization	 that	
impact	 the	evolution,	assembly,	and	stability	of	biological	commu-
nities	 (Chomicki	 et	 al.,	 2019;	Guimarães	 et	 al.,	 2011;	Poisot	 et	 al.,	
2011).	These	patterns	result	from	a	combination	of	trait-	driven	and	
stochastic	 processes	 that	 enable	 interactions	 between	 organisms.	
For	example,	a	pollination	interaction	between	a	hummingbird	and	a	
flowering	plant	may	depend	both	on	their	morphological	trait	match-
ing	(e.g.,	flower	corolla	length	and	hummingbird	bill	 length)	and	on	
the	probability	that	the	hummingbird	will	encounter	the	flower	while	
foraging	(Peralta	et	al.,	2020;	Sonne	et	al.,	2020;	Young	et	al.,	2021).	
Multiple	 studies	 have	 quantified	 the	 relative	 importance	 of	 these	
two	types	of	processes	at	the	community	level	(Canard	et	al.,	2014;	
Chávez-	González	et	al.,	2020;	Maglianesi	et	al.,	2014;	Simmons	et	al.,	
2019;	Sonne	et	al.,	2020;	Stang	et	al.,	2007;	Vizentin-	Bugoni	et	al.,	
2014).	As	expected	(Vázquez	et	al.,	2009),	traits	that	mediate	spe-
cies	 interactions	often	have	predictive	power	 for	 interactions	 and	
interaction	frequencies	(Maglianesi	et	al.,	2014;	Sonne	et	al.,	2020;	
Vizentin-	Bugoni	 et	 al.,	 2014).	 However,	 in	multiple	 cases,	 partner	
availability	has	been	found	to	have	a	more	important	role	in	explain-
ing	species	interactions	(Canard	et	al.,	2014;	Chávez-	González	et	al.,	
2020;	Simmons	et	al.,	2019;	Stang	et	al.,	2007).

Typically,	ecologists	characterize	biotic	specialization	by	quanti-
fying	two	properties	of	a	species’	biotic	niche:	partner	breadth	and	
the	intensity	of	interactions	with	those	partners	(Colwell	&	Futuyma,	
1971;	 Futuyma	 &	 Moreno,	 1988;	 Hurlbert,	 1978;	 Pinheiro	 et	 al.,	
2016).	Both	of	these	properties	can	be	shaped	by	partner	availability.	
Therefore,	 the	quantification	of	biotic	specialization	can	be	biased	
if	the	distribution	of	partner	availabilities	is	not	taken	into	account	
(Blüthgen	et	al.,	2008).	These	biases	emerge	in	multiple	ways	when	
studying	specialization.	For	example,	when	species	interactions	are	
studied	as	networks,	with	nodes	representing	species	and	links	rep-
resenting	 interactions	(Guimarães	et	al.,	2006;	Jordano,	1987),	the	
total	 number	 of	 partners	 of	 a	 species,	 or	 node	 degree,	 character-
izes	partner	breadth	(Jordano	et	al.,	2002),	while	the	distribution	of	
interaction	frequencies	across	partners	(interaction	strength	sensu	
Vázquez	et	al.,	2007)	provides	information	on	the	intensity	of	part-
ner	use.	If	interactions	are	random,	a	skewed	distribution	of	partner	
availabilities	 will	 nevertheless	 result	 in	 rare	 species	 having	 high-	
intensity	interactions	with	a	narrow	set	of	partners	(i.e.,	artifactual	
specialization	on	the	most	common	species;	Blüthgen	et	al.,	2008).

Biotic	specialization	can	also	be	studied	using	phylogenetic	di-
versity	metrics	(Cooper	et	al.,	2012;	Doña	et	al.,	2018;	Esser	et	al.,	
2016;	 Lane	et	 al.,	 2014).	Here,	 species	 are	 considered	more	 spe-
cialized	 if	 they	 associate	with	 partners	 that	 are	more	 closely	 re-
lated	than	expected	by	chance	(Poulin	et	al.,	2011).	This	approach	
acknowledges	 that	 simply	 counting	 partners	 may	 provide	 an	 in-
complete	picture	of	a	species’	partner	breadth.	Even	if	two	species	
associate	with	 the	 same	 number	 of	 partners,	 one	 of	 them	might	
be	specialized	on	partners	with	a	narrower	range	of	traits	(Dehling	
et	 al.,	 2020;	 Junker	 et	 al.,	 2013).	 However,	 many	 interactions	
are	mediated	 by	 traits	 that	 are	 unknown	or	 difficult	 to	measure.	
Furthermore,	most	symbioses	 involve	microbes	for	which	species	
boundaries	are	unclear,	making	it	difficult	to	quantify	the	number	
of	 partners	 (Magain,	Miadlikowska,	 Goffinet,	 et	 al.,	 2017;	 Põlme	
et	al.,	2018;	Toju	et	al.,	2014).	Because	traits	tend	to	be	phyloge-
netically	conserved	(Goberna	&	Verdú,	2016;	Swenson,	2013)	and	
phylogenetic	relatedness	can	be	calculated	without	a priori species 
delimitation,	phylogenetic	diversity	metrics	are	a	useful	alternative	
for	 characterizing	 the	 partner	 breadth	 of	 a	 species	 (Faith,	 1992;	
Webb	et	al.,	2002).

Phylogenetic	 diversity	 metrics	 can	 also	 be	 biased	 by	 partner	
availability.	For	example,	when	interactions	occur	randomly,	changes	
in	partner	availability	can	change	interaction	frequencies	and	alter	
the	 number	 of	 partners	 for	 a	 focal	 species	 (Figure	 1a–	c;	 Lessard	
et	al.,	2012;	Poisot	et	al.,	2015).	As	a	result,	a	species	may	appear	
specialized	on	a	set	of	closely	related	partners	(i.e.,	phylogenetically	
clustered)	only	because	the	most	available	partners	happened	to	be	
closely	related	(Figure	1b).	Previous	simulation	studies	have	revealed	
multiple	 scenarios	where	 failure	 to	account	 for	 the	distribution	of	
species	abundances	(analogous	to	partner	availability)	results	in	bi-
ased	estimates	of	phylogenetic	diversity	(Kembel,	2009;	Miller	et	al.,	
2017).	One	way	to	account	for	this	problem	is	to	compare	observed	
values	of	phylogenetic	diversity	to	a	null	distribution	generated	by	
drawing	partners	from	a	pool	of	species	in	proportion	to	their	avail-
ability,	instead	of	drawing	them	with	equal	probabilities	(Jorge	et	al.,	
2014;	Kembel,	2009;	Miller	et	al.,	2017).	However,	this	null	model	is	
also	biased	 (Appendix	S1;	Figure	S1)	and	results	 in	an	overestima-
tion	of	non-	random	phylogenetic	structure	with	increasing	interac-
tion	frequencies,	as	evidenced	by	Jorge	et	al.	(2017)	for	networks	of	
plant–	herbivore	interactions.

The	 growing	 evidence	 that	 ecological	 interactions	 of	 many	
species	 are	 driven,	 at	 least	 at	 some	 scales,	 by	 the	 availability	

patterns	of	biodiversity.	PSS	is	available	as	an	R	package	at	https://github.com/cjpar	
dodel	ahoz/pss.
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of	 potential	 partners	 (Canard	 et	 al.,	 2014;	 Chávez-	González	
et	al.,	2020;	Simmons	et	al.,	2019;	Stang	et	al.,	2007),	calls	for	ap-
proaches	to	measure	specialization	that	appropriately	incorporate	
partner	 availability.	We	developed	 an	 index,	 phylogenetic	 struc-
ture	 of	 specialization	 (PSS),	 that	 integrates	 partner	 availability	
and	phylogenetic	diversity	to	measure	biotic	specialization	in	eco-
logical	networks.	PSS	avoids	bias	from	uneven	partner	availabili-
ties	by	uncoupling	the	null	models	for	 interaction	frequency	and	
phylogenetic	 distance.	 First,	we	quantify	 the	deviation	between	
observed	interaction	frequencies	and	random	interactions.	Next,	
we	 incorporate	 these	 deviations	 as	 weights	 into	 the	 calculation	
of	 partner	 phylogenetic	 α-	diversity;	 we	 also	 calculate	 phyloge-
netic	α-	diversity	 for	 sets	with	 the	 same	number	of	 partners	but	
randomized	phylogenetic	distances	among	them.	Finally,	we	com-
pare	observed	and	null	values	of	the	phylogenetic	diversity	met-
ric	to	calculate	the	PSS	index.	Therefore,	PSS	is	a	measure	of	the	
phylogenetic	structure	of	the	partners	of	a	focal	species	(partner	
breadth)	that	accounts	for	partner	availability,	helping	to	untangle	
trait-	driven	and	stochastic	processes	shaping	patterns	of	special-
ization	 (Figure	1).	We	 conducted	 simulations	 to	detect	 potential	
biases	of	this	new	approach	and	found	that	PSS	is	not	correlated	
with	 network	 properties	 as	 a	 previous	 index	 (Jorge	 et	 al.,	 2017;	
Appendix	S1),	which	makes	PSS	comparable	across	datasets.	We	
also	 illustrated	 the	 use	 of	 PSS	with	 four	 empirical	 bipartite	 net-
works	from	the	literature	for	which	molecular	phylogenetic	trees	
were	available	for	both	sets	of	partners.	We	propose	a	conceptual	
framework	to	interpret	phylogenetic	structural	patterns	of	biotic	
specialization	in	ecological	networks	(Figures	1	and	2)	that	enables	
the	exploration	of	putative	ecological	and	evolutionary	processes	
generating	these	patterns.

2  |  METHODS

2.1  |  The phylogenetic structure of specialization 
index

Phylogenetic	 diversity	 indices	 used	 to	 measure	 specialization	
are	 standardized	 effect	 sizes	 (SES;	 Miller	 et	 al.,	 2017;	 Poulin	
et	 al.,	 2011).	 As	 such,	 these	 indices	 compare	 observed	 val-
ues	 of	 a	 phylogenetic	 diversity	 metric	 to	 a	 null	 distribution	 (i.e.,	
SES	=	(nullmean	−	observed)/nullsd).	One	strategy	to	account	for	part-
ner	 availability	 is	 to	generate	 the	null	 distribution	by	 calculating	a	
phylogenetic	 diversity	 metric	 for	 sets	 of	 partners	 that	 are	 drawn	
from	the	pool	of	partner	species	 in	proportion	 to	 their	availability	
(Jorge	et	al.,	2014;	Kembel,	2009;	Miller	et	al.,	2017).	This	approach	
uses	a	single	null	model	for	both	interaction	frequencies	and	phylo-
genetic	distances.	However,	when	a	focal	species	associates	with	its	
partners	nonrandomly,	drawing	from	the	pool	of	partner	species	in	
proportion	to	their	availability	will	often	yield	a	null	set	with	a	dif-
ferent	number	of	partners	than	observed.	This	difference	will	grow	
larger	as	interactions	become	less	random.	If	the	null	and	observed	
values	 of	 the	 phylogenetic	 diversity	 metric	 are	 not	 based	 on	 the	
same	number	of	partners,	the	phylogenetic	diversity	index	(SES)	will	
be	biased	(Figure	S1	in	Appendix	S1;	Jorge	et	al.,	2017).	This	is	be-
cause	phylogenetic	diversity	metrics	are	not	independent	from	the	
number	of	species	upon	which	they	are	calculated.

We	avoid	 this	problem	by	uncoupling	 the	null	models	 for	 in-
teraction	 frequency	 and	 phylogenetic	 distance.	 First,	 we	 use	
Kullback–	Leibler	distances	 (Kullback	&	Leibler,	1951)	 to	quantify	
the	 magnitude	 of	 the	 deviation	 between	 the	 observed	 interac-
tion	 frequencies	 and	 a	 null	 distribution	 representing	 random	

F I G U R E  1 Schematic	representation	
of	three	possible	patterns	of	phylogenetic	
structure	and	their	corresponding	
phylogenetic	structure	of	specialization	
(PSS)	values	(random	[a–	c],	clustered	[d–	f],	
and	overdispersed	[g–	i])	across	three	
different	availability	patterns	of	partners	
from	set	A	that	interact	with	one	species	
from	set	B.	The	size	of	the	orange	circles	
represents	the	relative	availability	of	each	
member	of	set	A

(a)
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interactions	 (Blüthgen	 et	 al.,	 2006).	We	 incorporate	 these	 devi-
ations	as	weights	into	the	calculation	of	the	weighted	mean	pair-
wise	 phylogenetic	 distance,	 a	 common	 metric	 of	 phylogenetic	
α-	diversity	 (wMPD;	 Webb	 et	 al.,	 2008).	 Then,	 we	 calculate	 this	
modified	wMPD	 for	 null	 sets	 of	 partners	 generated	 by	 shuffling	
taxa	at	 the	 tips	of	 the	partner	phylogeny,	which	 randomizes	 the	
phylogenetic	distances	while	keeping	the	number	of	partners	con-
stant.	Finally,	we	compare	the	observed	and	null	values	of	the	phy-
logenetic	diversity	metric	to	calculate	the	PSS	index	as	an	SES.	We	
describe	the	calculation	of	the	PSS	index	below.

First,	 let	 I	be	an	 interaction	matrix	with	 r	 species	 in	 the	rows	
(set	A)	and	c	 species	 in	 the	columns	 (set	B).	Each	element	aij	of	 I 
represents	the	 interaction	frequency	between	species	 i	and	spe-
cies j,	such	that:

(1)I =

⎡
⎢⎢⎢⎢⎣

a11…a1c

⋮ ⋱ ⋮

ar1…arc

⎤
⎥⎥⎥⎥⎦
.

F I G U R E  2 Schematic	representation	of	the	distribution	of	d’	(a),	−NRI	(b),	and	PSS	(c)	values	from	a	hypothetical	community	where	most	
species	associate	opportunistically	with	their	partners.	Importantly,	when	using	d’,	the	terms	“specialist”	and	“generalist”	refer	exclusively	
to	the	interaction	frequencies	relative	to	the	availability	of	the	partners	and	completely	ignore	the	actual	number	of	partners	(Blüthgen	
et	al.,	2006).	For	example,	two	species	can	have	d’ =	0	(generalists)	even	if	one	of	them	associates	with	100	partners	and	the	other	species	
associates	only	with	10	partners,	as	long	as	both	species	associate	with	those	partners	in	the	same	proportion	as	they	are	available.	Panel	
c	also	shows	how	PSS	values	are	related	to	d’	and	−NRI.	Species	with	lower	d’	values	will	tend	to	have	PSS	values	that	are	close	to	0,	while	
species with higher d’	values	can	take	values	close	to	0,	but	also	positive	and	negative	PSS	values.	Likewise,	species	with	negative	−NRI	can	
take	negative	or	near-	zero	values	with	PSS,	whereas	species	with	positive	−NRI	can	take	positive	or	near-	zero	values	with	PSS.	Panels	d,	e,	
and	f	show	a	reference	to	interpret	the	distribution	of	species	pairs	in	co-	specialization	profiles	of	a	bipartite	interaction	network	involving	
set	A	interacting	with	set	B,	and	vice	versa.	The	X	axis	represents	d’,	−NRI,	or	PSS	values	for	the	species	in	the	rows	of	an	interaction	matrix	
(set	A),	and	the	Y	axis	represents	the	d’,	−NRI,	or	PSS	values	for	the	species	in	the	columns	of	an	interaction	matrix	(set	B).	The	shaded	gray	
areas	in	panels	e	and	f	show	the	−NRI	and	PSS	space	where	clustering	or	overdispersion	are	not	significantly	different	from	a	random	pattern	
of	phylogenetic	structure	(Figure	1a–	c).	These	thresholds	flanking	the	shaded	gray	areas	(−1,1)	represent	the	95%	confidence	interval	of	the	
null	distribution	of	−NRI	or	PSS	simulated	under	each	dataset.	Each	circle	in	panels	d–	f	is	labeled	with	the	same	legends	as	in	panels	a–	c,	with	
left	semicircle	corresponding	to	the	value	of	the	species	in	the	Y	axis	(from	the	columns	of	the	matrix),	and	the	right	semicircle	representing	
the	value	of	the	species	in	X	axis	(from	the	rows	of	the	matrix).	For	example,	an	interacting	pair	that	falls	in	the	lower	left	corner	of	the	PSS	
space	(f)	involves	two	species	that	associate	with	phylogenetically	clustered	partners	according	to	PSS,	and	likely	have	high	value	of	d’	(i.e.,	
they	are	d’	specialists)
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Let	 Ai	 be	 the	 sum	 of	 interaction	 frequencies	 recorded	 for	
species i,

and	let	m	be	the	sum	of	interaction	frequencies	across	both	rows	and	
columns,

Let	qj	be	a	parameter	expressing	the	relative	availability	of	spe-
cies j.	We	can	define	qj	as	the	ratio	of	the	sum	of	interaction	frequen-
cies	of	species	j	to	the	marginal	sum	of	interaction	frequencies	in	the	
matrix	(i.e.,	matrix	availability),

In	this	case,	the	availability	parameter	is	inferred	from	the	interac-
tion	matrix.	Alternatively,	qj	can	be	determined	empirically	from	mea-
surements	of	partner	abundance.	The	 latter	 is	preferable	when	such	
data	are	available	(Jorge	et	al.,	2014;	Vizentin-	Bugoni	et	al.,	2014).	We	
will	discuss	the	validity	and	implications	of	both	approaches.

Let	P′

ij
	be	the	proportion	of	interactions	of	species	i	that	are	with	

species j,

We	will	use	P′

ij
	and	qj	to	calculate	the	magnitude	of	the	deviation	

of	interaction	frequencies	from	a	null	model	where	interaction	fre-
quencies	 are	 driven	 by	 partner	 availability.	 These	magnitudes	will	
be	used	below	as	weights	in	the	calculation	of	the	phylogenetic	di-
versity	metric.	 Before	we	 calculate	 the	weights,	 however,	we	will	
outline	the	calculation	of	the	phylogenetic	diversity	metric,	wMPD.

To	calculate	wMPD,	we	define	Mi	as	the	set	of	n	species	that	associ-
ate	with	species	i,	and	Di	as	a	symmetric	matrix	of	pairwise	phylogenetic	
distances	between	all	species	that	belong	to	the	set	Mi,	such	that:

Each	element	lks	of	Di	represents	the	phylogenetic	distance	be-
tween	two	partners	of	species	i,	species	k	and	s.	The	weighted	mean	
pairwise	phylogenetic	distance	of	Mi,	wMPDi,	was	defined	by	Webb	
et	al.	(2008)	as:

This	is	a	weighted	mean	of	the	pairwise	phylogenetic	distances	
among	a	set	of	species.	It	takes	larger	values	for	sets	of	distantly	re-
lated	species	and	smaller	values	for	sets	of	closely	related	species.	In	
this	definition,	the	weight	is	the	product	of	the	interaction	frequen-
cies	of	species	 i	with	partners	k	and	s,	aikais. The wMPD is used to 
compute	the	SESMPD	index	(Kembel,	2009),	which	is	commonly	used	
to	quantify	phylogenetic	 specialization	 (Cooper	et	 al.,	 2012;	Doña	
et	al.,	2018;	Esser	et	al.,	2016;	Lane	et	al.,	2014).	SESMPD	is	equivalent	
to	−1	times	the	net	relatedness	index	(−NRI;	Webb	et	al.,	2002),	such	
that	negative	values	correspond	to	clustering	and	positive	values	to	
overdispersion.

This	metric	can	yield	biased	estimates	of	the	phylogenetic	struc-
ture,	 especially	when	 the	 availability	of	 the	partners	has	phyloge-
netic	signal	(Kembel,	2009;	Miller	et	al.,	2017).	To	remove	this	effect,	
for	a	species	k	that	associates	with	 i	and	belongs	to	the	set	Mi,	we	
define	a	KLk	factor	as:

which	expresses	how	much	the	interaction	frequency	of	 i with k de-
viates	from	a	null	model	where	i	and	k	are	interacting	in	proportion	to	
their	availability	(i.e.,	randomly).	This	factor	is	an	element	of	the	sum	
used	to	compute	Kullback–	Leibler	distances	(Kullback	&	Leibler,	1951),	
which	measure	the	difference	between	a	probability	distribution	of	in-
terest	and	a	reference	distribution	(i.e.,	null	model).	When	interactions	
are	random,	the	proportion	of	interactions	of	i with k,	P′

ik
,	should	con-

verge	to	the	availability	of	k,	or	qk.	Therefore,	the	ratio	between	these	
two	parameters	tends	toward	1,	and	KLk	will	approach	0.	Conversely,	
when	interactions	are	non-	random,	P′

ik
,	 is	 larger	than	qk,	and	KLk	be-

comes	larger	than	0.
These	distances	are	also	used	to	calculate	the	species-	level	spe-

cialization	metric	d’	 (Blüthgen	et	al.,	2006),	which	sums	equation	8	
across	all	partners	of	species	i.	Here,	we	instead	calculate	a	KL	factor	
for	 each	partner	 of	 species	 i	 and	 replace	 the	 interaction	 frequen-
cies	 in	equation	7,	aikais,	with	KL	 factors	 for	partner	 species	k	 and	
s.	 This	 allows	us	 to	 compute	 a	 version	of	 the	wMPD	 for	 species	 i,	
klMPDi,	that	is	weighted	by	the	KL	factors	instead	of	the	interaction	
frequencies:

This	mean	of	pairwise	distances	is	now	corrected	for	the	avail-
ability	of	the	partners	through	the	KL	weights.	It	takes	larger	values	
for	species	that	 interact	non-	randomly	with	sets	of	more	distantly	
related	species,	and	it	is	undefined	(0	in	both	numerator	and	denom-
inator)	for	a	species	that	interacts	with	its	partners	at	the	exact	fre-
quency	that	those	partners	are	available	(i.e.,	P′

ik
= qk	for	every	k	that	

belongs	to	Mi).	However,	the	scenario	where	the	index	is	undefined	
is	extremely	unlikely	in	natural	networks	and	was	never	found	in	sim-
ulated	networks.	Equation	9	may	result	in	negative	values	when	KL	
factors	are	≤	0.	Consequently,	we	only	consider	partners	for	which	

(2)Ai =

c∑
j=1

aij,

(3)m =

r∑
i=1

c∑
j=1

aij.

(4)qj =
Aj

m
.

(5)P�

ij
=

aij

Ai

.
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⎡
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⎤
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.
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the	KL	factors	are	>	0.	This	means	that	we	only	use	phylogenetic	dis-
tances	among	partners	that	interact	more	frequently	than	expected	
under	 the	null	model	where	 interaction	 frequencies	 are	driven	by	
availability.	We	assert	 in	Appendix	S2	that	this	 is	equivalent	to	ex-
cluding	species	from	the	partner	set	that	have	zero	interactions	with	
the	focal	species	i,	which	does	not	affect	the	behavior	of	klMPD.

We	can	obtain	a	null	distribution	of	klMPD	values	for	the	set	of	
partners	Mi	by	randomly	shuffling	the	tips	of	the	partner	phylogeny	
999	times	and	calculating	klMPD	 for	each	iteration.	As	we	empha-
sized	above,	this	maintains	the	observed	total	number	of	partners.	
Then,	for	each	species	i,	we	define	PSSi,

as	the	difference	between	the	observed	value	of	klMPDi	and	the	mean	
klMPDnulli

	divided	by	the	standard	deviation	of	the	null	values.	PSS	is	
thus	an	SES,	with	values	close	to	0	 indicating	that	the	partners	of	a	
focal	species	lack	phylogenetic	structure,	and	negative	or	positive	val-
ues	indicating	phylogenetic	clustering	or	overdispersion,	respectively	
(Figure	1).

As	a	set-	level	measure	of	the	PSS,	we	take	the	mean	of	equation	
10	from	all	species	in	the	rows	(set	A)	weighted	by	the	interaction	
frequencies	of	each	species:

Blüthgen’s	d’	(Blüthgen	et	al.,	2006)	and	the	−NRI	index	(Webb	
et	 al.,	 2002)	 measure	 specialization	 using	 availability	 and	 phy-
logenetic	 structure,	 respectively.	 PSS	 integrates	 both	 of	 these	
complementary	 sources	 of	 information	 to	 measure	 specialization	
(Figure	 2a–	c).	 For	 example,	 Figure	 2a	 shows	 the	 distribution	 of	
Blüthgen’s	d’	values	for	the	species	in	one	set	of	a	hypothetical	bi-
partite	 network	where	most	 taxa	 associate	 opportunistically	with	
their	partners	(i.e.,	most	interactions	are	driven	by	partner	availabil-
ity),	 resulting	 in	many	 species	being	 generalists.	However,	d’ does 
not	 provide	 information	 about	 the	 phylogenetic	 structure	 of	 the	
partners	of	those	taxa.	Conversely,	the	distribution	of	−NRI	values	
for	that	same	set	of	species	(Figure	2b)	indicates	that	a	large	fraction	
of	 the	 species	 interacts	 with	 phylogenetically	 clustered	 partners.	
However,	since	−NRI	does	not	incorporate	availability,	some	of	the	
species	may	appear	as	interacting	with	clustered	partners	as	a	result	
of	 a	 biased	distribution	of	 partner	 availabilities	 (e.g.,	 Figure	1b).	 If	
that	were	the	case,	the	distribution	of	PSS	values	would	show	that	
the	largest	fraction	of	the	species	associates	with	phylogenetically	
random	partners	(i.e.,	be	equal	to	or	close	to	0),	since	PSS	integrates	
both	availability	and	phylogenetic	structure	(Figure	2c).

For	bipartite	interaction	networks,	the	distribution	of	values	of	
the	specialization	indices	can	be	visualized	in	two	dimensions,	where	
all	pairs	of	interacting	species	are	plotted	according	to	the	specificity	
values	 for	each	partner.	For	example,	an	 interaction	between	 two	
species with low d’	 values	would	occupy	 the	 generalist–	generalist	

region	(lower	left	corner)	in	Figure	2d.	That	same	pair	of	species	can	
occupy	any	area	of	the	−NRI	space	in	Figure	2e,	because	the	−NRI	
values	do	not	 include	partner	availability	 in	the	estimation	of	phy-
logenetic	 structure.	 In	 contrast,	 the	 same	pair	of	 species	can	only	
occupy	the	random–	random	area	of	the	PSS	space	(Figure	2d,f),	be-
cause	for	PSS	to	yield	a	value	that	is	significantly	different	from	0,	
a	species	must	interact	with	its	partners	more	than	expected	given	
their	availability,	and	those	partners	must	display	a	significant	phy-
logenetic	 structure.	Conversely,	 a	 pair	 of	 species	with	 high	d’	 can	
occupy	any	region	of	the	PSS	space	(Figure	2d,f),	because	the	phylo-
genetic	structure	of	their	partners	may	be	clustered,	overdispersed,	
or	random,	even	if	they	interact	with	those	partners	more	than	ex-
pected	given	their	availability.

2.2  |  Why use the mean pairwise phylogenetic 
distance for PSS?

Metrics	of	phylogenetic	α-	diversity	fall	 into	one	of	the	three	groups	
based	on	what	they	quantify	(Swenson,	2014;	Miller	et	al.,	2017;	but	
see	Tucker	et	al.,	2017	 for	an	alternative	classification):	 (i)	mean	 re-
latedness	 among	 species,	 such	 as	 the	 mean	 pairwise	 phylogenetic	
distand	(MPD;	Webb,	2000);	 (ii)	 relatedness	of	species	to	their	clos-
est	relatives,	such	as	the	mean	nearest	taxon	distance	(MNTD;	Webb,	
2000);	or	 (iii)	 total	 tree	 length,	such	as	Faith’s	phylogenetic	distance	
(PD;	Faith,	1992).	Our	approach	 to	account	 for	 availability	 could	be	
coupled	with	any	metric	of	phylogenetic	α-	diversity,	that	is,	by	incor-
porating	 the	KL	 factors	 as	weights	 in	 the	 calculations	 of	 the	mean.	
However,	there	are	caveats	associated	with	specific	types	of	metrics.	
For	example,	metrics	 from	group	 ii	only	provide	 insights	about	 fine-	
scale	 phylogenetic	 structure	 because	 only	 the	 closest	 relatives	 are	
considered.	Additionally,	the	value	of	metrics	from	group	iii	increases	
monotonically	with	the	number	of	partner	species	and,	therefore,	does	
not	 provide	 information	 about	 phylogenetic	 structure.	 For	 example,	
Faith’s	PD	may	give	the	same	value	for	two	distantly	related	taxa	as	
well	as	for	five	closely	related	taxa.	The	use	of	MPD	for	our	PSS	index	
allows	the	detection	of	three	different	phylogenetic	structural	patterns	
of	specialization	(random,	clustered,	and	overdispersed;	Figure	1).

However,	MPD	can	only	be	calculated	if	one	lineage	is	interacting	
with	at	least	two	partners.	This	is	problematic	in	highly	specialized	
symbiotic	systems	where	many	species	interact	with	one	partner.	If	
we	assume	that	a	species	with	one	partner	has	a	MPD	of	0,	as	in	pre-
vious	studies	(Jorge	et	al.,	2014,	2017),	PSS	cannot	be	calculated	be-
cause	the	null	distribution	would	also	be	estimated	with	one	partner,	
resulting	in	an	undefined	PSS	with	the	numerator	and	denominator	
of	equation	10	being	equal	to	0.	We	solved	this	problem	by	assum-
ing	the	existence	of	a	sister	taxon	to	the	single	partner	of	the	focal	
species.	This	new	sister	taxon	is	joined	to	the	original	partner	with	a	
branch	length	that	is	half	the	minimum	pairwise	distance	recorded	
between	any	pair	of	species	 in	the	phylogeny	of	the	partners.	The	
observed	interaction	frequencies	of	the	original	partner	are	equally	
divided	between	the	sister	taxa.	This	keeps	the	relationship	between	
interaction	 frequencies	 and	 availability	 (i.e.,	 P′ik/qk	 in	 equation	 8)	

(10)PSSi =
klMPDi − mean(klMPDnulli

)

sd
(
klMPDnulli

) ,

(11)PSSrows =
1

m

r∑
i=1

PSSiAi .
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constant;	therefore,	the	new	sister	taxon	has	the	same	KL	factor	as	
the	original	taxon.	This	new	sister	taxon	is	only	added	for	the	calcu-
lation	of	klMPDi	(equation	10)	for	species	with	one	partner	and	does	
not	affect	species	that	have	more	than	one	partner.

2.3  |  Testing the PSS index using simulations

2.3.1  |  Varying	dimensions	and	marginal	sum	of	
interaction	frequencies

We	simulated	random	matrices	using	the	genweb()	function	in	the	
R	package	bipartite	(Dormann	et	al.,	2008),	which	relies	on	three	pa-
rameters:	number	of	columns	(N1),	number	of	rows	(N2),	and	average	
interaction	frequency	per	link	(dens).	These	values	are	used	to	cal-
culate	the	sum	of	all	interaction	frequencies	of	the	simulated	matrix	
(m),	as	m =	N1×N2×dens.	Then,	the	simulated	matrix	of	dimensions	
N1×N2	 is	 populated	 with	m	 interactions,	 such	 that	 the	 marginal	
sums	of	the	interaction	frequencies	in	the	rows	and	the	columns	fol-
low	a	lognormal	distribution.	This	procedure	results	in	heterogene-
ous	distributions	of	 both	 the	number	of	 links	per	 species	 and	 the	
interaction	frequencies	per	link.

We	simulated	 three	 sets	of	 random	matrices.	 In	 the	 first	 set,	we	
assessed	 the	 values	 of	 PSS	 on	 random	 symmetric	 matrices	 with	 di-
mensions	varying	from	5×5	to	200×200.	The	second	set	consisted	of	
random	matrices	with	unequal	numbers	of	columns	and	rows	varying	
from	 2×20 to 200×20.	 The	 average	 interaction	 frequency	 per	 link	
(dens)	was	kept	at	2	for	all	matrix	configurations	in	the	first	two	sets.	
The	third	set	contained	random	matrices	with	increasing	marginal	sum	
of	interaction	frequencies	(m =	5–	4000)	and	fixed	dimensions	(50×50).	
We	 accomplished	 this	 by	 varying	 “dens”	within	 the	genweb()	 func-
tion	 in	bipartite.	The	marginal	sum	of	 interaction	frequencies	 (m)	sets	
a	limit	to	the	number	of	binary	links	in	the	simulated	matrices	because	
the	marginal	totals	are	constrained	to	follow	a	lognormal	distribution.	
Therefore,	 the	 random	matrices	 in	 the	 third	set	also	span	a	 range	of	
connectance	values,	with	matrices	with	higher	m	having	higher	binary	
connectance	(Figure	S2).	Each	simulation	step	consisted	of:	(i)	a	random	
matrix	simulated	as	described	above	and	(ii)	a	random	ultrametric	tree,	
with	the	matrix	columns	as	taxa	generated	with	the	function	rcoal() 
in	the	R	package	ape	(Paradis	et	al.,	2004).	We	then	calculated	PSSrows 
for	each	matrix.	Each	simulation	step	was	replicated	10	times.	In	addi-
tion,	each	set	of	simulations	was	performed	three	times,	with	branch	
length	distributions	of	the	random	trees	drawn	from	either	a	lognormal,	
normal,	or	uniform	distribution.	We	estimated	the	rate	of	Type	I	error	
as	the	proportion	of	simulated	matrices	for	each	parameter	value	for	
which	the	observed	klMPD	value	was	significantly	different	(α =	0.05)	
from	the	null	distribution	generated	as	described	for	equation	10.

2.3.2  |  Varying	nestedness	and	modularity

To	 determine	 whether	 network	 structural	 patterns	 constrain	 the	
possible	 values	 of	 PSS,	we	 tested	 for	 correlation	 between	 PSS	 and	

matrices	simulated	with	varying	degrees	of	nestedness	and	modularity.	
In	nested	networks,	specialist	species	tend	to	interact	with	a	subset	of	
the	partners	associated	with	generalist	species	(e.g.,	Guimarães	et	al.,	
2006).	In	modular	networks,	groups	of	species	share	a	set	of	preferred	
partners,	 resulting	 in	 compartmentalized	 networks	 (e.g.,	 Chagnon	
et	al.,	2018;	Olesen	et	al.,	2007).	 In	order	 to	 simulate	matrices	with	
a	gradient	of	nestedness	and	modularity	values,	we	started	by	creat-
ing	a	perfectly	nested	and	a	perfectly	modular	50×50	binary	matrix.	
Then,	each	simulation	step	swapped	the	positions	of	a	0	and	1	in	the	
matrices,	thus	adding	noise	and	decreasing	nestedness	and	modularity	
(Chagnon,	2015).	Although	we	used	binary	matrices,	we	treated	them	
as	quantitative	so	that	the	network	structure	could	be	manipulated	in	a	
predictable	way.	After	each	step	of	the	nestedness	simulation,	we	cal-
culated	nestedness	using	wNODF	(weighted	nestedness	metric	based	
on	overlap	and	decreasing	fill)	developed	by	Almeida-	Neto	et	al.	(2008)	
and	implemented	in	bipartite.	After	each	step	of	the	modularity	simula-
tion,	we	calculated	the	modularity	 (Q)	using	the	simulated	annealing	
algorithm	developed	by	Dormann	and	Strauss	(2014)	implemented	in	
bipartite.	For	each	simulation,	we	generated	a	random	ultrametric	tree	
with	the	matrix	columns	as	taxa	using	the	function	rcoal()	 in	ape. 
We	then	calculated	PSSrows	 for	the	matrices	of	each	simulation	step.	
The	availability	of	the	partner	species	(qj)	is	calculated	as	if	the	network	
were	quantitative	(see	equations	2–	4).	Even	if	all	interaction	frequen-
cies	are	0	or	1,	our	simulation	strategy	still	generates	heterogeneity	in	
the	availability	of	partners	(qj)	and	the	KL	weights	(equation	8)	that	are	
used	to	calculate	PSS.	Each	simulation	step	was	replicated	20	times	for	
both	modularity	and	nestedness	analyses.	As	above,	each	set	of	simu-
lations	was	performed	three	times,	with	branch	length	distributions	of	
the	random	trees	drawn	from	either	a	lognormal,	normal,	or	uniform	
distribution.	Type	I	error	rates	were	estimated	as	described	above.

2.3.3  |  Can	PSS	detect	clustering	and	
overdispersion?

There	are	no	models	to	simulate	phylogenetic	networks	with	spe-
cific	 patterns	 of	 phylogenetic	 structure,	 and	 developing	 them	 is	
beyond	 the	 scope	of	 this	 paper.	However,	 a	 recent	 study	devel-
oped	 a	 simulation	 framework	 to	 explore	 the	 statistical	 behavior	
of	 a	 comprehensive	 set	 of	 phylogenetic	 diversity	 metrics	 when	
applied	to	communities	(Miller	et	al.,	2017).	Although	we	are	ap-
plying	 PSS	 to	 interaction	 networks,	 PSS	 is	 an	 index	 of	 phyloge-
netic	diversity	and	can	be	used	to	measure	phylogenetic	diversity	
in	communities.	This	is	because	community	data	matrices	(CDMs)	
are	quantitatively	analogous	to	interaction	matrices.	In	a	CDM,	the	
rows	correspond	to	spatial	plots	and	 the	columns	correspond	to	
species.	 Likewise,	 in	 a	CDM,	 the	 availability	 parameter	 is	 analo-
gous	to	the	regional	availability	of	species,	and	it	 is	 important	to	
account	for	 its	role	in	the	sorting	of	species	into	plots	of	a	CDM	
(Lessard	et	al.,	2012;	Miller	et	al.,	2017).	The	important	difference	
is	that	 in	a	CDM,	only	the	columns	(species)	have	a	phylogenetic	
tree.	Therefore,	we	can	only	 calculate	PSS	 for	each	of	 the	plots	
(rows)	in	a	CDM.
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To	 determine	 whether	 PSS	 can	 detect	 phylogenetic	 structure	
patterns	 (Figure	 1)	when	 they	 are	 present	 (Type	 II	 error	 rate),	we	
used	 the	approach	developed	by	Miller	 et	 al.	 (2017).	This	 allowed	
us	to	compare	PSS	to	existing	methods.	This	 framework	simulates	
arenas	where	individuals	are	spatially	distributed	according	to	their	
phylogenetic	relatedness	(Appendix	S3).	We	then	sampled	the	spe-
cies	composition	of	plots	within	these	arenas	to	create	CDMs.	The	
PSS	 index	was	 calculated	 for	 the	plots	 (rows)	within	 these	CDMs.	
Rates	of	Type	II	error	were	calculated	at	the	CDM	and	plot	level	as	
described	in	Appendix	S3.

2.4  |  Empirical networks with phylogenies and 
with or without empirically estimated availability

We	 used	 four	 bipartite	 networks	 from	 the	 literature	 for	 which	
molecular	 phylogenetic	 trees	 were	 available	 for	 both	 sets	 of	
partners:	 (i)	mammals–	fleas,	 an	 antagonistic	 network	 of	 interac-
tions	between	small	mammals	and	their	ectoparasitic	fleas	(order	
Siphonaptera)	 that	 were	 sampled	 in	 four	 regions	 of	 Slovakia	
(Stanko	 et	 al.,	 2002);	 (ii)	 avian	 seed-	dispersal,	 a	mutualistic	 net-
work	 of	 bird	 seed-	dispersal	 interactions	 compiled	 from	 studies	
conducted	across	multiple	localities	in	the	Brazilian	Atlantic	Forest	
(Bello	et	al.,	2017);	(iii)	cyanolichens,	a	mutualistic	network	of	in-
teractions	 between	 species	 of	 the	 fungal	 lichen-	forming	 genus	
Peltigera	and	their	cyanobacterial	partners	from	the	genus	Nostoc,	
which	were	recorded	at	a	global	scale	as	part	of	phylogenetic	stud-
ies	on	Peltigera	 (Lu	et	al.,	2018;	Magain,	Miadlikowska,	Goffinet,	
et	al.,	2017;	Magain,	Miadlikowska,	Mueller,	et	al.,	2017;	Magain	
et	al.,	2018;	Miadlikowska	et	al.,	2014,	2018;	O’Brien	et	al.,	2005,	
2013;	Pardo-	De	la	Hoz	et	al.,	2018)	and	compiled	by	Chagnon	et	al.	
(2019);	and	(iv)	hummingbird	pollination,	a	mutualistic	network	of	
pollination	interactions	between	hummingbirds	and	plants	 in	the	
Colombian	Andes	(network	7	in	Sonne	et	al.,	2020).	Table	1	shows	
a	 summary	 of	 these	 four	 datasets.	 For	 each	 species	 in	 each	
of	 these	 datasets,	 we	 calculated	 node	 degree,	 the	 interaction	
frequency-	based	specialization	index	d’	(Blüthgen	et	al.,	2006),	the	
phylogenetic	 diversity	 index	−NRI	 (Webb	et	 al.,	 2002),	 and	PSS.	
The	availability	parameter	(qk;	equation	8)	was	estimated	from	the	
interaction	frequencies	in	the	matrices	for	all	datasets	as	indicated	
in	equation	4.	We	also	estimated	PSS	values	using	empirical	abun-
dance	data	that	were	available	for	the	fleas	in	the	mammals–	fleas	
dataset	(Table	1;	Stanko	et	al.,	2002)	and	for	both	sets	of	species	in	
the	hummingbird	pollination	dataset	(Sonne	et	al.,	2020).

2.5  |  R package for computing PSS values

We	 developed	 an	 R	 package	 (https://github.com/cjpar	dodel	ahoz/
pss)	with	functions	to	compute	PSS	using	interaction	matrices	and	
phylogenetic	trees	from	the	interacting	species	as	input.	Our	R	pack-
age	has	function	dependencies	from	the	R	packages	ape,	bipartite,	pi-
cante	and	vegan	(Dormann	et	al.,	2008;	Kembel	et	al.,	2010;	Oksanen	

et	al.,	2019;	Paradis	et	al.,	2004),	and	includes	code	modified	from	
Swenson	(2014).

3  |  RESULTS

3.1  |  PSS is independent from basic network 
features

We	calculated	PSS	across	simulated	bipartite	matrices	lacking	phy-
logenetic	structure	but	varying	in	size,	number	of	rows	and	columns,	
marginal	sum	of	interaction	frequencies,	nestedness,	and	modularity.	
We	found	no	correlation	between	any	of	these	network	structural	
variables	and	PSS	values	(Figure	S3c),	suggesting	that	our	approach	
allows	for	comparisons	across	different	systems	with	a	wide	range	
of	network	properties.	Type	I	error	rates	were	between	0%	and	10%	
(mean	4%),	except	for	small	and	equal	numbers	of	rows	and	columns	
(< 11 rows × <	11	columns;	Figure	S4a),	small	network	matrices	with	
unequal	 numbers	of	 rows	 and	 columns	 (<	 15	 rows	×	 20	 columns;	
Figure	S4b),	and	networks	with	low	marginal	sum	of	interaction	fre-
quencies	(<	30	interactions;	Figure	S4c).	This	was	expected	because	
in	these	cases	most	species	have	a	single	interaction	recorded,	which	
means	that	their	node	degree	is	equal	to	1.	As	a	consequence	of	the	
strategy	that	we	implemented	to	calculate	PSS	when	a	species	has	
a	single	partner,	these	taxa	appear	specialized	on	a	phylogenetically	
clustered	lineage.

Rates	of	Type	II	error	at	the	CDM	level	were	low	for	both	clus-
tered	(1.1%)	and	overdispersed	(5.2%)	scenarios.	We	observed	high	
rates	of	Type	II	error	(36%)	in	clustered	scenarios	when	assessed	at	
the	plot	level,	which	correspond	to	single	rows	in	the	CDMs.

3.2  |  Comparison of PSS and −NRI

PSS	and	−NRI	generally	yielded	similar	results	regarding	the	propor-
tion	of	taxa	and	interaction	frequencies	with	random,	clustered,	and	
overdispersed	partners	(Table	2).	However,	these	indices	can	lead	to	
different	results	for	some	datasets.	For	example,	 in	the	avian	seed	
dispersal	dataset,	48%	of	plant	 taxa	were	 found	 to	associate	with	
clustered	partners	according	to	PSS,	compared	to	32%	according	to	
−NRI	 (Table	2).	 In	 some	cases,	 such	as	 in	 the	avian	 seed-	dispersal	
dataset,	 PSS	 and	−NRI	 inferred	 a	 similar	 percentage	of	 plant	 spe-
cies	 that	 associate	 with	 random	 partners	 (39%	 and	 37%,	 respec-
tively).	 However,	 those	 species	 account	 for	 different	 percentages	
of	 the	 interaction	 frequencies	 (40%	 and	 29%,	 respectively).	 This	
indicates	 that	 PSS	 and	 −NRI	 detected	 different	 species	 that	 have	
random	partners.	These	discrepancies	are	more	evident	in	the	com-
parison	of	the	index	values	obtained	for	each	taxon	(Figure	3).	These	
indices	yielded	highly	 similar	values	 for	 some	sets	 (Figure	3c,d,f,h)	
and	very	different	values	for	taxa	in	other	sets	(Figure	3a,b,e,g).	In	
two	 cases,	 the	 correspondence	 between	 values	 of	 the	 two	 indi-
ces	was	much	higher	 for	one	of	 the	sets	within	 the	same	dataset:	
fleas	r2 =	.28	(Figure	3a)	compared	to	mammals	r2 =	.74	(Figure	3b);	

https://github.com/cjpardodelahoz/pss
https://github.com/cjpardodelahoz/pss
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and	hummingbirds	r2 =	 .24	(Figure	3g)	compared	to	plants	r2 = .74 
(Figure	3h).	These	are	also	the	two	cases	where	we	have	empirical	
data	for	the	abundances	rather	than	relying	on	matrix	availabilities	
(Table	1).

Even	in	cases	where	the	two	indices	inferred	the	same	structure,	
we	observed	a	slight	trend	towards	more	negative	values	for	the	−
NRI	 index	 (Figure	3c,d).	For	example,	most	 interaction	pairs	 (dots)	
from	the	mammals–	fleas	dataset	fall	into	the	same	areas	(Figure	2e,f)	

Random Clustered Overdispersed

PSS −NRI PSS −NRI PSS −NRI

Mammals–	fleas

Mammals 43 / 94 63	/	95 29 / 1 0 / 0 29 / 6 21	/	5

Fleas 36 / 7 29	/	5 64 / 93 71	/	95 0 / 0 0 / 0

Avian	seed-	dispersal

Birds 42 / 44 40 / 43 50	/	44 29	/	50 8 / 12 6	/	5

Plants 39 / 40 37 / 29 48 / 47 32	/	58 14 / 13 12 / 11

Cyanolichens

Fungi 31 / 38 31 / 44 63 / 49 24	/	25 6 / 12 5	/	11

Cyanobacteria 54	/	52 18	/	35 46 / 48 20	/	55 0 / 0 0 / 0

Hummingbird	pollination

Hummingbirds 71 / 63 57	/	55 29 / 37 43	/	45 0 /0 0 / 0

Plants 52	/	89 61 / 91 35	/	4 0 / 0 13 / 7 9 / 6

Note: −NRI	cannot	be	calculated	for	taxa	that	associate	with	a	single	partner.	Therefore,	we	
were	not	able	to	calculate	−NRI	for	100%	of	taxa	in	some	datasets.	Values	before	backslash	are	
percentage	of	taxa,	and	values	after	backslash	are	percentage	of	interaction	frequencies.	Totals	
within	a	species	set	and	index	may	not	sum	to	100	due	to	rounding.	All	calculations	were	based	
on	interaction	frequencies	as	a	proxy	for	availability.	See	Figure	5	for	a	comparison	of	PSS	values	
based	on	direct	empirical	estimations	of	availability	versus	interaction	frequencies	as	a	proxy	for	
availability.

TA B L E  2 Comparison	of	PSS	and	−NRI	
values	estimated	for	taxa	across	the	four	
empirical	datasets	used	in	this	study

F I G U R E  3 Comparison	of	−NRI	and	PSS	values	for	the	species	in	each	of	the	eight	sets	present	in	the	four	empirical	datasets	we	
analyzed.	If	a	circle	falls	along	the	red	diagonal	line,	it	means	that	the	two	metrics	being	compared	yield	the	same	value	for	that	particular	
species.	(a	and	b)	fleas	and	their	mammalian	host,	(c	and	d)	birds	as	dispersers	of	plant	seeds,	(e	and	f)	lichen-	forming	fungi	and	their	
cyanobacterial	partners,	and	(g	and	h)	hummingbirds	and	the	plants	they	pollinate.	The	shaded	areas	show	the	region	of	−NRI	and	PSS	space	
where	clustering	or	overdispersion	is	not	significantly	different	from	a	random	pattern	of	phylogenetic	structure.	The	thresholds	of	the	
shaded	areas	were	defined	as	the	mean	of	the	95%	confidence	interval	of	the	null	distributions	generated	for	each	taxon	in	the	datasets.	
All	PSS	values	were	calculated	with	the	availability	parameter	estimated	from	interaction	frequencies.	See	Figure	5	for	a	comparison	of	PSS	
values	based	on	direct	empirical	estimations	of	availability	versus	interaction	frequencies	as	a	proxy	for	availability
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of	the	−NRI	(Figure	4c)	and	PSS	spaces	(Figure	4d).	However,	the	in-
teraction	density	is	shifted	towards	the	left	(more	negative)	accord-
ing	to	−NRIfleas	(Figure	4c)	compared	to	PSSfleas	(Figure	4d).	We	found	
a	similar	result	with	the	avian	seed-	dispersal	dataset,	for	which	−NRI	
inferred	a	higher	density	of	interactions	in	the	clustered–	clustered	
area	 (Figure	4g)	 compared	 to	PSS	 (Figure	4h).	 In	 contrast,	 PSS	 in-
ferred	 more	 negative	 values	 than	 −NRI	 for	 lichen-	forming	 fungi	
(Figures	3e	and	4k,l).

3.3  |  Most taxa interact with phylogenetically 
random or clustered partners

Although	we	found	a	wide	range	of	variation	in	the	number	of	part-
ner	species	(node	degree)	in	the	empirical	networks	(Figure	4a,e,i,m),	
most	 interaction	 pairs	 involved	 species	without	 strong	 specializa-
tion	 signal	 according	 to	 Blüthgen’s	 d’	 (Figures	 2d	 and	 4b,f,n).	 The	
cyanolichen	 network	 was	 an	 exception,	 with	 multiple	 interaction	
pairs	 involving	specialist	cyanobacteria	and	generalist	 (opportunis-
tic)	 lichenized	fungi,	or	both	specialist	cyanobacteria	and	specialist	
fungi	 (Figure	 4j).	 Across	 all	 four	 interaction	 networks,	 both	 −NRI	
and	PSS	 indicated	 that	many	 taxa	 interact	with	 random	 and	 clus-
tered	partners	 (Table	2;	Figure	4c,d,g,h,k,l,o,p).	However,	taxa	that	
interact	with	overdispersed	partners	were	rare	and	not	found	in	all	
sets	(Table	2;	Figure	4c,d,g,h,k,l,o,p).	PSS	values	for	the	fleas	in	the	
mammals–	fleas	dataset	and	the	plants	 in	the	hummingbird	pollina-
tion	dataset	were	highly	 similar	when	calculated	based	on	empiri-
cally	estimated	availability	versus	interaction	frequencies	as	a	proxy	
for	availability	(Figure	5a,b).	In	contrast,	empirical	and	matrix	avail-
abilities	yielded	different	PSS	values	for	multiple	hummingbird	spe-
cies	(Figure	5c).

4  |  DISCUSSION

4.1  |  PSS is informative and robust to error types

Phylogenetic	 structure	 of	 specialization	 integrates	 both	 partner	
availability	 and	 phylogenetic	 structure	 to	 characterize	 biotic	 spe-
cialization	 of	 species	 within	 interaction	 networks.	 As	 expected,	
when	 availability	 is	 roughly	 equal	 among	 partners	 (Figure	 1a,d,g),	
PSS	 captures	 similar	 information	 in	 empirical	 networks	 as	 −NRI	
(Figure	3c,d,f,h),	an	 index	that	accounts	for	phylogenetic	structure	
without	 considering	 partner	 availability.	 Therefore,	 cases	 where	
the	 two	 indices	diverge	 (Figure	3a,b,e,g)	 are	 likely	due	 to	unequal	
partner	availabilities	 (e.g.,	Figure	1b,c).	These	are	situations	where	
existing	approaches	that	do	not	account	for	partner	availability,	such	
as	−NRI,	can	infer	clustered	or	overdispersed	phylogenetic	structure	
when	the	phylogenetic	pattern	is	actually	random	(i.e.,	Type	I	error),	
or	may	fail	to	detect	clustering	and	overdispersion	(i.e.,	Type	II	error;	
Kembel,	2009;	Miller	et	al.,	2017).

The	rates	of	Type	I	and	Type	II	error	observed	for	PSS	are	compa-
rable	to	the	best	performing	combination	of	phylogenetic	diversity	

metric	+null	model	as	reported	in	a	previous	study	(wMPD +	regional	
null;	Miller	et	al.,	2017).	However,	 that	combination	 is	designed	to	
describe	communities	with	many	species,	which	limits	its	application	
to	interaction	networks	where	species	have	few	partners	(Appendix	
S1).	Furthermore,	PSS	values	are	not	biased	by	the	marginal	sum	of	
interaction	 frequencies	 in	 the	matrix	 (i.e.,	m	 in	 equation	3;	 Figure	
S3c),	which	 is	 the	case	 for	an	existing	specialization	 index	 that	 in-
tegrates	availability	and	phylogenetic	structure	 (Jorge	et	al.,	2017;	
Appendix	S1).

The	higher	rates	of	Type	II	error	that	we	observed	at	the	plot	
level	of	 the	CDMs	were	also	 reported	by	Miller	et	 al.	 (2017)	 for	
other	indices.	The	simulation	strategy	that	we	implemented	to	test	
Type	 II	 error	 is	 expected	 to	 generate	 the	 clustered	 and	overdis-
persed	 patterns	 at	 the	 scale	 of	 the	 entire	 simulated	 arena.	 Our	
CDMs	are	 intended	to	be	a	 representative	sample	of	 that	arena.	
Therefore,	calculating	PSS	at	the	plot	level	(i.e.,	single	rows	of	the	
matrix)	is	equivalent	to	taking	a	much	smaller	sample	of	that	arena,	
which	explains	why	the	power	of	the	index	decreases.	Therefore,	
we	expect	that	the	power	of	PSS	will	also	decrease	when	interac-
tion	networks	are	under-	sampled,	as	 is	 the	case	with	other	met-
rics	(Blüthgen	et	al.,	2008;	Miller	et	al.,	2017;	Rivera-	Hutinel	et	al.,	
2012).

We	urge	caution	when	 interpreting	PSS	for	species	with	a	sin-
gle	partner,	because	apparent	 specialization	can	be	caused	by	 the	
rareness	of	a	species	and	not	necessarily	high	phylogenetic	special-
ization	(e.g.,	Dorado	et	al.,	2011).	Our	approach	allows	the	calcula-
tion	of	PSS	for	species	with	a	single	partner,	but	in	a	way	that	will	
bias	towards	clustering	when	sampling	is	scarce.	However,	this	is	the	
case	for	all	existing	methods	because	true	specialization	can	only	be	
uncovered	in	the	absence	of	artefacts	such	as	imbalanced	sampling	
effort	(Blüthgen	et	al.,	2008).

4.2  |  Phylogenetic structure in 
interaction networks

The	integration	of	phylogenetic	data	with	interaction	networks	can	
provide	 insights	 about	 the	 relative	 importance	 of	 ecological	 and	
evolutionary	 processes	 that	 shape	 biological	 communities	 (Segar	
et	al.,	2020).	Previous	studies	have	shown	that	many	ecological	in-
teractions,	as	well	as	interaction-	related	traits,	display	phylogenetic	
structure,	where	 closely	 related	 species	 tend	 to	 have	 overlapping	
sets	of	partners	(Aizen	et	al.,	2016;	Eklöf	et	al.,	2012;	Gómez	et	al.,	
2010;	Rezende	et	al.,	2007).	Based	on	those	findings,	 it	should	be	
common	for	species	to	be	specialized	on	phylogenetically	clustered	
partners.	However,	PSS	analyses	of	four	empirical	networks	showed	
that	many	 species	 interact	with	phylogenetically	 random	partners	
(Table	2;	Figure	4d,h,l,p).	Our	results	suggest	that	while	interaction	
traits	 can	 be	 conserved	 across	 some	 phylogenetic	 scales,	 the	 as-
semblage	of	communities	of	interacting	species	at	regional	and	local	
scales	can	be	constrained	by	the	relative	effect	of	processes	other	
than	the	evolutionary	history	of	the	species	(Mello	et	al.,	2019;	Segar	
et	al.,	2020),	such	as	the	availability	of	potential	partners.
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Nevertheless,	we	also	encountered	many	cases	of	phylogenetic	
specialization	in	all	four	empirical	datasets	(Table	2;	Figure	4d,h,l,p).	
For	example,	 in	cyanolichens,	the	peak	of	the	distribution	of	inter-
actions	was	 found	 to	 be	 in	 the	 random–	clustered	 and	 clustered–	
clustered	regions	of	the	PSS	space	(Figures	2f	and	4l).	These	results	
are	consistent	with	past	assessments	that	Peltigera	species	are	most	

often	 specialized	on	generalist,	 but	 also	on	 specialist,	Nostoc phy-
logroups	 (Magain,	 Miadlikowska,	 Goffinet,	 et	 al.,	 2017).	 Similarly,	
Krasnov	et	al.	 (2012)	reported	that	the	fleas	in	the	mammals–	fleas	
dataset	 showed	 phylogenetic	 signal	 in	 their	 host	 range,	 which	 is	
consistent	with	our	observed	distribution	of	 fleas	 infecting	a	clus-
tered	set	of	mammal	hosts	at	a	 regional	 scale	 (Figures	2f	and	4d).	

F I G U R E  4 Comparison	of	biotic	co-	specialization	profiles	of	four	empirical	bipartite	networks	using	four	metrics	(columns):	node	degree,	
Blüthgen’s	d’,	−NRI	and	PSS.	(a–	d)	mammals–	fleas	network	from	Slovakia	(Stanko	et	al.,	2002).	(e–	h)	avian	seed-	dispersal	network	from	the	
tropical	Atlantic	Forest	(Bello	et	al.,	2017).	(i–	l)	cyanolichen	network	from	an	opportunistic	global	sampling	of	the	lichen-	forming	fungal	
genus	Peltigera	and	their	Nostoc	cyanobacterial	partners	(Chagnon	et	al.,	2019).	(m–	p)	hummingbird	pollination	network	from	the	Colombian	
Andes	(Sonne	et	al.,	2020).	Each	dot	on	these	plots	represents	a	pair	of	interacting	species.	These	dots	are	placed	on	graphs	according	to	
the	biotic	specificity	metric	value	of	the	interacting	species.	For	example,	in	panel	i,	fungi	are	interacting	with	one	to	eight	phylogroups	of	
cyanobacteria	(X	axis)	while	cyanobacteria	are	interacting	with	one	to	more	than	40	fungal	species	(Y	axis)	in	this	network	of	cyanolichens.	
All	PSS	values	were	calculated	with	the	availability	parameter	estimated	from	interaction	frequencies.	See	Figure	5	for	a	comparison	of	PSS	
values	based	on	direct	empirical	estimations	of	availability	versus	interaction	frequencies	as	a	proxy	for	availability.	The	shaded	areas	in	the	
panels	of	the	third	and	fourth	columns	represent	non-	significant	clustering	or	overdispersion.	The	thresholds	were	defined	as	the	mean	of	
the	95%	confidence	interval	of	the	null	distributions	generated	for	each	taxon	in	the	datasets.	The	size	of	the	dots	represents	the	number	of	
times	an	interaction	was	recorded	in	the	matrix,	i.e.,	interaction	frequency.	Contour	lines	are	estimated	2D	distributions
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In	addition,	we	detected	mammal	species	that	are	infected	by	phy-
logenetically	 overdispersed	 fleas	 (Figures	 2f	 and	4d).	 This	 pattern	
of	overdispersion	has	not	previously	been	reported	for	this	dataset	
(Krasnov	et	al.,	2012).

In	contrast,	the	tropical	avian	seed-	dispersal	network	consists	
mostly	of	interactions	involving	generalist	species	(Figures	2d	and	
4f)	 that	may	not	 require	specialized	traits,	or	may	be	specialized	
on	 partner	 traits	 that	 are	 not	 phylogenetically	 conserved	 (Bello	
et	al.,	2017;	Bolmgren	&	Eriksson,	2005;	Emer	et	al.,	2019).	This	
dataset	 includes	 a	 large	proportion	 (75%)	of	 interactions	 involv-
ing	species	that	associate	with	phylogenetically	random	partners	
(Figure	4h).	However,	the	seed-	dispersal	network	also	includes	the	
largest	 proportion	 (22%)	 and	most	 striking	 examples	 of	 interac-
tions	between	species	with	clustered	partners	(Figures	2f	and	4h).	
In	the	case	of	the	hummingbird	pollination	dataset,	we	also	found	
that	 most	 species	 interact	 with	 phylogenetically	 random	 part-
ners	 (Table	2,	Figure	4p).	However,	a	previous	study	had	already	
shown	that	more	than	half	of	the	plant	and	hummingbird	species	in	
this	network	tend	to	interact	with	partners	with	morphologically	
matching	 traits	 (i.e.,	 bill	 length	 and	 flower	 corolla	 length;	 Sonne	
et	al.,	2020).	This	may	indicate	that	these	traits	are	not	phyloge-
netically	conserved.

4.3  |  Is overdispersion a signature of specialists or 
generalists?

Studies	that	have	used	phylogenetic	diversity	metrics	to	character-
ize	biotic	specialization	have	often	focused	on	cases	where	partners	
were	significantly	more	closely	related	than	expected	by	chance	(but	
see	Maherali	&	Klironomos,	2007)	and	considered	overdispersion	as	
a	 signature	 of	 generalists	 (Cooper	 et	 al.,	 2012;	 Jorge	 et	 al.,	 2014;	
Poulin	 et	 al.,	 2011).	 This	 is	 because	 overdispersion	 indicates	 that	

a	species	associates	with	distantly	 related	partners.	However,	 in	a	
framework	where	partner	availability	is	accounted	for,	a	significant	
phylogenetic	structure	can	only	be	detected	when	interaction	fre-
quencies	 are	non-	random.	With	PSS,	 overdispersion	means	 that	 a	
species	 interacts	with	 its	partners	more	than	expected	by	chance,	
and	 those	 partners	 are	 more	 distantly	 related	 than	 expected	 by	
chance.	This	is	consistent	with	high	intensity	of	partner	use	within	
a	narrow	span	of	 a	 species’	 biotic	niche	and,	 therefore,	 should	be	
interpreted	as	a	signature	of	specialists	(Figure	2c,f).

4.4  |  Availability based on interaction frequencies 
as a proxy for relative abundance in nature

Interaction	 frequencies	 in	 network	matrices	 are	 commonly	used	
as	proxies	 for	partner	availability	 in	nature,	 as	evidenced	by	 the	
widespread	 use	 of	 Blüthgen’s	d’	 and	 related	metrics	 to	 quantify	
specialization	 (Arceo-	Gómez	 et	 al.,	 2020;	 Fründ	 et	 al.,	 2016;	
Schleuning	et	al.,	2012;	Zanata	et	al.,	2017).	However,	this	proxy	
might	be	inaccurate	if	the	interactions	are	not	sampled	systemati-
cally,	when	facultative	partners	are	involved,	or	when	interaction	
frequencies	 are	 independent	 from	 the	 availability	 of	 partners	 in	
nature	(e.g.,	empirically	shown	in	Vizentin-	Bugoni	et	al.,	2014).	We	
had	direct	empirical	estimates	of	partner	availability	for	the	fleas	
from	the	mammals–	fleas	dataset	and	both	the	hummingbirds	and	
plants	in	the	hummingbird	pollination	dataset	(Table	1;	Sonne	et	al.,	
2020;	Stanko	et	al.,	2002).	For	the	fleas	and	the	plants,	we	found	
high	correspondence	among	PSS	values	calculated	based	on	em-
pirically	 estimated	 availability	 and	 using	 interaction	 frequencies	
as	a	proxy	for	availability,	but	not	for	the	hummingbirds	(Figure	5).	
The	availability	proxy	using	 interaction	 frequencies	might	be	es-
pecially	 problematic	 for	 the	Peltigera– Nostoc	 dataset,	which	was	
sampled	at	a	global	scale	in	a	non-	systematic	way.	In	this	case,	the	

F I G U R E  5 Comparison	of	PSS	values	estimated	using	empirical	estimates	of	availability	(empirical	avail.)	obtained	from	surveys	of	species	
abundances	(X	axis)	vs	using	the	marginal	sum	of	interaction	frequencies	(interact.	freq.)	obtained	from	an	interaction	matrix	as	a	proxy	for	
availability	(Y	axis).	PSS	of	(a)	mammal	partners	of	flea	species,	(b)	plants	in	the	hummingbird	pollination	dataset,	and	(c)	the	hummingbirds.	
Each	circle	on	these	plots	represents	a	species.	The	thresholds	for	the	shaded	areas	(random	phylogenetic	structure)	were	defined	as	the	
mean	of	the	95%	confidence	interval	of	the	null	distributions	generated	for	each	taxon	in	the	datasets.	Points	on	the	diagonal	red	line	
indicate	identical	PSS	values
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interaction	frequencies	may	lead	to	highly	inaccurate	estimates	of	
the	partner	availabilities,	particularly	since	Nostoc	symbionts	can	
be	free-	living	(Nelson	et	al.,	2021).

4.5  |  Importance of phylogenetic and spatial scales 
for interpreting PSS values

Interpretations	 of	 PSS	 values	must	 consider	 the	 phylogenetic	 and	
spatial	 scales	 of	 the	datasets.	 For	 example,	we	 found	 that	 a	 large	
proportion	(54%)	of	cyanobacterial	taxa	associate	with	random	part-
ners	(Table	2).	However,	this	network	only	includes	the	interactions	
with	species	from	a	single	genus	of	lichen-	forming	fungi	(Peltigera).	
If	we	had	done	the	same	analysis	in	the	context	of	all	lichen-	forming	
fungi	 (which	span	multiple	classes	of	Fungi),	 the	partners	of	many	
cyanobacterial	 taxa	would	be	highly	clustered	and	some	would	be	
overdispersed.	 Likewise,	 the	 avian	 seed-	dispersal	 dataset	 consists	
of	 interactions	 that	 were	 sampled	 in	 a	 single	 region,	 the	 Atlantic	
Forest	of	Brazil	(Bello	et	al.,	2017).	Using	PSS,	we	found	that	39%	of	
the	interactions	in	this	dataset	involve	plants	whose	seeds	are	dis-
persed	by	phylogenetically	random	birds	(Table	2,	Figure	4h).	These	
sets	of	bird	seed	dispersers	are	phylogenetically	random	relative	to	
the	pool	of	species	in	the	Atlantic	Forest,	but	they	likely	represent	a	
non-	random	subset	of	the	phylogenetic	diversity	of	bird	species	at	
larger	spatial	scales,	as	shown	by	a	continental-	scale	study	in	South	
America	(Mello	et	al.,	2019).

4.6  |  A conceptual framework for an eco- 
evolutionary interpretation of PSS values

Patterns	 of	 phylogenetic	 diversity	 are	 not	 direct	 proxies	 for	 com-
munity	assembly	processes	(Cahill	et	al.,	2008;	Gerhold	et	al.,	2015;	
Mayfield	&	Levine,	2010).	Instead,	we	propose	testable	hypotheses	
of	eco-	evolutionary	processes	that	may	produce	PSS	patterns	in	in-
teraction	networks.

Opportunistic	 interactions	 can	 result	 from	multiple	 processes.	
Recent	 colonization	 or	 introduction	 (e.g.,	 long-	distance	 dispersal	
events	or	invasive	species)	 into	new	areas	might	make	opportunis-
tic	interactions	advantageous	in	ecological	and	evolutionary	times-
cales	 (Magain,	 Miadlikowska,	 Goffinet,	 et	 al.,	 2017;	 Poisot	 et	 al.,	
2011).	 During	 rapid	 diversifications,	 incomplete	 sorting	 of	 traits	
can	 generate	 local	 populations	with	 high	 intraspecific	 variation	 in	
interaction	 traits	 that	 allow	 associations	 with	 a	 broader	 range	 of	
partners.	 Species	 may	 also	 have	 spatially	 structured	 populations	
with	low	phenotypic	variation	at	local	scales,	but	higher	variation	at	
larger	scales	(Batstone	et	al.,	2018).	This	highlights	the	importance	
of	studying	these	patterns	at	multiple	spatial	scales	(Gomulkiewicz	
et	 al.,	 2000;	 Jorge	 et	 al.,	 2014).	 Low	 heterogeneity	 in	 resources	
exchanged	 by	 partners	 can	 result	 in	 opportunistic	 interactions	
(Pinheiro	 et	 al.,	 2019).	A	 recent	 study	 also	 showed	 that	 high	 eco-
logical	uncertainty	can	favor	generalized	host	ranges	in	avian	brood	
parasites	(Antonson	et	al.,	2020).	How	and	when	selection	maintains	

the	variation	necessary	for	opportunistic	interactions	is	not	fully	un-
derstood	 (Vamosi	 et	 al.,	 2014;	 but	 see	Batstone	 et	 al.,	 2018),	 but	
it	seems	to	be	pervasive	even	in	highly	intimate	symbioses	such	as	
lichens	(Figure	4l;	Guimarães	et	al.,	2007).

Clustered	patterns	of	biotic	 specificity	may	arise	when	 the	di-
versification	dynamics	of	one	set	of	organisms	is	dependent	on	its	
interacting	partners.	In	rare	cases,	this	may	lead	to	cospeciation	(de	
Vienne	 et	 al.,	 2013).	 More	 commonly,	 clustering	 results	 from	 re-
peated	switches	to	closely	related	partners	through	time	(Chagnon	
et	al.,	2019;	Thines,	2019;	de	Vienne	et	al.,	2013)	or	from	the	acqui-
sition	of	a	novel	partner	that	promotes	speciation	of	the	interacting	
species,	where	 emerging	 new	 species	 all	 retain	 compatibility	with	
the	novel	partner	(Chagnon	et	al.,	2019;	Gomulkiewicz	et	al.,	2000).

Overdispersed	 patterns	 of	 phylogenetic	 specificity	 may	 arise	
through	retention	of	plesiomorphic	traits,	convergent	evolution,	or	
competitive	 exclusion	 of	 related	 partners.	 Coevolutionary	 theory	
predicts	that	convergent	evolution	of	interaction	traits	is	common	in	
mutualistic	networks	due	to	indirect	selection	pressures	that	spread	
throughout	the	networks	(Guimarães	et	al.,	2011,	2017).	However,	
convergent	evolution	in	interaction	networks	can	also	result	in	ran-
dom	phylogenetic	 structure	 if	 partner	 compatibility	 does	 not	 sys-
tematically	evolve	on	closely	or	distantly	related	lineages.

5  |  CONCLUSION

Our	approach	presents	a	quantitative	and	conceptual	framework	to	
study	specialization,	and	the	eco-	evolutionary	processes	that	shape	
it,	 in	 interaction	networks.	 Importantly,	 the	calculation	of	our	PSS	
index	allows	the	quantification	of	biotic	specialization	while	account-
ing	for	partner	availability	and	yielding	values	that	are	comparable	
across	systems	regardless	of	network	properties.	Furthermore,	our	
PSS	index	can	be	used	to	elucidate	the	relationship	between	phylo-
genetic	specialization	and	the	distribution,	abundance,	and	fitness	of	
species	in	natural	communities	(Blüthgen	et	al.,	2007;	Fortuna	et	al.,	
2020;	Pinheiro	et	al.,	2016,	2019;	Schleuning	et	al.,	2012).	This	may	
have	important	implications	for	managing	biodiversity	when	consid-
ering	species	interactions	(Harvey	et	al.,	2017).
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