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Abstract
Biotic specialization holds information about the assembly, evolution, and stability of 
biological communities. Partner availabilities can play an important role in enabling 
species interactions, where uneven partner availabilities can bias estimates of biotic 
specialization when using phylogenetic diversity indices. It is therefore important to 
account for partner availability when characterizing biotic specialization using phy-
logenies. We developed an index, phylogenetic structure of specialization (PSS), that 
avoids bias from uneven partner availabilities by uncoupling the null models for inter-
action frequency and phylogenetic distance. We incorporate the deviation between 
observed and random interaction frequencies as weights into the calculation of part-
ner phylogenetic α-diversity. To calculate the PSS index, we then compare observed 
partner phylogenetic α-diversity to a null distribution generated by randomizing phy-
logenetic distances among the same number of partners. PSS quantifies the phylo-
genetic structure (i.e., clustered, overdispersed, or random) of the partners of a focal 
species. We show with simulations that the PSS index is not correlated with network 
properties, which allows comparisons across multiple systems. We also implemented 
PSS on empirical networks of host–parasite, avian seed-dispersal, lichenized fungi–
cyanobacteria, and hummingbird pollination interactions. Across these systems, a 
large proportion of taxa interact with phylogenetically random partners according to 
PSS, sometimes to a larger extent than detected with an existing method that does 
not account for partner availability. We also found that many taxa interact with phy-
logenetically clustered partners, while taxa with overdispersed partners were rare. 
We argue that species with phylogenetically overdispersed partners have often been 
misinterpreted as generalists when they should be considered specialists. Our results 
highlight the important role of randomness in shaping interaction networks, even in 
highly intimate symbioses, and provide a much-needed quantitative framework to as-
sess the role that evolutionary history and symbiotic specialization play in shaping 
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1  |  INTRODUC TION

Species interactions display patterns of biotic specialization that 
impact the evolution, assembly, and stability of biological commu-
nities (Chomicki et al., 2019; Guimarães et al., 2011; Poisot et al., 
2011). These patterns result from a combination of trait-driven and 
stochastic processes that enable interactions between organisms. 
For example, a pollination interaction between a hummingbird and a 
flowering plant may depend both on their morphological trait match-
ing (e.g., flower corolla length and hummingbird bill length) and on 
the probability that the hummingbird will encounter the flower while 
foraging (Peralta et al., 2020; Sonne et al., 2020; Young et al., 2021). 
Multiple studies have quantified the relative importance of these 
two types of processes at the community level (Canard et al., 2014; 
Chávez-González et al., 2020; Maglianesi et al., 2014; Simmons et al., 
2019; Sonne et al., 2020; Stang et al., 2007; Vizentin-Bugoni et al., 
2014). As expected (Vázquez et al., 2009), traits that mediate spe-
cies interactions often have predictive power for interactions and 
interaction frequencies (Maglianesi et al., 2014; Sonne et al., 2020; 
Vizentin-Bugoni et al., 2014). However, in multiple cases, partner 
availability has been found to have a more important role in explain-
ing species interactions (Canard et al., 2014; Chávez-González et al., 
2020; Simmons et al., 2019; Stang et al., 2007).

Typically, ecologists characterize biotic specialization by quanti-
fying two properties of a species’ biotic niche: partner breadth and 
the intensity of interactions with those partners (Colwell & Futuyma, 
1971; Futuyma & Moreno, 1988; Hurlbert, 1978; Pinheiro et al., 
2016). Both of these properties can be shaped by partner availability. 
Therefore, the quantification of biotic specialization can be biased 
if the distribution of partner availabilities is not taken into account 
(Blüthgen et al., 2008). These biases emerge in multiple ways when 
studying specialization. For example, when species interactions are 
studied as networks, with nodes representing species and links rep-
resenting interactions (Guimarães et al., 2006; Jordano, 1987), the 
total number of partners of a species, or node degree, character-
izes partner breadth (Jordano et al., 2002), while the distribution of 
interaction frequencies across partners (interaction strength sensu 
Vázquez et al., 2007) provides information on the intensity of part-
ner use. If interactions are random, a skewed distribution of partner 
availabilities will nevertheless result in rare species having high-
intensity interactions with a narrow set of partners (i.e., artifactual 
specialization on the most common species; Blüthgen et al., 2008).

Biotic specialization can also be studied using phylogenetic di-
versity metrics (Cooper et al., 2012; Doña et al., 2018; Esser et al., 
2016; Lane et al., 2014). Here, species are considered more spe-
cialized if they associate with partners that are more closely re-
lated than expected by chance (Poulin et al., 2011). This approach 
acknowledges that simply counting partners may provide an in-
complete picture of a species’ partner breadth. Even if two species 
associate with the same number of partners, one of them might 
be specialized on partners with a narrower range of traits (Dehling 
et al., 2020; Junker et al., 2013). However, many interactions 
are mediated by traits that are unknown or difficult to measure. 
Furthermore, most symbioses involve microbes for which species 
boundaries are unclear, making it difficult to quantify the number 
of partners (Magain, Miadlikowska, Goffinet, et al., 2017; Põlme 
et al., 2018; Toju et al., 2014). Because traits tend to be phyloge-
netically conserved (Goberna & Verdú, 2016; Swenson, 2013) and 
phylogenetic relatedness can be calculated without a priori species 
delimitation, phylogenetic diversity metrics are a useful alternative 
for characterizing the partner breadth of a species (Faith, 1992; 
Webb et al., 2002).

Phylogenetic diversity metrics can also be biased by partner 
availability. For example, when interactions occur randomly, changes 
in partner availability can change interaction frequencies and alter 
the number of partners for a focal species (Figure 1a–c; Lessard 
et al., 2012; Poisot et al., 2015). As a result, a species may appear 
specialized on a set of closely related partners (i.e., phylogenetically 
clustered) only because the most available partners happened to be 
closely related (Figure 1b). Previous simulation studies have revealed 
multiple scenarios where failure to account for the distribution of 
species abundances (analogous to partner availability) results in bi-
ased estimates of phylogenetic diversity (Kembel, 2009; Miller et al., 
2017). One way to account for this problem is to compare observed 
values of phylogenetic diversity to a null distribution generated by 
drawing partners from a pool of species in proportion to their avail-
ability, instead of drawing them with equal probabilities (Jorge et al., 
2014; Kembel, 2009; Miller et al., 2017). However, this null model is 
also biased (Appendix S1; Figure S1) and results in an overestima-
tion of non-random phylogenetic structure with increasing interac-
tion frequencies, as evidenced by Jorge et al. (2017) for networks of 
plant–herbivore interactions.

The growing evidence that ecological interactions of many 
species are driven, at least at some scales, by the availability 

patterns of biodiversity. PSS is available as an R package at https://github.com/cjpar​
dodel​ahoz/pss.
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of potential partners (Canard et al., 2014; Chávez-González 
et al., 2020; Simmons et al., 2019; Stang et al., 2007), calls for ap-
proaches to measure specialization that appropriately incorporate 
partner availability. We developed an index, phylogenetic struc-
ture of specialization (PSS), that integrates partner availability 
and phylogenetic diversity to measure biotic specialization in eco-
logical networks. PSS avoids bias from uneven partner availabili-
ties by uncoupling the null models for interaction frequency and 
phylogenetic distance. First, we quantify the deviation between 
observed interaction frequencies and random interactions. Next, 
we incorporate these deviations as weights into the calculation 
of partner phylogenetic α-diversity; we also calculate phyloge-
netic α-diversity for sets with the same number of partners but 
randomized phylogenetic distances among them. Finally, we com-
pare observed and null values of the phylogenetic diversity met-
ric to calculate the PSS index. Therefore, PSS is a measure of the 
phylogenetic structure of the partners of a focal species (partner 
breadth) that accounts for partner availability, helping to untangle 
trait-driven and stochastic processes shaping patterns of special-
ization (Figure 1). We conducted simulations to detect potential 
biases of this new approach and found that PSS is not correlated 
with network properties as a previous index (Jorge et al., 2017; 
Appendix S1), which makes PSS comparable across datasets. We 
also illustrated the use of PSS with four empirical bipartite net-
works from the literature for which molecular phylogenetic trees 
were available for both sets of partners. We propose a conceptual 
framework to interpret phylogenetic structural patterns of biotic 
specialization in ecological networks (Figures 1 and 2) that enables 
the exploration of putative ecological and evolutionary processes 
generating these patterns.

2  |  METHODS

2.1  |  The phylogenetic structure of specialization 
index

Phylogenetic diversity indices used to measure specialization 
are standardized effect sizes (SES; Miller et al., 2017; Poulin 
et al., 2011). As such, these indices compare observed val-
ues of a phylogenetic diversity metric to a null distribution (i.e., 
SES = (nullmean − observed)/nullsd). One strategy to account for part-
ner availability is to generate the null distribution by calculating a 
phylogenetic diversity metric for sets of partners that are drawn 
from the pool of partner species in proportion to their availability 
(Jorge et al., 2014; Kembel, 2009; Miller et al., 2017). This approach 
uses a single null model for both interaction frequencies and phylo-
genetic distances. However, when a focal species associates with its 
partners nonrandomly, drawing from the pool of partner species in 
proportion to their availability will often yield a null set with a dif-
ferent number of partners than observed. This difference will grow 
larger as interactions become less random. If the null and observed 
values of the phylogenetic diversity metric are not based on the 
same number of partners, the phylogenetic diversity index (SES) will 
be biased (Figure S1 in Appendix S1; Jorge et al., 2017). This is be-
cause phylogenetic diversity metrics are not independent from the 
number of species upon which they are calculated.

We avoid this problem by uncoupling the null models for in-
teraction frequency and phylogenetic distance. First, we use 
Kullback–Leibler distances (Kullback & Leibler, 1951) to quantify 
the magnitude of the deviation between the observed interac-
tion frequencies and a null distribution representing random 

F I G U R E  1 Schematic representation 
of three possible patterns of phylogenetic 
structure and their corresponding 
phylogenetic structure of specialization 
(PSS) values (random [a–c], clustered [d–f], 
and overdispersed [g–i]) across three 
different availability patterns of partners 
from set A that interact with one species 
from set B. The size of the orange circles 
represents the relative availability of each 
member of set A
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interactions (Blüthgen et al., 2006). We incorporate these devi-
ations as weights into the calculation of the weighted mean pair-
wise phylogenetic distance, a common metric of phylogenetic 
α-diversity (wMPD; Webb et al., 2008). Then, we calculate this 
modified wMPD for null sets of partners generated by shuffling 
taxa at the tips of the partner phylogeny, which randomizes the 
phylogenetic distances while keeping the number of partners con-
stant. Finally, we compare the observed and null values of the phy-
logenetic diversity metric to calculate the PSS index as an SES. We 
describe the calculation of the PSS index below.

First, let I be an interaction matrix with r species in the rows 
(set A) and c species in the columns (set B). Each element aij of I 
represents the interaction frequency between species i and spe-
cies j, such that:

(1)I =

⎡
⎢⎢⎢⎢⎣

a11…a1c

⋮ ⋱ ⋮

ar1…arc

⎤
⎥⎥⎥⎥⎦
.

F I G U R E  2 Schematic representation of the distribution of d’ (a), −NRI (b), and PSS (c) values from a hypothetical community where most 
species associate opportunistically with their partners. Importantly, when using d’, the terms “specialist” and “generalist” refer exclusively 
to the interaction frequencies relative to the availability of the partners and completely ignore the actual number of partners (Blüthgen 
et al., 2006). For example, two species can have d’ = 0 (generalists) even if one of them associates with 100 partners and the other species 
associates only with 10 partners, as long as both species associate with those partners in the same proportion as they are available. Panel 
c also shows how PSS values are related to d’ and −NRI. Species with lower d’ values will tend to have PSS values that are close to 0, while 
species with higher d’ values can take values close to 0, but also positive and negative PSS values. Likewise, species with negative −NRI can 
take negative or near-zero values with PSS, whereas species with positive −NRI can take positive or near-zero values with PSS. Panels d, e, 
and f show a reference to interpret the distribution of species pairs in co-specialization profiles of a bipartite interaction network involving 
set A interacting with set B, and vice versa. The X axis represents d’, −NRI, or PSS values for the species in the rows of an interaction matrix 
(set A), and the Y axis represents the d’, −NRI, or PSS values for the species in the columns of an interaction matrix (set B). The shaded gray 
areas in panels e and f show the −NRI and PSS space where clustering or overdispersion are not significantly different from a random pattern 
of phylogenetic structure (Figure 1a–c). These thresholds flanking the shaded gray areas (−1,1) represent the 95% confidence interval of the 
null distribution of −NRI or PSS simulated under each dataset. Each circle in panels d–f is labeled with the same legends as in panels a–c, with 
left semicircle corresponding to the value of the species in the Y axis (from the columns of the matrix), and the right semicircle representing 
the value of the species in X axis (from the rows of the matrix). For example, an interacting pair that falls in the lower left corner of the PSS 
space (f) involves two species that associate with phylogenetically clustered partners according to PSS, and likely have high value of d’ (i.e., 
they are d’ specialists)
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Let Ai be the sum of interaction frequencies recorded for 
species i,

and let m be the sum of interaction frequencies across both rows and 
columns,

Let qj be a parameter expressing the relative availability of spe-
cies j. We can define qj as the ratio of the sum of interaction frequen-
cies of species j to the marginal sum of interaction frequencies in the 
matrix (i.e., matrix availability),

In this case, the availability parameter is inferred from the interac-
tion matrix. Alternatively, qj can be determined empirically from mea-
surements of partner abundance. The latter is preferable when such 
data are available (Jorge et al., 2014; Vizentin-Bugoni et al., 2014). We 
will discuss the validity and implications of both approaches.

Let P′

ij
 be the proportion of interactions of species i that are with 

species j,

We will use P′

ij
 and qj to calculate the magnitude of the deviation 

of interaction frequencies from a null model where interaction fre-
quencies are driven by partner availability. These magnitudes will 
be used below as weights in the calculation of the phylogenetic di-
versity metric. Before we calculate the weights, however, we will 
outline the calculation of the phylogenetic diversity metric, wMPD.

To calculate wMPD, we define Mi as the set of n species that associ-
ate with species i, and Di as a symmetric matrix of pairwise phylogenetic 
distances between all species that belong to the set Mi, such that:

Each element lks of Di represents the phylogenetic distance be-
tween two partners of species i, species k and s. The weighted mean 
pairwise phylogenetic distance of Mi, wMPDi, was defined by Webb 
et al. (2008) as:

This is a weighted mean of the pairwise phylogenetic distances 
among a set of species. It takes larger values for sets of distantly re-
lated species and smaller values for sets of closely related species. In 
this definition, the weight is the product of the interaction frequen-
cies of species i with partners k and s, aikais. The wMPD is used to 
compute the SESMPD index (Kembel, 2009), which is commonly used 
to quantify phylogenetic specialization (Cooper et al., 2012; Doña 
et al., 2018; Esser et al., 2016; Lane et al., 2014). SESMPD is equivalent 
to −1 times the net relatedness index (−NRI; Webb et al., 2002), such 
that negative values correspond to clustering and positive values to 
overdispersion.

This metric can yield biased estimates of the phylogenetic struc-
ture, especially when the availability of the partners has phyloge-
netic signal (Kembel, 2009; Miller et al., 2017). To remove this effect, 
for a species k that associates with i and belongs to the set Mi, we 
define a KLk factor as:

which expresses how much the interaction frequency of i with k de-
viates from a null model where i and k are interacting in proportion to 
their availability (i.e., randomly). This factor is an element of the sum 
used to compute Kullback–Leibler distances (Kullback & Leibler, 1951), 
which measure the difference between a probability distribution of in-
terest and a reference distribution (i.e., null model). When interactions 
are random, the proportion of interactions of i with k, P′

ik
, should con-

verge to the availability of k, or qk. Therefore, the ratio between these 
two parameters tends toward 1, and KLk will approach 0. Conversely, 
when interactions are non-random, P′

ik
, is larger than qk, and KLk be-

comes larger than 0.
These distances are also used to calculate the species-level spe-

cialization metric d’ (Blüthgen et al., 2006), which sums equation 8 
across all partners of species i. Here, we instead calculate a KL factor 
for each partner of species i and replace the interaction frequen-
cies in equation 7, aikais, with KL factors for partner species k and 
s. This allows us to compute a version of the wMPD for species i, 
klMPDi, that is weighted by the KL factors instead of the interaction 
frequencies:

This mean of pairwise distances is now corrected for the avail-
ability of the partners through the KL weights. It takes larger values 
for species that interact non-randomly with sets of more distantly 
related species, and it is undefined (0 in both numerator and denom-
inator) for a species that interacts with its partners at the exact fre-
quency that those partners are available (i.e., P′

ik
= qk for every k that 

belongs to Mi). However, the scenario where the index is undefined 
is extremely unlikely in natural networks and was never found in sim-
ulated networks. Equation 9 may result in negative values when KL 
factors are ≤ 0. Consequently, we only consider partners for which 

(2)Ai =

c∑
j=1

aij,

(3)m =

r∑
i=1

c∑
j=1

aij.

(4)qj =
Aj

m
.

(5)P�

ij
=

aij

Ai

.

(6)Di =

⎡
⎢⎢⎢⎢⎣

l11…l1n

⋮ ⋱ ⋮

ln1…lnn

⎤
⎥⎥⎥⎥⎦
.

(7)wMPDi =

�
k ∈Mi

�
s∈Mi

lksaikais∑
k∈Mi

∑
s∈Mi

aikais
.

(8)KLk = P�

ik
ln

(
P�

ik

qk

)
,

(9)klMPDi =

�
k ∈Mi

�
s∈Mi

lksKLkKLs∑
k∈Mi

∑
s∈Mi

KLkKLs
, KL > 0.
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the KL factors are > 0. This means that we only use phylogenetic dis-
tances among partners that interact more frequently than expected 
under the null model where interaction frequencies are driven by 
availability. We assert in Appendix S2 that this is equivalent to ex-
cluding species from the partner set that have zero interactions with 
the focal species i, which does not affect the behavior of klMPD.

We can obtain a null distribution of klMPD values for the set of 
partners Mi by randomly shuffling the tips of the partner phylogeny 
999 times and calculating klMPD for each iteration. As we empha-
sized above, this maintains the observed total number of partners. 
Then, for each species i, we define PSSi,

as the difference between the observed value of klMPDi and the mean 
klMPDnulli

 divided by the standard deviation of the null values. PSS is 
thus an SES, with values close to 0 indicating that the partners of a 
focal species lack phylogenetic structure, and negative or positive val-
ues indicating phylogenetic clustering or overdispersion, respectively 
(Figure 1).

As a set-level measure of the PSS, we take the mean of equation 
10 from all species in the rows (set A) weighted by the interaction 
frequencies of each species:

Blüthgen’s d’ (Blüthgen et al., 2006) and the −NRI index (Webb 
et al., 2002) measure specialization using availability and phy-
logenetic structure, respectively. PSS integrates both of these 
complementary sources of information to measure specialization 
(Figure 2a–c). For example, Figure 2a shows the distribution of 
Blüthgen’s d’ values for the species in one set of a hypothetical bi-
partite network where most taxa associate opportunistically with 
their partners (i.e., most interactions are driven by partner availabil-
ity), resulting in many species being generalists. However, d’ does 
not provide information about the phylogenetic structure of the 
partners of those taxa. Conversely, the distribution of −NRI values 
for that same set of species (Figure 2b) indicates that a large fraction 
of the species interacts with phylogenetically clustered partners. 
However, since −NRI does not incorporate availability, some of the 
species may appear as interacting with clustered partners as a result 
of a biased distribution of partner availabilities (e.g., Figure 1b). If 
that were the case, the distribution of PSS values would show that 
the largest fraction of the species associates with phylogenetically 
random partners (i.e., be equal to or close to 0), since PSS integrates 
both availability and phylogenetic structure (Figure 2c).

For bipartite interaction networks, the distribution of values of 
the specialization indices can be visualized in two dimensions, where 
all pairs of interacting species are plotted according to the specificity 
values for each partner. For example, an interaction between two 
species with low d’ values would occupy the generalist–generalist 

region (lower left corner) in Figure 2d. That same pair of species can 
occupy any area of the −NRI space in Figure 2e, because the −NRI 
values do not include partner availability in the estimation of phy-
logenetic structure. In contrast, the same pair of species can only 
occupy the random–random area of the PSS space (Figure 2d,f), be-
cause for PSS to yield a value that is significantly different from 0, 
a species must interact with its partners more than expected given 
their availability, and those partners must display a significant phy-
logenetic structure. Conversely, a pair of species with high d’ can 
occupy any region of the PSS space (Figure 2d,f), because the phylo-
genetic structure of their partners may be clustered, overdispersed, 
or random, even if they interact with those partners more than ex-
pected given their availability.

2.2  |  Why use the mean pairwise phylogenetic 
distance for PSS?

Metrics of phylogenetic α-diversity fall into one of the three groups 
based on what they quantify (Swenson, 2014; Miller et al., 2017; but 
see Tucker et al., 2017 for an alternative classification): (i) mean re-
latedness among species, such as the mean pairwise phylogenetic 
distand (MPD; Webb, 2000); (ii) relatedness of species to their clos-
est relatives, such as the mean nearest taxon distance (MNTD; Webb, 
2000); or (iii) total tree length, such as Faith’s phylogenetic distance 
(PD; Faith, 1992). Our approach to account for availability could be 
coupled with any metric of phylogenetic α-diversity, that is, by incor-
porating the KL factors as weights in the calculations of the mean. 
However, there are caveats associated with specific types of metrics. 
For example, metrics from group ii only provide insights about fine-
scale phylogenetic structure because only the closest relatives are 
considered. Additionally, the value of metrics from group iii increases 
monotonically with the number of partner species and, therefore, does 
not provide information about phylogenetic structure. For example, 
Faith’s PD may give the same value for two distantly related taxa as 
well as for five closely related taxa. The use of MPD for our PSS index 
allows the detection of three different phylogenetic structural patterns 
of specialization (random, clustered, and overdispersed; Figure 1).

However, MPD can only be calculated if one lineage is interacting 
with at least two partners. This is problematic in highly specialized 
symbiotic systems where many species interact with one partner. If 
we assume that a species with one partner has a MPD of 0, as in pre-
vious studies (Jorge et al., 2014, 2017), PSS cannot be calculated be-
cause the null distribution would also be estimated with one partner, 
resulting in an undefined PSS with the numerator and denominator 
of equation 10 being equal to 0. We solved this problem by assum-
ing the existence of a sister taxon to the single partner of the focal 
species. This new sister taxon is joined to the original partner with a 
branch length that is half the minimum pairwise distance recorded 
between any pair of species in the phylogeny of the partners. The 
observed interaction frequencies of the original partner are equally 
divided between the sister taxa. This keeps the relationship between 
interaction frequencies and availability (i.e., P′ik/qk in equation 8) 

(10)PSSi =
klMPDi − mean(klMPDnulli

)

sd
(
klMPDnulli

) ,

(11)PSSrows =
1

m

r∑
i=1

PSSiAi .
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constant; therefore, the new sister taxon has the same KL factor as 
the original taxon. This new sister taxon is only added for the calcu-
lation of klMPDi (equation 10) for species with one partner and does 
not affect species that have more than one partner.

2.3  |  Testing the PSS index using simulations

2.3.1  |  Varying dimensions and marginal sum of 
interaction frequencies

We simulated random matrices using the genweb() function in the 
R package bipartite (Dormann et al., 2008), which relies on three pa-
rameters: number of columns (N1), number of rows (N2), and average 
interaction frequency per link (dens). These values are used to cal-
culate the sum of all interaction frequencies of the simulated matrix 
(m), as m = N1×N2×dens. Then, the simulated matrix of dimensions 
N1×N2 is populated with m interactions, such that the marginal 
sums of the interaction frequencies in the rows and the columns fol-
low a lognormal distribution. This procedure results in heterogene-
ous distributions of both the number of links per species and the 
interaction frequencies per link.

We simulated three sets of random matrices. In the first set, we 
assessed the values of PSS on random symmetric matrices with di-
mensions varying from 5×5 to 200×200. The second set consisted of 
random matrices with unequal numbers of columns and rows varying 
from 2×20 to 200×20. The average interaction frequency per link 
(dens) was kept at 2 for all matrix configurations in the first two sets. 
The third set contained random matrices with increasing marginal sum 
of interaction frequencies (m = 5–4000) and fixed dimensions (50×50). 
We accomplished this by varying “dens” within the genweb() func-
tion in bipartite. The marginal sum of interaction frequencies (m) sets 
a limit to the number of binary links in the simulated matrices because 
the marginal totals are constrained to follow a lognormal distribution. 
Therefore, the random matrices in the third set also span a range of 
connectance values, with matrices with higher m having higher binary 
connectance (Figure S2). Each simulation step consisted of: (i) a random 
matrix simulated as described above and (ii) a random ultrametric tree, 
with the matrix columns as taxa generated with the function rcoal() 
in the R package ape (Paradis et al., 2004). We then calculated PSSrows 
for each matrix. Each simulation step was replicated 10 times. In addi-
tion, each set of simulations was performed three times, with branch 
length distributions of the random trees drawn from either a lognormal, 
normal, or uniform distribution. We estimated the rate of Type I error 
as the proportion of simulated matrices for each parameter value for 
which the observed klMPD value was significantly different (α = 0.05) 
from the null distribution generated as described for equation 10.

2.3.2  |  Varying nestedness and modularity

To determine whether network structural patterns constrain the 
possible values of PSS, we tested for correlation between PSS and 

matrices simulated with varying degrees of nestedness and modularity. 
In nested networks, specialist species tend to interact with a subset of 
the partners associated with generalist species (e.g., Guimarães et al., 
2006). In modular networks, groups of species share a set of preferred 
partners, resulting in compartmentalized networks (e.g., Chagnon 
et al., 2018; Olesen et al., 2007). In order to simulate matrices with 
a gradient of nestedness and modularity values, we started by creat-
ing a perfectly nested and a perfectly modular 50×50 binary matrix. 
Then, each simulation step swapped the positions of a 0 and 1 in the 
matrices, thus adding noise and decreasing nestedness and modularity 
(Chagnon, 2015). Although we used binary matrices, we treated them 
as quantitative so that the network structure could be manipulated in a 
predictable way. After each step of the nestedness simulation, we cal-
culated nestedness using wNODF (weighted nestedness metric based 
on overlap and decreasing fill) developed by Almeida-Neto et al. (2008) 
and implemented in bipartite. After each step of the modularity simula-
tion, we calculated the modularity (Q) using the simulated annealing 
algorithm developed by Dormann and Strauss (2014) implemented in 
bipartite. For each simulation, we generated a random ultrametric tree 
with the matrix columns as taxa using the function rcoal() in ape. 
We then calculated PSSrows for the matrices of each simulation step. 
The availability of the partner species (qj) is calculated as if the network 
were quantitative (see equations 2–4). Even if all interaction frequen-
cies are 0 or 1, our simulation strategy still generates heterogeneity in 
the availability of partners (qj) and the KL weights (equation 8) that are 
used to calculate PSS. Each simulation step was replicated 20 times for 
both modularity and nestedness analyses. As above, each set of simu-
lations was performed three times, with branch length distributions of 
the random trees drawn from either a lognormal, normal, or uniform 
distribution. Type I error rates were estimated as described above.

2.3.3  |  Can PSS detect clustering and 
overdispersion?

There are no models to simulate phylogenetic networks with spe-
cific patterns of phylogenetic structure, and developing them is 
beyond the scope of this paper. However, a recent study devel-
oped a simulation framework to explore the statistical behavior 
of a comprehensive set of phylogenetic diversity metrics when 
applied to communities (Miller et al., 2017). Although we are ap-
plying PSS to interaction networks, PSS is an index of phyloge-
netic diversity and can be used to measure phylogenetic diversity 
in communities. This is because community data matrices (CDMs) 
are quantitatively analogous to interaction matrices. In a CDM, the 
rows correspond to spatial plots and the columns correspond to 
species. Likewise, in a CDM, the availability parameter is analo-
gous to the regional availability of species, and it is important to 
account for its role in the sorting of species into plots of a CDM 
(Lessard et al., 2012; Miller et al., 2017). The important difference 
is that in a CDM, only the columns (species) have a phylogenetic 
tree. Therefore, we can only calculate PSS for each of the plots 
(rows) in a CDM.
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To determine whether PSS can detect phylogenetic structure 
patterns (Figure 1) when they are present (Type II error rate), we 
used the approach developed by Miller et al. (2017). This allowed 
us to compare PSS to existing methods. This framework simulates 
arenas where individuals are spatially distributed according to their 
phylogenetic relatedness (Appendix S3). We then sampled the spe-
cies composition of plots within these arenas to create CDMs. The 
PSS index was calculated for the plots (rows) within these CDMs. 
Rates of Type II error were calculated at the CDM and plot level as 
described in Appendix S3.

2.4  |  Empirical networks with phylogenies and 
with or without empirically estimated availability

We used four bipartite networks from the literature for which 
molecular phylogenetic trees were available for both sets of 
partners: (i) mammals–fleas, an antagonistic network of interac-
tions between small mammals and their ectoparasitic fleas (order 
Siphonaptera) that were sampled in four regions of Slovakia 
(Stanko et al., 2002); (ii) avian seed-dispersal, a mutualistic net-
work of bird seed-dispersal interactions compiled from studies 
conducted across multiple localities in the Brazilian Atlantic Forest 
(Bello et al., 2017); (iii) cyanolichens, a mutualistic network of in-
teractions between species of the fungal lichen-forming genus 
Peltigera and their cyanobacterial partners from the genus Nostoc, 
which were recorded at a global scale as part of phylogenetic stud-
ies on Peltigera (Lu et al., 2018; Magain, Miadlikowska, Goffinet, 
et al., 2017; Magain, Miadlikowska, Mueller, et al., 2017; Magain 
et al., 2018; Miadlikowska et al., 2014, 2018; O’Brien et al., 2005, 
2013; Pardo-De la Hoz et al., 2018) and compiled by Chagnon et al. 
(2019); and (iv) hummingbird pollination, a mutualistic network of 
pollination interactions between hummingbirds and plants in the 
Colombian Andes (network 7 in Sonne et al., 2020). Table 1 shows 
a summary of these four datasets. For each species in each 
of these datasets, we calculated node degree, the interaction 
frequency-based specialization index d’ (Blüthgen et al., 2006), the 
phylogenetic diversity index −NRI (Webb et al., 2002), and PSS. 
The availability parameter (qk; equation 8) was estimated from the 
interaction frequencies in the matrices for all datasets as indicated 
in equation 4. We also estimated PSS values using empirical abun-
dance data that were available for the fleas in the mammals–fleas 
dataset (Table 1; Stanko et al., 2002) and for both sets of species in 
the hummingbird pollination dataset (Sonne et al., 2020).

2.5  |  R package for computing PSS values

We developed an R package (https://github.com/cjpar​dodel​ahoz/
pss) with functions to compute PSS using interaction matrices and 
phylogenetic trees from the interacting species as input. Our R pack-
age has function dependencies from the R packages ape, bipartite, pi-
cante and vegan (Dormann et al., 2008; Kembel et al., 2010; Oksanen 

et al., 2019; Paradis et al., 2004), and includes code modified from 
Swenson (2014).

3  |  RESULTS

3.1  |  PSS is independent from basic network 
features

We calculated PSS across simulated bipartite matrices lacking phy-
logenetic structure but varying in size, number of rows and columns, 
marginal sum of interaction frequencies, nestedness, and modularity. 
We found no correlation between any of these network structural 
variables and PSS values (Figure S3c), suggesting that our approach 
allows for comparisons across different systems with a wide range 
of network properties. Type I error rates were between 0% and 10% 
(mean 4%), except for small and equal numbers of rows and columns 
(< 11 rows × < 11 columns; Figure S4a), small network matrices with 
unequal numbers of rows and columns (< 15 rows × 20 columns; 
Figure S4b), and networks with low marginal sum of interaction fre-
quencies (< 30 interactions; Figure S4c). This was expected because 
in these cases most species have a single interaction recorded, which 
means that their node degree is equal to 1. As a consequence of the 
strategy that we implemented to calculate PSS when a species has 
a single partner, these taxa appear specialized on a phylogenetically 
clustered lineage.

Rates of Type II error at the CDM level were low for both clus-
tered (1.1%) and overdispersed (5.2%) scenarios. We observed high 
rates of Type II error (36%) in clustered scenarios when assessed at 
the plot level, which correspond to single rows in the CDMs.

3.2  |  Comparison of PSS and −NRI

PSS and −NRI generally yielded similar results regarding the propor-
tion of taxa and interaction frequencies with random, clustered, and 
overdispersed partners (Table 2). However, these indices can lead to 
different results for some datasets. For example, in the avian seed 
dispersal dataset, 48% of plant taxa were found to associate with 
clustered partners according to PSS, compared to 32% according to 
−NRI (Table 2). In some cases, such as in the avian seed-dispersal 
dataset, PSS and −NRI inferred a similar percentage of plant spe-
cies that associate with random partners (39% and 37%, respec-
tively). However, those species account for different percentages 
of the interaction frequencies (40% and 29%, respectively). This 
indicates that PSS and −NRI detected different species that have 
random partners. These discrepancies are more evident in the com-
parison of the index values obtained for each taxon (Figure 3). These 
indices yielded highly similar values for some sets (Figure 3c,d,f,h) 
and very different values for taxa in other sets (Figure 3a,b,e,g). In 
two cases, the correspondence between values of the two indi-
ces was much higher for one of the sets within the same dataset: 
fleas r2 = .28 (Figure 3a) compared to mammals r2 = .74 (Figure 3b); 

https://github.com/cjpardodelahoz/pss
https://github.com/cjpardodelahoz/pss
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and hummingbirds r2 =  .24 (Figure 3g) compared to plants r2 =  .74 
(Figure 3h). These are also the two cases where we have empirical 
data for the abundances rather than relying on matrix availabilities 
(Table 1).

Even in cases where the two indices inferred the same structure, 
we observed a slight trend towards more negative values for the −
NRI index (Figure 3c,d). For example, most interaction pairs (dots) 
from the mammals–fleas dataset fall into the same areas (Figure 2e,f) 

Random Clustered Overdispersed

PSS −NRI PSS −NRI PSS −NRI

Mammals–fleas

Mammals 43 / 94 63 / 95 29 / 1 0 / 0 29 / 6 21 / 5

Fleas 36 / 7 29 / 5 64 / 93 71 / 95 0 / 0 0 / 0

Avian seed-dispersal

Birds 42 / 44 40 / 43 50 / 44 29 / 50 8 / 12 6 / 5

Plants 39 / 40 37 / 29 48 / 47 32 / 58 14 / 13 12 / 11

Cyanolichens

Fungi 31 / 38 31 / 44 63 / 49 24 / 25 6 / 12 5 / 11

Cyanobacteria 54 / 52 18 / 35 46 / 48 20 / 55 0 / 0 0 / 0

Hummingbird pollination

Hummingbirds 71 / 63 57 / 55 29 / 37 43 / 45 0 /0 0 / 0

Plants 52 / 89 61 / 91 35 / 4 0 / 0 13 / 7 9 / 6

Note: −NRI cannot be calculated for taxa that associate with a single partner. Therefore, we 
were not able to calculate −NRI for 100% of taxa in some datasets. Values before backslash are 
percentage of taxa, and values after backslash are percentage of interaction frequencies. Totals 
within a species set and index may not sum to 100 due to rounding. All calculations were based 
on interaction frequencies as a proxy for availability. See Figure 5 for a comparison of PSS values 
based on direct empirical estimations of availability versus interaction frequencies as a proxy for 
availability.

TA B L E  2 Comparison of PSS and −NRI 
values estimated for taxa across the four 
empirical datasets used in this study

F I G U R E  3 Comparison of −NRI and PSS values for the species in each of the eight sets present in the four empirical datasets we 
analyzed. If a circle falls along the red diagonal line, it means that the two metrics being compared yield the same value for that particular 
species. (a and b) fleas and their mammalian host, (c and d) birds as dispersers of plant seeds, (e and f) lichen-forming fungi and their 
cyanobacterial partners, and (g and h) hummingbirds and the plants they pollinate. The shaded areas show the region of −NRI and PSS space 
where clustering or overdispersion is not significantly different from a random pattern of phylogenetic structure. The thresholds of the 
shaded areas were defined as the mean of the 95% confidence interval of the null distributions generated for each taxon in the datasets. 
All PSS values were calculated with the availability parameter estimated from interaction frequencies. See Figure 5 for a comparison of PSS 
values based on direct empirical estimations of availability versus interaction frequencies as a proxy for availability
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of the −NRI (Figure 4c) and PSS spaces (Figure 4d). However, the in-
teraction density is shifted towards the left (more negative) accord-
ing to −NRIfleas (Figure 4c) compared to PSSfleas (Figure 4d). We found 
a similar result with the avian seed-dispersal dataset, for which −NRI 
inferred a higher density of interactions in the clustered–clustered 
area (Figure 4g) compared to PSS (Figure 4h). In contrast, PSS in-
ferred more negative values than −NRI for lichen-forming fungi 
(Figures 3e and 4k,l).

3.3  |  Most taxa interact with phylogenetically 
random or clustered partners

Although we found a wide range of variation in the number of part-
ner species (node degree) in the empirical networks (Figure 4a,e,i,m), 
most interaction pairs involved species without strong specializa-
tion signal according to Blüthgen’s d’ (Figures 2d and 4b,f,n). The 
cyanolichen network was an exception, with multiple interaction 
pairs involving specialist cyanobacteria and generalist (opportunis-
tic) lichenized fungi, or both specialist cyanobacteria and specialist 
fungi (Figure 4j). Across all four interaction networks, both −NRI 
and PSS indicated that many taxa interact with random and clus-
tered partners (Table 2; Figure 4c,d,g,h,k,l,o,p). However, taxa that 
interact with overdispersed partners were rare and not found in all 
sets (Table 2; Figure 4c,d,g,h,k,l,o,p). PSS values for the fleas in the 
mammals–fleas dataset and the plants in the hummingbird pollina-
tion dataset were highly similar when calculated based on empiri-
cally estimated availability versus interaction frequencies as a proxy 
for availability (Figure 5a,b). In contrast, empirical and matrix avail-
abilities yielded different PSS values for multiple hummingbird spe-
cies (Figure 5c).

4  |  DISCUSSION

4.1  |  PSS is informative and robust to error types

Phylogenetic structure of specialization integrates both partner 
availability and phylogenetic structure to characterize biotic spe-
cialization of species within interaction networks. As expected, 
when availability is roughly equal among partners (Figure 1a,d,g), 
PSS captures similar information in empirical networks as −NRI 
(Figure 3c,d,f,h), an index that accounts for phylogenetic structure 
without considering partner availability. Therefore, cases where 
the two indices diverge (Figure 3a,b,e,g) are likely due to unequal 
partner availabilities (e.g., Figure 1b,c). These are situations where 
existing approaches that do not account for partner availability, such 
as −NRI, can infer clustered or overdispersed phylogenetic structure 
when the phylogenetic pattern is actually random (i.e., Type I error), 
or may fail to detect clustering and overdispersion (i.e., Type II error; 
Kembel, 2009; Miller et al., 2017).

The rates of Type I and Type II error observed for PSS are compa-
rable to the best performing combination of phylogenetic diversity 

metric +null model as reported in a previous study (wMPD + regional 
null; Miller et al., 2017). However, that combination is designed to 
describe communities with many species, which limits its application 
to interaction networks where species have few partners (Appendix 
S1). Furthermore, PSS values are not biased by the marginal sum of 
interaction frequencies in the matrix (i.e., m in equation 3; Figure 
S3c), which is the case for an existing specialization index that in-
tegrates availability and phylogenetic structure (Jorge et al., 2017; 
Appendix S1).

The higher rates of Type II error that we observed at the plot 
level of the CDMs were also reported by Miller et al. (2017) for 
other indices. The simulation strategy that we implemented to test 
Type II error is expected to generate the clustered and overdis-
persed patterns at the scale of the entire simulated arena. Our 
CDMs are intended to be a representative sample of that arena. 
Therefore, calculating PSS at the plot level (i.e., single rows of the 
matrix) is equivalent to taking a much smaller sample of that arena, 
which explains why the power of the index decreases. Therefore, 
we expect that the power of PSS will also decrease when interac-
tion networks are under-sampled, as is the case with other met-
rics (Blüthgen et al., 2008; Miller et al., 2017; Rivera-Hutinel et al., 
2012).

We urge caution when interpreting PSS for species with a sin-
gle partner, because apparent specialization can be caused by the 
rareness of a species and not necessarily high phylogenetic special-
ization (e.g., Dorado et al., 2011). Our approach allows the calcula-
tion of PSS for species with a single partner, but in a way that will 
bias towards clustering when sampling is scarce. However, this is the 
case for all existing methods because true specialization can only be 
uncovered in the absence of artefacts such as imbalanced sampling 
effort (Blüthgen et al., 2008).

4.2  |  Phylogenetic structure in 
interaction networks

The integration of phylogenetic data with interaction networks can 
provide insights about the relative importance of ecological and 
evolutionary processes that shape biological communities (Segar 
et al., 2020). Previous studies have shown that many ecological in-
teractions, as well as interaction-related traits, display phylogenetic 
structure, where closely related species tend to have overlapping 
sets of partners (Aizen et al., 2016; Eklöf et al., 2012; Gómez et al., 
2010; Rezende et al., 2007). Based on those findings, it should be 
common for species to be specialized on phylogenetically clustered 
partners. However, PSS analyses of four empirical networks showed 
that many species interact with phylogenetically random partners 
(Table 2; Figure 4d,h,l,p). Our results suggest that while interaction 
traits can be conserved across some phylogenetic scales, the as-
semblage of communities of interacting species at regional and local 
scales can be constrained by the relative effect of processes other 
than the evolutionary history of the species (Mello et al., 2019; Segar 
et al., 2020), such as the availability of potential partners.
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Nevertheless, we also encountered many cases of phylogenetic 
specialization in all four empirical datasets (Table 2; Figure 4d,h,l,p). 
For example, in cyanolichens, the peak of the distribution of inter-
actions was found to be in the random–clustered and clustered–
clustered regions of the PSS space (Figures 2f and 4l). These results 
are consistent with past assessments that Peltigera species are most 

often specialized on generalist, but also on specialist, Nostoc phy-
logroups (Magain, Miadlikowska, Goffinet, et al., 2017). Similarly, 
Krasnov et al. (2012) reported that the fleas in the mammals–fleas 
dataset showed phylogenetic signal in their host range, which is 
consistent with our observed distribution of fleas infecting a clus-
tered set of mammal hosts at a regional scale (Figures 2f and 4d). 

F I G U R E  4 Comparison of biotic co-specialization profiles of four empirical bipartite networks using four metrics (columns): node degree, 
Blüthgen’s d’, −NRI and PSS. (a–d) mammals–fleas network from Slovakia (Stanko et al., 2002). (e–h) avian seed-dispersal network from the 
tropical Atlantic Forest (Bello et al., 2017). (i–l) cyanolichen network from an opportunistic global sampling of the lichen-forming fungal 
genus Peltigera and their Nostoc cyanobacterial partners (Chagnon et al., 2019). (m–p) hummingbird pollination network from the Colombian 
Andes (Sonne et al., 2020). Each dot on these plots represents a pair of interacting species. These dots are placed on graphs according to 
the biotic specificity metric value of the interacting species. For example, in panel i, fungi are interacting with one to eight phylogroups of 
cyanobacteria (X axis) while cyanobacteria are interacting with one to more than 40 fungal species (Y axis) in this network of cyanolichens. 
All PSS values were calculated with the availability parameter estimated from interaction frequencies. See Figure 5 for a comparison of PSS 
values based on direct empirical estimations of availability versus interaction frequencies as a proxy for availability. The shaded areas in the 
panels of the third and fourth columns represent non-significant clustering or overdispersion. The thresholds were defined as the mean of 
the 95% confidence interval of the null distributions generated for each taxon in the datasets. The size of the dots represents the number of 
times an interaction was recorded in the matrix, i.e., interaction frequency. Contour lines are estimated 2D distributions
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In addition, we detected mammal species that are infected by phy-
logenetically overdispersed fleas (Figures 2f and 4d). This pattern 
of overdispersion has not previously been reported for this dataset 
(Krasnov et al., 2012).

In contrast, the tropical avian seed-dispersal network consists 
mostly of interactions involving generalist species (Figures 2d and 
4f) that may not require specialized traits, or may be specialized 
on partner traits that are not phylogenetically conserved (Bello 
et al., 2017; Bolmgren & Eriksson, 2005; Emer et al., 2019). This 
dataset includes a large proportion (75%) of interactions involv-
ing species that associate with phylogenetically random partners 
(Figure 4h). However, the seed-dispersal network also includes the 
largest proportion (22%) and most striking examples of interac-
tions between species with clustered partners (Figures 2f and 4h). 
In the case of the hummingbird pollination dataset, we also found 
that most species interact with phylogenetically random part-
ners (Table 2, Figure 4p). However, a previous study had already 
shown that more than half of the plant and hummingbird species in 
this network tend to interact with partners with morphologically 
matching traits (i.e., bill length and flower corolla length; Sonne 
et al., 2020). This may indicate that these traits are not phyloge-
netically conserved.

4.3  |  Is overdispersion a signature of specialists or 
generalists?

Studies that have used phylogenetic diversity metrics to character-
ize biotic specialization have often focused on cases where partners 
were significantly more closely related than expected by chance (but 
see Maherali & Klironomos, 2007) and considered overdispersion as 
a signature of generalists (Cooper et al., 2012; Jorge et al., 2014; 
Poulin et al., 2011). This is because overdispersion indicates that 

a species associates with distantly related partners. However, in a 
framework where partner availability is accounted for, a significant 
phylogenetic structure can only be detected when interaction fre-
quencies are non-random. With PSS, overdispersion means that a 
species interacts with its partners more than expected by chance, 
and those partners are more distantly related than expected by 
chance. This is consistent with high intensity of partner use within 
a narrow span of a species’ biotic niche and, therefore, should be 
interpreted as a signature of specialists (Figure 2c,f).

4.4  |  Availability based on interaction frequencies 
as a proxy for relative abundance in nature

Interaction frequencies in network matrices are commonly used 
as proxies for partner availability in nature, as evidenced by the 
widespread use of Blüthgen’s d’ and related metrics to quantify 
specialization (Arceo-Gómez et al., 2020; Fründ et al., 2016; 
Schleuning et al., 2012; Zanata et al., 2017). However, this proxy 
might be inaccurate if the interactions are not sampled systemati-
cally, when facultative partners are involved, or when interaction 
frequencies are independent from the availability of partners in 
nature (e.g., empirically shown in Vizentin-Bugoni et al., 2014). We 
had direct empirical estimates of partner availability for the fleas 
from the mammals–fleas dataset and both the hummingbirds and 
plants in the hummingbird pollination dataset (Table 1; Sonne et al., 
2020; Stanko et al., 2002). For the fleas and the plants, we found 
high correspondence among PSS values calculated based on em-
pirically estimated availability and using interaction frequencies 
as a proxy for availability, but not for the hummingbirds (Figure 5). 
The availability proxy using interaction frequencies might be es-
pecially problematic for the Peltigera–Nostoc dataset, which was 
sampled at a global scale in a non-systematic way. In this case, the 

F I G U R E  5 Comparison of PSS values estimated using empirical estimates of availability (empirical avail.) obtained from surveys of species 
abundances (X axis) vs using the marginal sum of interaction frequencies (interact. freq.) obtained from an interaction matrix as a proxy for 
availability (Y axis). PSS of (a) mammal partners of flea species, (b) plants in the hummingbird pollination dataset, and (c) the hummingbirds. 
Each circle on these plots represents a species. The thresholds for the shaded areas (random phylogenetic structure) were defined as the 
mean of the 95% confidence interval of the null distributions generated for each taxon in the datasets. Points on the diagonal red line 
indicate identical PSS values
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interaction frequencies may lead to highly inaccurate estimates of 
the partner availabilities, particularly since Nostoc symbionts can 
be free-living (Nelson et al., 2021).

4.5  |  Importance of phylogenetic and spatial scales 
for interpreting PSS values

Interpretations of PSS values must consider the phylogenetic and 
spatial scales of the datasets. For example, we found that a large 
proportion (54%) of cyanobacterial taxa associate with random part-
ners (Table 2). However, this network only includes the interactions 
with species from a single genus of lichen-forming fungi (Peltigera). 
If we had done the same analysis in the context of all lichen-forming 
fungi (which span multiple classes of Fungi), the partners of many 
cyanobacterial taxa would be highly clustered and some would be 
overdispersed. Likewise, the avian seed-dispersal dataset consists 
of interactions that were sampled in a single region, the Atlantic 
Forest of Brazil (Bello et al., 2017). Using PSS, we found that 39% of 
the interactions in this dataset involve plants whose seeds are dis-
persed by phylogenetically random birds (Table 2, Figure 4h). These 
sets of bird seed dispersers are phylogenetically random relative to 
the pool of species in the Atlantic Forest, but they likely represent a 
non-random subset of the phylogenetic diversity of bird species at 
larger spatial scales, as shown by a continental-scale study in South 
America (Mello et al., 2019).

4.6  |  A conceptual framework for an eco-
evolutionary interpretation of PSS values

Patterns of phylogenetic diversity are not direct proxies for com-
munity assembly processes (Cahill et al., 2008; Gerhold et al., 2015; 
Mayfield & Levine, 2010). Instead, we propose testable hypotheses 
of eco-evolutionary processes that may produce PSS patterns in in-
teraction networks.

Opportunistic interactions can result from multiple processes. 
Recent colonization or introduction (e.g., long-distance dispersal 
events or invasive species) into new areas might make opportunis-
tic interactions advantageous in ecological and evolutionary times-
cales (Magain, Miadlikowska, Goffinet, et al., 2017; Poisot et al., 
2011). During rapid diversifications, incomplete sorting of traits 
can generate local populations with high intraspecific variation in 
interaction traits that allow associations with a broader range of 
partners. Species may also have spatially structured populations 
with low phenotypic variation at local scales, but higher variation at 
larger scales (Batstone et al., 2018). This highlights the importance 
of studying these patterns at multiple spatial scales (Gomulkiewicz 
et al., 2000; Jorge et al., 2014). Low heterogeneity in resources 
exchanged by partners can result in opportunistic interactions 
(Pinheiro et al., 2019). A recent study also showed that high eco-
logical uncertainty can favor generalized host ranges in avian brood 
parasites (Antonson et al., 2020). How and when selection maintains 

the variation necessary for opportunistic interactions is not fully un-
derstood (Vamosi et al., 2014; but see Batstone et al., 2018), but 
it seems to be pervasive even in highly intimate symbioses such as 
lichens (Figure 4l; Guimarães et al., 2007).

Clustered patterns of biotic specificity may arise when the di-
versification dynamics of one set of organisms is dependent on its 
interacting partners. In rare cases, this may lead to cospeciation (de 
Vienne et al., 2013). More commonly, clustering results from re-
peated switches to closely related partners through time (Chagnon 
et al., 2019; Thines, 2019; de Vienne et al., 2013) or from the acqui-
sition of a novel partner that promotes speciation of the interacting 
species, where emerging new species all retain compatibility with 
the novel partner (Chagnon et al., 2019; Gomulkiewicz et al., 2000).

Overdispersed patterns of phylogenetic specificity may arise 
through retention of plesiomorphic traits, convergent evolution, or 
competitive exclusion of related partners. Coevolutionary theory 
predicts that convergent evolution of interaction traits is common in 
mutualistic networks due to indirect selection pressures that spread 
throughout the networks (Guimarães et al., 2011, 2017). However, 
convergent evolution in interaction networks can also result in ran-
dom phylogenetic structure if partner compatibility does not sys-
tematically evolve on closely or distantly related lineages.

5  |  CONCLUSION

Our approach presents a quantitative and conceptual framework to 
study specialization, and the eco-evolutionary processes that shape 
it, in interaction networks. Importantly, the calculation of our PSS 
index allows the quantification of biotic specialization while account-
ing for partner availability and yielding values that are comparable 
across systems regardless of network properties. Furthermore, our 
PSS index can be used to elucidate the relationship between phylo-
genetic specialization and the distribution, abundance, and fitness of 
species in natural communities (Blüthgen et al., 2007; Fortuna et al., 
2020; Pinheiro et al., 2016, 2019; Schleuning et al., 2012). This may 
have important implications for managing biodiversity when consid-
ering species interactions (Harvey et al., 2017).
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