
RESEARCH ARTICLE

Interspecies chimeric conditions affect the

developmental rate of human pluripotent

stem cells

Jared BrownID
1☯*, Christopher BarryID

2☯, Matthew T. SchmitzID
2, Cara ArgusID

2, Jennifer

M. BolinID
2, Michael P. SchwartzID

3, Amy Van AartsenID
2, John SteillID

2,

Scott SwansonID
2, Ron Stewart2, James A. Thomson2,4,5‡, Christina Kendziorski6‡*

1 Department of Statistics, University of Wisconsin-Madison, Wisconsin, United States of America,

2 Morgridge Institute for Research, Madison, Wisconsin, United States of America, 3 NSF Center for

Sustainable Nanotechnology, Department of Chemistry, University of Wisconsin-Madison, Wisconsin, United

States of America, 4 Department of Cell and Regenerative Biology, University of Wisconsin School of

Medicine and Public Health, Madison, Wisconsin, United States of America, 5 Department of Molecular,

Cellular, and Developmental Biology, University of California, Santa Barbara, California, United States of

America, 6 Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison,

Wisconsin, United States of America

☯ These authors contributed equally to this work.

‡ These authors supervised this work equally.

* brown46@wisc.edu (JB); kendzior@biostat.wisc.edu (CK)

Abstract

Human pluripotent stem cells hold significant promise for regenerative medicine. However,

long differentiation protocols and immature characteristics of stem cell-derived cell types

remain challenges to the development of many therapeutic applications. In contrast to the

slow differentiation of human stem cells in vitro that mirrors a nine-month gestation period,

mouse stem cells develop according to a much faster three-week gestation timeline. Here, we

tested if co-differentiation with mouse pluripotent stem cells could accelerate the differentiation

speed of human embryonic stem cells. Following a six-week RNA-sequencing time course of

neural differentiation, we identified 929 human genes that were upregulated earlier and 535

genes that exhibited earlier peaked expression profiles in chimeric cell cultures than in human

cell cultures alone. Genes with accelerated upregulation were significantly enriched in Gene

Ontology terms associated with neurogenesis, neuron differentiation and maturation, and syn-

apse signaling. Moreover, chimeric mixed samples correlated with in utero human embryonic

samples earlier than human cells alone, and acceleration was dose-dependent on human-

mouse co-culture ratios. The altered gene expression patterns and developmental rates

described in this report have implications for accelerating human stem cell differentiation and

the use of interspecies chimeric embryos in developing human organs for transplantation.

Author summary

Human pluripotent stem cells often require long in vitro protocols to form mature cell

types of clinical relevance for potential regenerative therapies, a ramification of a nine-

month developmental clock in utero that also runs ex utero. What controls species-specific
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developmental time and whether the timer is amenable to acceleration is unknown. Fur-

ther, interspecies chimeric embryos are increasingly being created to study early human

development or explore the potential growth of human organs for transplantation. How

the conflicting developmental speeds of cells from different species co-differentiating

together affect each other is not understood. Here, using genome-wide transcriptional

analysis of RNA-sequencing time courses, we show that 1) co-differentiating human

embryonic stem cells intermixed with mouse stem cells accelerated elements of human

developmental programs, 2) the acceleration was dose-dependent on the proportion of

mouse cells, and 3) human cells in chimeric samples correlated to in utero samples earlier

than human only samples. Our results provide evidence that some components of species-

specific developmental clocks may be susceptible to acceleration.

Introduction

Mammals develop at tremendously different rates in utero, however little is known about the

mechanisms regulating species-specific developmental speeds. Curiously, when pluripotent stem

cells are cultured in vitro, they retain the developmental timing of their species of origin despite the

lack of maternal factors, suggesting the existence of an intrinsic developmental clock [1–7]. Cur-

rently, the nature of the species-specific developmental clock, including the extent to which it can

be altered, is unknown [8]. The retention of a slow differentiation rate that reflects a nine-month

human gestation timeline often results in long differentiation protocols and immature cell charac-

teristics that impede many potential clinical applications of human pluripotent stem cells [9,10].

In contrast to the slow differentiation of human stem cells, mouse stem cells differentiate

substantially more quickly, reflecting a 20-day rather than a nine-month gestation timeline

[5,11,12]. For example, mature neurons are produced in only 5–14 days from mouse ES cells,

while the same cell types can take several months to generate from human embryonic stem

(hES) cells [7,13–15]. It remains unknown if the developmental pace of one species can influ-

ence that of another. Previously, we found that hES cell differentiation was not accelerated in

teratomas developed in a mouse despite being exposed to murine host factors [1]. However,

we did not test whether factors active during murine embryonic development could be suffi-

cient to accelerate hES cell differentiation.

Here, we investigated whether hES cells co-differentiated among mouse pluripotent stem

cells could accelerate their developmental rate. Under neural differentiation of chimeric co-cul-

tures, we found earlier upregulation and peak expression of hundreds of genes involved in neu-

rogenesis, neuron maturation, and synapse signaling compared to hES cells alone. The

accelerated effects were dose-dependent on the starting ratios of human-mouse cells in co-cul-

tures, and chimeric cultures correlated to in utero human embryonic samples earlier than

human cells alone. We also describe temporal differences in gene expression levels related to cell

type and brain region identity, suggesting there may be other nuanced effects on gene expression

from chimeric co-culture conditions. Overall, we demonstrate that chimeric human-mouse cul-

ture conditions are sufficient to accelerate elements of human stem cell differentiation.

Results

Comprehensive RNA-sequencing time course of neural differentiation in

chimeric human-mouse co-cultures

We previously described a detailed RNA-sequencing (RNA-seq) time course of mouse and

human pluripotent stem cells over three- or six-weeks of neural differentiation, respectively, to
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characterize the drastically different species-specific rates of development in vitro [1]. Here, we

set out to determine if co-differentiating human cells with mouse cells together could induce

the human cells to differentiation at a quickened pace. Since hES cells are thought to more

closely represent a post-implantation pluripotent stage, we used the similarly-staged mouse

Epiblast stem (mEpiS) cells to compare with H9 hES cells [16–18]. To identify cells from each

species, we used mEpiS cells constitutively expressing cytoplasmic efficient green fluorescent

protein (EGFP) and H9 cells expressing nuclear-localized H2B-mCherry (Fig 1).

To maximize any potential mouse-induced effects on human differentiation rate, we began

by outnumbering human cells with the more quickly differentiating mouse cells in a ten-to-

one ratio. 10% human co-cultured cells (H10), along with 100% mouse (M100) or 100%

human (H100) control samples, were cultured under identical neural differentiation culture

conditions (see Materials and Methods) and samples in triplicate were collected for RNA-seq

every 24 or 48 hours for six weeks (Fig 1). To minimize any confounding of results with

known differences in cell cycle and cell fate choices due to differences in cell densities [19–23],

interspecies cell seeding confluencies were kept constant across species mixtures. After align-

ing transcripts to a combined human-mouse transcriptome to derive species-specific expres-

sion from the chimeric samples, samples passing quality control parameters (S1 Fig, see

Materials and Methods) were processed for correlation analysis, fitted with gene expression

patterns using the segmentation regression analysis R-package Trendy [24], and the timing of

expression pattern changes were compared across samples (Fig 1).

Although mouse and human cells were singularized before seeding, time lapse microscopy

revealed that, despite the clear occurrence of interspecies cell-cell interactions, cells preferen-

tially clustered and proliferated with cells of their own species (Fig 2 and S1 and S2 Movies).

Flow cytometry analysis revealed that while the intended starting cell ratios were seeded, as

mouse cells differentiated quickly to become post-mitotic neurons, the still-proliferating

human progenitor cells eventually overtook the culture. By day 12 of differentiation ~50% of

H10 samples were of human composition, and by day 16 over 75% of samples were human

cells (S2 Fig).

Fig 1. Overview of data collection/analysis pipeline. (top left) Human (red) and mouse (green) cells are cultured at

various mixing proportions over a 42 day neural differentiation time course, harvesting samples every 1–2 days for RNA-

seq. Low quality biological replicates are removed from analysis and the data are normalized. (top right) Normalized data

are fit to segmented regression built for RNA-seq data (Trendy) and temporal gene characteristics, such as peak times, are

identified. (bottom right) Classified gene sets are further analyzed, including enrichment analysis for GO terms which are

temporally accelerated or otherwise systematically altered in H10 compared to H100. (bottom left) In parallel to the

previous analysis, normalized data are also correlated between time courses to identify transcriptome-wide effects.

https://doi.org/10.1371/journal.pcbi.1008778.g001
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Human neurogenic and synaptic genes were upregulated earlier in human-

mouse chimeric co-cultures

To determine if gene expression patterns were accelerated in chimeric co-cultures, genes with

fitted expression trends were compared between neural differentiation of human cells alone

(H100) versus cells in a co-culture of 10% human cells mixed with 90% mouse cells (H10). We

first asked if upregulated genes (genes trending up immediately or genes showing no change

and then trending up) were upregulated earlier in mixed compared to control samples. Our

bioinformatic analysis revealed that 929 genes were upregulated significantly earlier (S1 Data)

(begin up trending at least 2 days earlier) in H10 versus H100 samples, representing over 57%

of all genes that trend up in both H10 and H100, excluding genes that begin to trend up on day

0 in both cases (Fig 3A). We recognized several well-described neurogenic genes identified as

accelerated in this early-upregulated category (S3A Fig), including genes involved in neural

differentiation and migration (e.g., STMN2, DCX, NEFL, NEUROG2, MYT1, MAPT), neuronal

signaling and synapse transmission (e.g., SNAP25, SYT3, SYT4, SYN1), neural stem cell iden-

tity (e.g., FABP7, FGF10), and glutamatergic and GABAergic neurons (e.g., SLC1A3, GRIN2D,

GABRA1; Fig 3E). Therefore, genes from a seemingly wide range of neurodevelopmental func-

tions were upregulated earlier under chimeric differentiation conditions.

Given that several recognizable neurogenic genes were among those identified as upregu-

lated earlier in H10 compared to H100 samples (Figs 3E and S3A), we set out to statistically

test if early upregulated genes were specific to neural differentiation or a collection of genes

within a random assortment of cellular processes. Functional GO-term enrichment of early-

Fig 2. Microscopy images of the H10 mixture across the time course. 10% Human ES cells expressing nuclear-localized

H2B-mCherry (red) were mixed with 90% mouse EpiS cells (expressing cytoplasmic GFP (green)) and co-cultured

together under neural differentiation conditions for six weeks. Images captured at the time points indicated show clusters

of associating human and mouse cells (red and green clusters respectively). Scale bars = 200μm.

https://doi.org/10.1371/journal.pcbi.1008778.g002
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Fig 3. Changes in neurodevelopmental gene expression are accelerated in human ES cells differentiated among

mouse EpiS cells. (A) All genes which trend up in both H10 and H100 are classified as either early, late, or unchanged in

H10 relative to H100 (omitting genes which already start up-trending at day 0 in both H10 and H100). (B) The top 10

most significant GO terms enriched for early upregulation in H10 demonstrated a clear pattern of acceleration in neuron

and synaptic signaling-related genes (term enrichments shown as log10 adjusted p-values (FDR)). (C) All genes which

peak in both H10 and H100 were classified as either early, late, or unchanged in H10 relative to H100. (D) The top 10

most significant GO terms enriched for early peaks in H10 showed acceleration of genes involved in neurogenesis and

neuron development (term enrichments shown as log10 adjusted p-values (FDR)). (E) Relative expression plots of a

curated subset of early-up (EU) genes collected into functional/regional groups. H10 (blue) and H100 (red) time courses

were scaled such that 0 expression shows black and maximum expression between H10 and H100 shows as 1/-1 (within

gene). (F) Relative expression plots of a curated subset of early-peak (EP) genes collected into functional/regional groups.

(G) Genes with shared peaks or shared up-trends between H10 and H100 were used to compute acceleration rate point

estimates as the ratio of H100 event times (e.g., time of peak in H100) to H10 event times. Point estimates were
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upregulated genes revealed that all of the ten most statistically significantly-enriched terms

were associated with neuron and synaptic signaling (Fig 3B). In contrast, we did not observe

neural-related GO term enrichment in genes upregulated later in H10 than in H100 (S4A Fig),

confirming that neural genes were indeed specifically upregulated earlier in human cells co-

differentiated with mouse cells.

In addition to the earlier upregulation of genes associated with neuron and synapse signal-

ing, the duration of up-regulation was also significantly longer, often still trending upwards at

the end point of the 6-week time course (S5A Fig). However, despite earlier onset of upregula-

tion, their slopes were also significantly less steep than those of H100 samples (S5A Fig). These

results indicate an earlier onset of synaptic signaling gene activation characterized by a more

sustained, yet slower, rate of upregulation.

To ensure these results were not artifacts of transcript misalignment to the wrong species

within the combined human and mouse reference transcriptome, we conducted an additional

interspecies mixing time course experiment where intermixed cells were re-purified according

to their species using Fluorescence-Activated Cell Sorting (FACS) (human-mCherry vs

mouse-GFP) at each time point prior to RNA-isolation and sequencing. Importantly, post-

sorted samples were aligned to the identical combined human and mouse transcriptome

library. Sorted (s) sample datasets are therefore labeled sH100, sH10, and sM100 to differenti-

ate the sorted samples from the previously described data.

Computation of empirical misalignment rates showed low overall rates of misalignment

across days (median 0.53% for sH100 and median 2.23% for sH10) (S6A Fig), and enrichment

of misaligned transcripts failed to demonstrate any bias in neural-associated genes (S6B Fig).

Although the sorted time course could not be performed in triplicate, nor at the same sampling

frequency as the unsorted time course due to the extensive sort times necessary to collect

enough cells to achieve sufficient read-depth, sorted sample expression analyses resulted in the

same acceleration effects in sH10 relative to sH100 that we observed in unsorted samples

(S6C–S6E Fig), confirming that our earlier detection of acceleration was not due to species-

misaligned transcripts.

Regulation of peak gene expression profiles occurs more rapidly in co-

cultures with mouse stem cells

During development, genes involved in neural differentiation are often not simply turned on,

but rather are expressed in temporally-regulated dynamic patterns [25,26]. To determine if

genes with coordinated expression profiles were regulated more quickly, we next tested

whether genes with peak expression profiles (consecutive up-down or up-flat segments)

peaked earlier under chimeric versus human control conditions.

Overall, we identified 535 genes that peaked earlier (at least two days) (S1 Data) in chimeric

culture conditions compared to control samples, representing over 46% of all peaking genes

identified in the time course (Fig 3C). Similarly to early-upregulated genes, we recognized sev-

eral peaking genes involved in neural development in the accelerated peak category (Figs 3F

and S3B), including genes involved in neurogenesis (e.g., ASCL1, NGFR, NEFM, TUBB3), neu-

ral tube development (e.g., MEIS1, GLI3, DLL3), neuron signaling (e.g., SNAP25, ATCAY),

and ventral midbrain differentiation (e.g., ISL1, LHX4, NKX6-1). We further validated that

genes involved in neurodevelopment were specifically peaking early through GO-term

smoothed to give a continuous estimate of the H10 acceleration factor. The median fitted acceleration factor calculated

over the first 16 days for H10 was given as 1.699.

https://doi.org/10.1371/journal.pcbi.1008778.g003
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enrichment analysis, and we found that all of the top ten most significantly enriched terms

were associated with neural development (Fig 3D), whereas no obvious trend in neural-

related GO-terms was found for genes with delayed peaks (S4B Fig). In contrast to early-

upregulated genes that were enriched in neuron and synaptic signaling, early peaked genes

were involved in neurogenesis, neuron projection development, and neuron differentiation

(Fig 3D). Further, whereas early-upregulated genes had a slower rate of increase compared

to control cells, early peaked genes exhibited an earlier time of start of upregulation towards

the peak and a faster rate of upregulation to reach the peak (S5B Fig). Taken together, we

report that the regulation of neurogenic genes was specifically accelerated in H10 compared to

H100.

To quantify the degree of acceleration and investigate if acceleration was variable or uni-

form across the time course, we considered genes with shared peaks or shared up trends in

both H10 and H100 and computed acceleration factors as the percent difference in time to

peak or the start of up regulation in H10 compared to H100. Smooth regression of these point

estimates provided a continuous estimate of the relative acceleration between H10 and H100

(Fig 3G, see Materials and Methods).

From this analysis, we uncovered that the majority of acceleration was in fact not constant

over the course of co-differentiation. Rather, the majority of acceleration takes place during

the first 16 days. While the median acceleration factor (reflecting fold-change acceleration of

expression events) during this time was 1.699, acceleration varied from a maximum factor of

2.75 at the earliest stages of differentiation, converging eventually to a factor of 1 (non-acceler-

ated) by day 20 (Fig 3G). It is notable that this gradual reduction in acceleration rate occurs

concurrently as human cells begin out-proliferating post-mitotic mouse neurons (Figs 2 and

S2). Human cells start outnumbering mouse cells at day 12, the time at which acceleration

effects dissipate, suggesting a correlation between mouse cell number and the acceleration

effect they induce in co-culture (Figs 3G and S2).

Mouse gene expression patterns were decelerated under chimeric

conditions

We next wondered if developmental time warping was a bi-direction effect on both species

during chimeric conditions (i.e., that mouse cell development was slowed while that of human

cells was accelerated). We therefore conducted a similar interspecies time course, this time

outnumbering mouse cells with human cells (85% hES cells vs 15% mEpiS cells; H85 = M15)

(S2 Data).

Indeed, the same analysis pipeline that identified accelerated patterns of human gene

expression in chimeric conditions resulted in an opposite, deceleration, effect observed for

mouse genes. We observed 87 genes which were upregulated later in M15 than in M100

(23.6% of genes with shared up trends, excluding genes which start trending up on day 0 in

both species mixtures) and 562 genes which peak later in M15 than in M100 (58.2% of genes

with shared peaks) (S7A and S7B Fig). Further, when acceleration was measured by comparing

genes with shared up trends and peaks, a median acceleration factor of 0.894 was measured

over the first 16 days, indicating a deceleration of M15 relative to M100 (S7C Fig). Enrichment

of the subset of genes which were upregulated or peaked later in M15 shows neural terms to be

either uniquely enriched for late upregulation or more significantly enriched for late peaks

(S7D–S7G Fig). Together with the results among human aligned expression, this indicates that

the interspecies co-culture influence was bi-directional, affecting both human and mouse cells.

This may also suggest that common mechanisms may regulate developmental time across

species.
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Chimeric co-culture affected the timing and expressions levels of some

genes associated with neuron or brain region identity

Our neural differentiation protocol recapitulates a general neural developmental program and

produces neurons of various regional identities [1]. To determine if chimeric co-culture of

hES cells would affect cell lineage outcomes, we identified genes that were most differentially

expressed (S1 Data) (measured as fold change between maximum expression along the time

course) in chimeric mixed samples compared to hES cell controls (S8 Fig).

We observed some changes in the expression of transient signals as well as changes in sus-

tained region-specific expression. For example, certain genes associated with the anterior dorsal

neural tube showed earlier downregulation in H10 compared to H100, whereas genes linked to

Gluta- and GABAergic neurons and neuron signal transduction showed patterns of downregula-

tion at later times (S8 Fig). Other genes broadly associated with neurogenesis show a mixture of

these patterns. In contrast, some genes associated with the ventral midbrain showed transient

upregulation in chimeric mixed samples compared to control samples (S8 Fig). These effects

would be consistent with an early exposure of Shh from mouse cells that could have triggered a

cascade of downstream effects on gene expression, including FOXA2 [27], NKX2.1, and PHOX2B
(S8 Fig) [28,29]. Our analysis therefore revealed that some genes associated with neuron cell type

and regional identity were temporally and/or differentially expressed under chimeric conditions.

To verify that the acceleration effects described in this report were not largely due to a gen-

eral shift towards neural cell types that appear earlier in development rather than a true accel-

eration, we performed a deconvolution analysis of H100 and H10 samples to monitor the

appearance of various progenitor and intermediate cell stages and their differentiation over

time. This type of analysis estimates the relative proportions of cell types that may be present

in a bulk sample by comparing bulk expression to a reference of purified or annotated single

cell data. We compared our data to the CoDEx dataset of annotated single-cell sequencing

from the developing human cortex [30] with the MuSiC R package [31]. Smoothed estimates

of neural stage proportions (see Materials and Methods) indicated that co-cultured human

cells mirrored the developmental progression of cell types of control samples, but at an acceler-

ated pace (S9 Fig). Specifically, similar progenitor-to-mature neural cell markers appeared in

the same order in H10 and H100 (S9 Fig), yet high proportions of excitatory neurons in H10

occurred earlier (days 12–16) compared to H100 (days 18–24). Taken together, although dif-

ferential expression analyses identified changes in expression levels of some genes implicated

in nervous system development, differentiation followed similar lineage pathways but at accel-

erated rates in chimeric compared to unmixed conditions.

Acceleration effects are dose-dependent on percentage of mouse stem cells

If the acceleration of hES cell differentiation was indeed mouse cell-induced, we reasoned that

the rate of acceleration would be dose-dependent on the amount of mouse cells present in

human co-cultures. Harnessing the data from multiple initial interspecies mixing proportions

(0%, 10%, 85%, and 100% human vs mouse), we tested the dependence of the initial mixing

proportion on the acceleration rate observed (Fig 4A).

Overall, expression profiles of a selection of key neuronal genes with either early up-regula-

tion or early peaks in H85 samples were chronologically intermediate between H10 and H100

expression profiles (Fig 4B). Overlaying these trends with the expression profiles of ortholo-

gous genes in the M100 sample reveals progressively later onsets of gene up-regulation/peaks

with decreasing proportions of mouse cells among these genes (Fig 4B).

To determine whether these results extended to the broader set of neuron-associated genes,

we replicated the GO-term enrichment analysis in the H85 sample. Testing term enrichment
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on those genes which either upregulated or peaked earlier in H85 relative to H100 resulted in a

list of the most significant terms with the same patterns as in H10. However, comparing term

significance levels between the top 10 most significant terms in the H10 analysis and their H85

counterparts shows that, while the H85 terms were still highly significant, they were less so

than the H10 terms (Fig 4C). Further, direct computation of acceleration factors of the first 16

Fig 4. Variable mixing proportions show a dose response of acceleration effects. (A) An additional, intermediate

interspecies mixing proportion, H85(M15), was compared to H0(M100), H10, and H100 time courses. (B) Expression

plots of curated EU and EP genes with fitted trend lines (solid) for H100 (blue), H85 (purple), H10 (red), and M100

(green). Observed, normalized data are also plotted (dots). (C) Top 10 EU and EP GO terms from H10 showing relative

significance of term enrichment for H10 and H85. (D) Smoothed acceleration factors are calculated between each of H10,

H85, and M100 (human orthologous genes) against H100 using the method in Fig 3G (Materials and Methods). The

median fitted acceleration from the first 16 days is reported. (E) Correlation (Spearman) heat maps where regions of high

correlation (red) below the diagonal indicate accelerated activity where later days in H100 are correlated with earlier days

in the comparison mixture. Correlations are calculated on a subset of highly dynamic genes (see Materials and Methods).

https://doi.org/10.1371/journal.pcbi.1008778.g004
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days, based on differences in shared peak times and the starts of up trends, resulted in progres-

sively decreasing calculated accelerations with stepwise drops in percentage mouse cells: 2.727

(H0/M100), 1.699 (H10/M90), and 1.376 (H85/M15), consistent with a dose-response effect

on acceleration (Fig 4D).

Pairwise correlations allowed us to further aggregate relative expression trends across

genes. We took a subset of genes, targeting those with dynamic expression over time, and plotted

correlations calculated between pairs of time points relative to H100 (Fig 4E). Mouse orthologs

demonstrate a visually significant acceleration with day 2 expression being highly correlated

with H100 out to day 16. The H10 and H85 time courses both showed visual acceleration with

regions of high correlation below the diagonal, but with respectively lower magnitudes as the

proportion of mouse cells decreases. Adapting a technique for estimating acceleration factors

from these correlation plots described in Rayon et al.[32] (see Materials and Methods) allowed

us to compute average acceleration over the first 16 days independently of peaks or other expres-

sion events. We observed similar acceleration dynamics with correlation-based acceleration fac-

tors of 1.726 over the first 16 days for H10 and 1.314 over the first 16 days for H85 (Fig 4E).

These correlation results, while dependent on specific geometries of the correlation plots, are

themselves supported by comparing to the deconvolution of H10, H85, and H100, a procedure

which is similarly based on a large panel of dynamic genes. In the deconvolution analysis, we

observed higher proportions of mouse cells in mixtures resulting in the progressively earlier

sequential maturation of progenitor and intermediate cell types (S9 Fig).

Human stem cells co-cultured with mouse cells correlated with in vivo
human fetal neocortical samples earlier than human cells alone

We compared our data with the Brain Span human fetal sample references to assess if our in
vitro acceleration is consistent with sample maturity in utero [33–35]. We calculated correla-

tions between our observed in vitro data and five tissue regions from the Brain Span database

across weeks 8, 9, and 12 of development (see Materials and Methods for details). Across all

time points and tissues, our mixed H10 and H85 samples increased correlation with the Brain
Span reference earlier than the H100 control in a manner that was dose-dependent (Fig 5A).

A complementary analysis based on a variation of principal component analysis (PCA)

[36,37] replicates these findings. Dimension reduction of the gene expression data allows the

distance between the representation of Brain Span references and the representations of our

experimental data to be interpreted as a dissimilarity metric (see Materials and Methods).

Smoothing across regions for the week 9 reference, we observed that H10 minimizes dissimi-

larity between days 12–16, which is before H85 (days 16–20), which is further before H100

(days 20–24) (Fig 5B). Accelerated correlation to in vivo data was also confirmed through a

similar analysis of annotated brain tissue from the Human Protein Atlas [38,39] (S10 Fig), con-

sistent with a genome-wide neural program that is activated earliest in M100, then significantly

accelerated in H10, followed by moderately earlier in H85, and latest in H100 samples.

While we leave the determination of mechanisms responsible for regulating the develop-

mental clock to future work, comparisons of accelerated genes with curated gene sets allowed

us to speculate on candidate pathways and transcription factors/miRNAs that may be involved

[40–48]. Enrichment of the differences between up-trend/peak times (see Materials and Meth-

ods) identified signaling pathways activated earlier in both H10 and in M100 compared to

H100 samples, including G-protein coupled receptor (GPCR) signaling pathways and

miRNA-regulated pathways MAPK/ERK (MIR4801, MIR4731) [49,50], and PI3K/AKT

[51,52], which may play roles driving developmental rates (S11 Fig and S3 Data). We also iden-

tified developmental regulators of interest, such as NSRF, a master neural developmental
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regulator essential for gastrulation that may also influence the expression of thousands of

genes during development [53–56] and OCT1, an essential regulator of development that plays

crucial roles in the earliest cell fate decisions during embryonic development [57–59], that

may warrant further investigation.

Discussion

In this study, we report for the first time multifaceted effects of interspecies mixing on the dif-

ferentiation of hES cells. Through comprehensive RNA-seq time courses, we uncover that co-

Fig 5. Comparison with Brain-Span regions further demonstrates a dose-response in acceleration effects. (A)

Correlations (Spearman) between fitted trends and Brain-Span data are calculated at three Brain-Span time points and

across the five brain regions represented at all three times. Calculations are performed on a subset of highly dynamic

genes (see Materials and Methods). (B) Dissimilarity (PCA-based distance, see Materials and Methods) between species

mixtures and each of the 5 reference brain regions are computed for each day and smoothed to estimate a continuous

dissimilarity metric over time.

https://doi.org/10.1371/journal.pcbi.1008778.g005
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differentiation of hES cells intermixed with mEpiS cells was sufficient to accelerate compo-

nents of neural gene regulatory programs, and identified genes with roles in neural lineage and

regional identities that were both temporally and differentially expressed. We went on to dem-

onstrate that the acceleration effect was dose-dependent on the starting ratio of interspecies

cells (Fig 4), and that the chimeric samples correlated to in vivo tissue samples earlier in the

differentiation time course than human samples alone (Figs 5 and S10).

Previously, we reported that the faster differentiation of mouse cells compared to human

cells may be in part caused by increased speed of transcriptional upregulation of genes, indi-

cated by steeper slopes in gene expression over time [60]. Consistent with a mouse cell-

induced acceleration of human cell neural differentiation, here we found that the slopes of

peaked genes in human cells co-differentiated with mouse cells were also significantly

increased in accelerated genes compared to control samples (S5B Fig). However, non-peaking,

mostly monotonic, genes whose upregulation began earlier showed lesser slopes in chimeric

samples, despite starting their upward trend significantly earlier and often continuing upwards

for the duration of the time course (S5A Fig). These results may suggest different functional

roles of early-upregulated monotonic genes compared to genes with peak expression profiles.

Indeed, genes with increased slopes and earlier peaks were significantly enriched in processes

of generation of neurons and neuron cell projections, whereas earlier upregulated monotonic

gene trends with lesser slopes were enriched in neuron and synaptic signaling events (Fig 3).

Although we identify differences in gene expression profiles in our time course in this report,

the functional maturity of resulting neurons in control versus chimeric co-differentiation con-

ditions remains to be determined.

The mechanisms regulating developmental tempos and how interspecies co-culture might

affect the differentiation speed of another species remain unknown. Although cells from differ-

ent species exhibit different cell cycle rates, and counting rounds of cell division has been pro-

posed as a possible mechanism for a cell’s ability to track developmental time [61], multiple

reports also suggest that cell division is not required for differentiation in a number of systems

[62–64]. Cell size is also unlikely to regulate developmental speeds as many cell types are of

similar sizes across species with drastically different developmental rates [65]. Another intrigu-

ing possibility is that metabolic rates, sometimes related to cell size, cell cycle, and mammalian

body mass [65], could directly modulate species-specific developmental timing [66–68]. How-

ever, when removed from the body and placed into tissue culture, cells from different species

exhibit similar metabolic rates, indicating variable metabolic rates are unlikely to account for

the species-specific developmental speeds retained in vitro [69,70]. Genome size similarly does

not seem well-correlated to developmental time across mammalian species [71,72].

Recently, elegant in vitro models of mouse and human segmentation clocks with species-

specific timing have been reported and are being used to study factors affecting developmental

time [73–76]. Two recent papers have identified a correlation between some biochemical reac-

tion rates (e.g. protein stability and turnover rates) and developmental tempos [32,77],

although if, or to what extent, intrinsic developmental clocks could be altered was not deter-

mined [77]. Here, we show that cell-cell signaling alone is sufficient to affect the developmental

clock. Further, we identified candidate signaling pathways and regulators activated earlier in

both H10 and in M100 compared to H100 samples that may warrant future investigations (S11

Fig and S3 Data).

Previously, several studies suggested that the intrinsic species-specific developmental timer

was faithfully retained under various conditions, including 2D vs 3D culture methods [6,7,78–

80] and interspecies transplant/implantation studies into adult hosts [1,3,4,7]. While these

studies revealed that non-embryonic interspecies conditions were insufficient to alter develop-

mental time, in this study we demonstrate that factors actively driving an embryonic
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developmental program from pluripotency, rather than a mature host environment, can be

sufficient to affect components of the developmental clock of cells from another species.

The ability of stem cells of different species to resolve conflicting developmental speeds has

significant implications in the development of chimeric embryos for human organ formation

[81]. With a widespread shortage of immunologically-matched organs for patients in need of

organ transplants, the ability to grow transplantable human organs through human stem cell

chimeric contributions to embryos remains an interesting potential therapeutic approach

[82,83]. However, many barriers remain, including poor human chimeric contributions, possi-

bly in part due to the vastly different developmental rates between neighboring cells of differ-

ent species [8,81,84]. In this study, we demonstrate that it is possible for mouse cells to

influence developmental rates and outcomes of neighboring human cells.

Previous reports of successful human cell contributions to chimeric mammalian embryos

[82,85,86], including a recent report of the highest contribution (4%) of human cells in mouse-

human chimeric embryos [87], could imply that human pluripotent stem cells may be induced

to accelerate their developmental rate to match that of their embryonic host species. However,

maturation rates of human cells in interspecies chimeras have not been well characterized.

Our comprehensive time course results in this study indicate that human developmental time

could be accelerated by co-differentiating cells within chimeric embryos, although collateral

impacts in cell lineage outcomes may occur. In the case of neural differentiation in this study,

we did find genes involved in dorsal forebrain development, for example, that were temporally

downregulated in interspecies samples while genes involved in ventral midbrain development

were upregulated, likely, at least in part, due to an earlier and increased exposure to Shh (Figs

3–5) [88–90]. Importantly, mouse and human brains do not share identical brain physiologies,

cell type compositions, nor brain region proportions [91,92], so it is perhaps not surprising

that some altered cell fate choices are made when cells are exposed to signals intended to cre-

ated divergent outcomes. Thus, it will be important to monitor cell outcomes in chimeric

embryos for human organ growth to verify that cell type contributions and organ functions

are not affected.

Although the protocol described here will not have clinical applications due to the xeno-

genic nature of the conditions, it does suggest that the human developmental clock can be

accelerated. Although the specific factors involved and clock mechanism itself remain to be

dissected, this proof-of-concept report provides evidence that the species-specific developmen-

tal clock may be amenable to acceleration for clinically-relevant benefit.

Materials and methods

Ethics statement

All experiments described in this study were approved by the ethics committee with IRB

Approval Number: SC-2015-0010. The H1 hES cells are registered in the NIH Human Embry-

onic Stem Cell Registry with the Approval Number NIHhESC-10-0043.

Cell culture

Human ES and mEpiS cells were cultured and passaged as previously reported[1]. Briefly, H9

cells were cultured in E8 Medium (Thermo Fisher Scientific, USA) on Matrigel-coated plates

and split every 2–3 days with EDTA. To easily identify human from mouse cells, H9 cells were

electroporated with a selectable PiggyBAC-inserted plasmid expressing nuclear-localized

H2B-mCherry driven by the EF1α promoter, and clonally expanded.

EGFP-expressing mEpiS cells derived from C57BL/6-Tg(CAG-EGFP)1Osb/J (JAX Stock

No. 003291) mice and cultured as previously described[1,16,18]. Cell were maintained on low
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passage MEFs and cultured in DMEM/F12 medium (Thermo Fisher Scientific, USA) supple-

mented with 20% Knockout serum replacement (Thermo Fisher Scientific, USA), 0,18 mM B-

mercaptoethanol (Sigma, USA), 1Xnon-essential amino acids (Thermo Fisher Scientific,

USA), 2 mM L-glutamine (Sigma, USA), 7.5 ng/mL activin A (R&D Systems, USA), and 5ng/

mL bFGF (R&D Systems, USA). Cells were passaged by adding TrypLE (Thermo Fisher Scien-

tific, USA) and seeding onto fresh MEFs with 10 μM Y27632 ROCK inhibitor overnight to

increase cell survival (Tocris Bioscience, UK).

Neural induction and sampling for RNA-seq

At day 0 of time courses, H9-H2BmCherry and EGFP-mEpiS cells were washed with PBS

(Thermo Fisher Scientific, USA), treated with TrypLE (Thermo Fisher Scientific, USA) for sin-

gularization, and resuspended in a simple neural differentiation medium consisting of DF3S

(DMEM/F-12, L-ascorbic acid-2-phosphate magnesium (64 mg/L), sodium selenium (14 μg/

L), and NaHCO3 (543 mg/L), Thermo Fisher Scientific, USA), 1XN2 supplement (Thermo

Fisher Scientific, USA), 1XB27 supplement (Thermo Fisher Scientific, USA), and 100ng/mL of

mNoggin (R&D Systems, USA). To aid cell survival, 10 μM Y27632 ROCK inhibitor (Tocris

Bioscience, UK) was added on day 0, and cells were mixed at the indicate mouse-human ratios

and seeded into Matrigel-coated 12-well plates at 2.5X105 cells/well in triplicate. Media in all

wells was replaced with fresh neural differentiation media (without ROCK inhibitor) every day

for the 42 days of differentiation. When cells become over-confluent cells were split 1:3 or 1:6

by EDTA-treatment to avoid disrupting cell-cell interactions.

Flow cytometry, microscopy, and time lapse imaging

Human-mouse cell ratios were established by monitoring red and green fluorescence, respec-

tively, by flow cytometry. Cells were treated with 350μL TryPLE, spun down, and resuspended

in 400 μL FACS buffer (PBS + 5% Bovine Serum Albumin). Cells were analyzed on a BD

FACSCanto II and analyzed using FlowJo 9.3 software (Becton Dickinson & Company, USA).

For all cell sorting experiments, samples were lifted in either TrypLE (Thermo Fisher Scien-

tific, USA) or 1 mg/mL Collagenase/Dispase (Roche), filtered using 40um cell strainers, and

sorted on a BD FACSCanto II (Becton Dickinson, USA) according to red or green channels

for human and mouse cells, respectively. Between 500,000–2,500,000 cells were sorted for each

sample at each time point from day 0 to day 33. All samples pre- and post-sort were kept on

ice or in a 4C water bath prior to lysis in 350uL or 700uL RLT plus buffer (Qiagen, USA) and

kept at -80C for future RNA-seq processing.

All time-lapse microscopy was acquired on a BioStation CT automated imaging system

(Nikon Instruments, Japan). Samples from all conditions were imaged at least every other day

using phase-contract and fluorescence microscopy. For time-lapse movies, cells were acquired

with a 10X magnifying objective every 30 minutes for 6 days of differentiation beginning at

day 1 using phase-contrast, green, and red fluorescence channels. Overlaid movies were com-

piled with CL-Quant software (DRVision, USA) and scale bars and time stamps added using

Premiere Pro (Adobe).

Sample processing and RNA-seq pipeline

For RNA sample collection, samples were washed with 1XPBS (Thermo Fisher Scientific,

USA) and lysed in 700 μL RLT-PLUS buffer (Qiagen, USA), and stored at -80C until further

processing. Total RNA was then purified from 350 μL RLT-Plus Buffer using RNeasy Plus 96

and Micro Kits (Qiagen, Netherlands) and quantitated with the Quant-iT RNA Assay Kit

(Thermo Fisher, USA). RNA was diluted to one hundred nanograms for input. The Ligation-
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Mediated Sequencing (LM-Seq) protocol was used to prepare and index all cDNA libraries

(Hou et al 2015). Final cDNA libraries were quantitated with the Quant-iT PicoGreen Assay

Kit (Thermo Fisher, USA). Twenty-five to forty-eight uniquely indexed samples were pooled

per lane on an Illumina HiSeq 2500 with a single 51 base pair read and a 10 base pair index

read.

A joint hg19/mm10 transcriptome reference was built by appending hg19 or mm10 respec-

tively to the chromosome sequences and gene symbols. Tagging the gene symbols with the ID

of the reference genome ensured easy decomposition of the resulting expression estimates into

mouse and human subsets of species-specific gene expression. Mitochondrial genes were

removed prior to further downstream analysis or normalization due to their inconsistent

abundance across samples.

The sequencer outputs were processed using Illumina’s CASAVA-1.8.2 base calling soft-

ware. Sequences were filtered and trimmed to remove low quality reads, adapters, and other

sequencing artifacts. The remaining reads were aligned to the joint transcriptome using RSEM

version 1.2.3 with bowtie-0.12.9 for the alignment step. After ensuring accurate mapping to

the human/mouse subset of the transcriptome (see below for details), identified by the respec-

tive hg19 and mm10 tags on the gene symbol, the human and mouse subsets of expected

counts were separated for individual analysis.

Mixed species sample quality control

To assess the quality of alignment to the combined human-mouse transcriptome, misalign-

ment rates were quantified in the H100 (pure human) and M100 (pure mouse) samples. In

these cases, transcripts which align to the mouse and human subset of the transcriptome

respectively represent errors of misalignment. Typical misalignment rates across samples

appeared to be well controlled as the majority of H100 samples aligned less than 0.5% of tran-

scripts to mouse genes (median ~0.35%, third quartile ~0.37%). The majority of M100 samples

similarly aligned less than 1.5% of transcripts to human genes (median ~0.53%, third quartile

~1.42%) (S1 Fig).

A few samples (~5%) exhibited high misalignment rates (>5%). For this reason, samples

with unusually low sequencing depth were removed. The filtering criteria considered log10

transformed sequencing depth (within sample sum of total expression) and removed samples

with depth below the median minus 1.5 times the IQR. This procedure removed the majority

of individual samples in H100 and M100 with high alignment error rates. Therefore, misalign-

ment is believed to be primarily a function of, or at least well predicted by, low sequencing

depth (S1 Fig).

A second filter was implemented to remove samples with expression profiles significantly

different from biological replicates of the same time point and temporally neighboring sam-

ples. Normalized data (see below for details) from the top 1000 highest variance genes across

samples within each mixture was reduced to 10 principal components. This number roughly

accounts for the majority of temporal variability based on the variance explained by each com-

ponent. Loadings for each component were expected to follow a smooth curve in time, follow-

ing the portion of the developmental trajectory defined by the principal component. For this

reason, loadings were fitted with a 4th degree spline regressed against time. Studentized residu-

als were tested for being significantly different than the regression curve. A sample level p-

value was derived by testing against the null distribution that the maximum residual across the

10 components (in absolute value) was t-distributed. The method of Benjamini and Hochberg

[93] was used to provide adjusted p-values. A backward elimination and forward selection pro-

cedure was then applied. Specifically, the sample with the smallest adjusted p-value below 1e-
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05 was removed and the process repeated until no samples had an adjusted p-value below 1e-

05 (if a sample is the last remaining observation from a particular time point, it was not consid-

ered for removal regardless of its adjusted p-value). Samples were then added back in one-at-

a-time in the order of removal. Any with adjusted p-values above 1e-05 were retained for fur-

ther analysis, and otherwise were rejected permanently. The filtered dataset was renormalized

prior to analysis.

Empirically, this procedure was shown to remove several remaining high-error samples

from M100 without removing high sequencing depth samples across species mixture groups

(S1 Fig).

Normalization of mixed species samples

We used a modified application of the scran[94] method for normalization of the expected

count data. Human and mouse aligned transcripts were normalized separately, and so relative

levels of normalized expression were not directly comparable between species. Consider the

human mixtures (H10, H85, or H100); mouse mixtures were normalized identically. When

biological replicates existed for a time point, scran was first applied to normalize these samples.

Average normalized expression of biological replicates was then normalized, again via scran,

across both time points and mixtures.

Segmented regression and gene-trend classification

The dynamics of gene expression through time were defined by a segmented regression imple-

mented using the Trendy[24] package. Trendy automatically selects the optimal number of

segments (up to a maximum of 5 in this application) and requires that each segment contain a

minimum number of samples (5 in this application). Additionally, an automatic significance

test on segment slopes classifies segments as increasing, decreasing, or flat. As the test is itself

somewhat conservative, we used a significance threshold of 0.1 (default) to determine these

slope classifications. Trendy was then applied to all genes for which the 80% quantile of nor-

malized expression is above 20 for at least one mixture.

Following regression, the segment trend classifications were used to define sets of genes by

patterns of behavior relative to a reference dataset (H100 in the majority of the published anal-

ysis). Genes were classified into subsets of accelerated or differentially expressed (DE) relative

to the reference dataset according to the following criteria:

1. Accelerated by Early Up (EU):

a. Both the test gene and the reference gene contain an increasing segment which is not

preceded by a decreasing segment. If multiple such segments exist, only the first is

considered.

b. The increasing segment in the test gene must start at least 2 days before the increasing

segment in the reference gene.

c. The slope of the increasing segment in the test gene must be at least 5 times the slope of

the (non-increasing) reference segment which contains the start time of the test increas-

ing segment (typically the segment just prior to the increasing reference segment). This

filter removes genes for which the reference segment containing the start time is labeled

as flat by Trendy (slope is not significantly different from 0), but is fitted with an up-

trending slope. This can happen in instances where the reference segment is short and

so does not contain enough sample points for the up-trend to be labeled as significant.

2. Accelerated by Early Peak (EP):
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a. Both the test gene and the reference gene contain a peak defined by an increasing seg-

ment followed by a flat or decreasing segment. The peak itself is defined by the time of

the breakpoint between these two segments.

b. The peak in the test gene must be at least 2 days before the peak in the reference gene.

3. DE Up:

a. The maximum fitted value of the test gene plus 1 must be at least 3 times the maximum

fitted value of the reference gene plus 1. The inclusion of the plus 1 bias to each side pre-

vents very lowly expressing genes from appearing DE due to small differences in fitted

values which are only multiplicatively large due to the low overall expression.

Genes in H10 or H85 matching these acceleration/up-regulation criteria were denoted as

“Early” or “Up” respectively.

We also ran this classification denoting H100 as the test datasets. When genes matched the

criteria in this case, we denoted the corresponding gene in the reference dataset, H10 or H85,

“Late” or “Down” according to the specific criteria met.

Acceleration factor estimation

Point estimates of the relative acceleration of one dataset compared to another were computed

from genes which either peak in both datasets or trend up in both datasets. For simplicity, con-

sider the case of H10 relative to H100. From peaking/up-trending genes, the event time was

calculated: time of peak or time of the start of up-trend respectively. When a gene both peaks

and trends up, the peak was preferred as it was assumed to be a more accurate estimate of regu-

latory changes. Up-trending genes (without peaks) which start up-trending in either H10 or

H100 on day 0 were discarded. Point estimates were then calculated as the ratio of the event

time in H100 to the event time in H10. In this way, a ratio of 2 would indicate that, at the time

of the even in H10, that gene is accelerated to be 2x as fast as the gene in H100. Point estimates

are computed across pairs of datasets.

To compute a continuous estimate of acceleration factors, the above point estimates are

smoothed using spline regression (linear model in R with a basis spline under default parame-

ters) against event time in the test (e.g., H10) dataset. It should be noted that these acceleration

factors are best interpreted as estimates of the relative acceleration of the genes which are active

at that time point. Acceleration factors of 1 therefore identify time points, and thereby sets of

genes active at that time point, which are relatively unchanged between the conditions.

Gene set enrichment

Accelerated and DE gene sets were further characterized through testing for GO term enrich-

ment. The topGO[95] package and org.Hs.eg.db[96] dataset were used to perform enrichment

testing on GO terms belonging to the biological processes (BP) ontology. The set of all genes

on which Trendy segmented regression was run was used as the background set (see above for

subset definition). Significant p-values were then FDR corrected[93] prior to analysis.

Pathway and transcription factor/miRNA enrichment was performed in a similar manner.

In these cases, the piano[97] package was used to accommodate non-binary statistics. Specifi-

cally, enrichment was performed on the difference between up-trend or peak events between a

test dataset (e.g., H10) and a reference dataset (e.g., H100). When available, the difference was

calculated from the time of peaks in each dataset. Absent peaks, the difference was calculated

from the time of the start of up-trends. Genes without either shared peaks or shared up-trends

were given a difference of 0.
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Enrichment for these differences were performed against two collections of gene sets from

the MSigDB database[40,41]. The first was a curated collection of pathways, including KEGG

[42–44], Biocarta[45], and Reactome[46] sets of gene pathways. The second was a collection of

miRNAs[47] and transcription factors[48] (TFs) and downstream regulated genes. Enrich-

ment was performed with the runGSA function from the piano package (4e6 permutations,

minimum gene set size of 1, maximum gene set size of 250).

Sorted sample quality control validation

Sorted samples, sH100, sH10, sM90, and sM100 were similarly aligned to a combined tran-

scriptome (as described above) to provide a validation dataset. One data point was removed

for low sequencing depth (day 29 from sH10, fewer than 1e3 expected counts where typical

sorted samples had greater than 1e6 expected counts) and all others were retained.

Empirical misalignment rates were computed for sH100 and sH10 as the fraction of

expected counts aligned to the mouse portion of the transcriptome; median values across days

were 0.53% and 2.23% respectively.

Active misaligned genes were identified as genes in the off-target portion of the reference

transcriptome (e.g., mouse genes for sH10) with an 80% quantile of expected counts� 20.

Enrichment following the above-described procedure was performed on these gene sets.

Normalization was performed using the calculateSumFactors function in scran (default

parameters) to compute scale factors which expected counts were then divided by. As with the

other data, Trendy was used to perform segmented regression (maximum 4 breakpoints, mini-

mum 2 points per segment, p-value threshold 0.1). Output from Trendy was used to classify

genes as EU/LU. Peak analysis was omitted as the lower resolution of the data prevent robust

identification of peaks (e.g., visually identifiable peaks are not significant under Trendy regres-

sion). Acceleration factor estimation was computed from these shared up-trend genes in the

above-described manner, and enrichment was performed on EU genes, again as above.

Correlation analysis

Expression similarity across time points, species mixtures, and external reference datasets was

assessed through gene expression correlations. To ensure that computed correlations were rep-

resentative of the temporal gene dynamics being studied, correlations were computed on only

a subset of genes. Highly dynamic genes were subset from all Trendy-fit genes by calculating

the coefficient of variation of fitted values. The highest CV across species mixtures was then

retained as a measure of each gene’s level of temporal dynamics, and the top 2000 most

dynamic (highest CV) genes were subset for analysis.

Relative similarity of species-mixtures was computed as the correlation matrix (spearman

type) between time points where within-day biological replicates were averaged together to

obtain a single day expression value.

Similar calculations of correlations between the species-mixture data and two outside data-

sets, the BrainSpan atlas of the developing human brain[34,35] and the Human protein atlas

[38,39], were conducted. In these cases, the genes used to calculate correlations were the union

of the top 1500 most dynamic genes from H10/H85/H100 and the top 1500 most dynamic

genes (highest CV across cell-types) from the relevant in vivo reference dataset.

Correlation-based acceleration

To use in vitro correlation heatmaps to estimate acceleration factors, we adapted a technique

described in Rayon et al. 2020[32]. Specifically, we performed a version of weighted regression

whereby the weights derive from the correlation values. However, as the in vitro data was

PLOS COMPUTATIONAL BIOLOGY Chimeric conditions affect human stem cell developmental rates

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008778 March 1, 2021 18 / 27

https://doi.org/10.1371/journal.pcbi.1008778


observed to not have a constant acceleration factor, we performed segmented regression with a

fixed breakpoint at day 16. The specific function to minimize was then:

min
y�

X

i;j
corðECti

;ECtj
Þ

2dist?ððti; tjÞjy
�
Þ

2
n o

Where EC denotes expected counts (correlation is spearman type, so normalization in unneces-

sary), ti and tj denote days in the reference and test datasets respectively (e.g., H100 and H10),

and dist?() denotes the perpendicular distance to the current estimate of the segmented regres-

sion given regression coefficients θ� from the provided time pair (coordinates on the correlation

heatmap). Minimization was conducted in R using the optim function (L-BFGS-B method,

upper and lower bounds of 10 and 1/10 respectively, segmented regression fixed to pass through

(0, 0), initial slopes set to 1 in each segment). Standard errors for coefficient estimates were gen-

erated by bootstrapping solutions from random samples (with replacement) of the input genes.

Regression slopes then defined the desired acceleration factor up to an inversion.

In vivo dissimilarity

Dissimilarity between in vitro data (average across biological replicates for a given day and spe-

cies mixture) and in vivo references was computed from highly dynamic genes (see criteria

above in Correlation analysis) using a variation of principal component analysis (PCA). To

accommodate the distributional properties of these sequencing data, as well as the properties of

the reference data, a variation on PCA, glmpca[36,37], which uses a negative binomial model

residuals was used to perform dimension reduction to 6 dimensions (6 principal components).

Dissimilarity was then computed as the distance (Euclidian) between an in vitro data point in

the low dimensional space and the corresponding low dimensional representation of a reference

in vivo data point. glmpca was run with the negative binomial family, fisher optimizer, penalty

of 10, minimum iterations of 400, and was parameterized by size factors derived from Scran to

normalize the (unnormalized) expected counts from the in vitro data and the in vivo reference.

Note that the BrainsSpan data were available as reads per kilobse million (rpkm) rather

than the expected counts (EC) used in this analysis. For this reason, analysis on the BrainSpan

data was conducted using fpkm from the in vitro data as the best available analog.

Deconvolution analysis

Deconvolution analyses to estimate proportions of cell-types in the observed bulk sequencing

data were performed using the music_prop function (default parameters) from the MuSiC[31]

package with the CoDEx database of annotated developing brain cells[30] as reference. Within

species-mixture, estimated proportions were smoothed across biological replicates and days

using the DirichletReg function from the DirichletReg package[98] and a basis spline (df = 4).

R package versions

All calculations were performed using R[99] (v3.6.2) and major packages: Trendy[24] (v1.6.4),

scran[94] (v1.12.1), topGO[95] (v2.36.0), org.Hs.eg.db[96] (v3.8.2), org.Mm.eg.db[100]

(v3.11.4), ggplot2[101] (v3.3.0), MuSiC[31] (v0.1.1), piano[97] (v2.4.0), DirichletReg[98]

(v0.7.0), glmpca[37] (v0.2.0).

Supporting information

S1 Data. Summaries of expression characteristics for genes classified as exhibiting differ-

ential timing or expression in H10.

(XLSX)
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S2 Data. Summaries of expression characteristics for genes classified as exhibiting differ-

ential timing or expression in H85.

(XLSX)

S3 Data. Gene set enrichment significance levels for pathway and TF/miRNA enrichment

in H10 and M100 orthologous genes relative to H100. As enrichment is performed on tim-

ing differences in peaks/starts of early-up, enrichment results are directional, providing the

significance that terms are enriched for accelerated/decelerated genes.

(XLSX)

S1 Movie. 10% H9-H2BmCherry (red) cells mixed with 90% EGFP+ mouse EpiS cells

(green) were seeded in neural differentiation medium and were imaged from days 1–7

every 30 mins using a BiostationCT imaging system (Nikon, Japan). Media replacement

occurred approximately every 24 hours. Images with focused condensation were removed.

Overlaid channels of microscopy images were compiled into the movie with CL-Quant soft-

ware (DRVision, USA). Scale bars = 200 μm.

(MP4)

S2 Movie. Time-lapse movie of a second field of view from the identical time course

described in S1 Movie, played at 3x the frame rate.

(MP4)

S1 Fig. Quality control filtering removes samples with uncharacteristically low sequencing

depth. (A) Observed per-sample misalignment rates for pure human (H100)/pure mouse (M100)

mixtures. (B) Observed log10 total sequencing depth summed across sequences aligned to either

human or mouse. Most samples removed from analysis (blue) are below the depth filtering thresh-

old (dashed line) (see Materials and Methods). Otherwise, the M100 results suggest that the higher-

depth removed samples are those with higher rates of misalignment (top/middle, right column).

(TIF)

S2 Fig. Seeded human cell proportions increase over time. (A) Observed percent of human

cells in H10 mixture out to 16 days. (B) FACS plots intensities used to compute relative pro-

portions of human and mouse cells in H10 mixture.

(TIF)

S3 Fig. Selected gene expression plots show characteristic differences between H100, H10,

and M100. (A) Early-Up classified fitted trend lines (solid) are plotted for selected genes with

overlaid normalized observed data (points). (B) Similar results are shown for selected Early-

Peak classified genes (green = M100, pink = H10, blue = H100).

(TIF)

S4 Fig. Enrichment of late-up (LU) and late-peak (LP) genes fail to demonstrate a pattern

of neuron development-related terms. (A) Top GO terms enriched for LU genes in H10

compared to H100 with corresponding FDR corrected p-values (log 10 scale). (B) Top GO

terms enriched for LP genes in H10 compared to H100 with corresponding FDR corrected p-

values (log 10 scale).

(TIF)

S5 Fig. Up-trends show defining shifts in H10 among EU and EP genes. (A) EU genes from

each of the listed GO terms are plotted. The start of uptrends between H10 and H100 are plot-

ted (top left) with KS testing sowing significant left shift corresponding to significantly earlier

trend starts in H10. Slope ratio (ratio of H10 up-trend slope over H100 up-trend slope)
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densities are plotted (top right) on the log scale for top enriched GO terms with KS testing

showing a significant left-shift corresponding to significantly reduced slopes in H10 among

these genes. Densities of the duration of up-trends (bottom left) show significantly longer (KS

test) trends for H10 (red) than H100 (blue). (B) EP genes from each of the listed GO terms are

plotted. The timing of peaks are plotted (top left) with KS testing showing significant left shift

corresponding to significantly earlier peaks in H10. Similar results for EP genes as the above

EU genes show significantly earlier up-trend starts, significant increases in slope in H10, and

reduced duration of up-trends (pink = H10, blue = H100).

(TIF)

S6 Fig. Expression from sorted co-culture cells fails to show misalignment bias. (A) Empiri-

cal misalignment for sH100 and sH10 are plotted by day. (B) Misaligned genes for the sH10

and sM90 (mouse and human aligned reads respectively) are subset. Enrichment testing is per-

formed on active genes, defined as those with 80% quantile of observed expression of at least

20 expected counts, and top terms are plotted against FDR corrected p-values (log 10 scale).

(C) Expression from selected genes which are accelerated in the H10-H100 comparison are

plotted for sH100, sH10, and sM100, and show similar acceleration effects in this sorted con-

trol dataset. (D) EU/LU genes are tabulated for sH10. (E) Continuous acceleration factors are

calculated for sH10 and top EU enriched GO terms are plotted.

(TIF)

S7 Fig. Analysis of co-cultured mouse expression suggests deceleration of mouse gene expres-

sion patterns. (A-B) Genes identified as shared up-trends (excluding those which start to trend up

on day 0 in both M100 and M15) or shared peaks between M15 and M100 are classified as either

early, late, or unchanged, and then tabulated. (C) Shared up-trending and peaking genes are used

to estimate a continuous acceleration factor for M15 relative to M100 in an identical manner to

the human data. The median acceleration factor (over the first 16 days) of 0.894 indicates a decel-

eration in gene activity. (D-G) Top terms enriched for EU, LU, EP, and LP genes respectively are

plotted against FDR corrected p-values. Neural associated terms are either unique to the late cate-

gory or are more significant in that group, suggesting a deceleration effect specific to neural genes.

(TIF)

S8 Fig. Up/down regulation of genes in H10 show region specific patterns. Relative expres-

sions of curated genes in regional/functional groups are plotted on a normalized -1 to 1 scale.

Gene expression (within gene) is normalized such that the maximum difference in fitted

expression (in H100 or H10) equals 1. Relative expressions are then calculated as the difference

between H10 and H10 where higher H10 values tend towards 1 (red), lower H10 values tend

towards -1 (blue), and equivalent values tend towards 0 (black).

(TIF)

S9 Fig. Deconvolution analysis of mixed-species data supports dose-response effect. Expres-

sion data for H100, H85, and H10 respectively are deconvolved relative to the CoDEx reference

dataset of annotated developing brain single cell expression. Deconvolution produces estimates

of the relative proportions of reference cell-types present in the bulk data. Estimates are

smoothed against time and plotted for each of H100 (top), H85 (middle), and H10 (bottom).

(TIF)

S10 Fig. Correlation with Human Protein Atlas (HPA) data further demonstrates dose

response behaviors. Correlations (Spearman) between fitted trends HPA data are calculated

across the thirteen HPA regions. Calculations are performed on a subset of highly dynamic

genes (see Materials and Methods). Dissimilarity (PCA-based distance, see Materials and
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Methods) between species mixtures and each of 6 HPA cell-types are computed for each day

and smoothed to estimate a continuous dissimilarity metric over time.

(TIF)

S11 Fig. Candidate pathways, transcription factors (TFs), and miRNAs to mediate the

observed acceleration. (A) Top pathways (left) and TFs/miRNAs (right) enriched for accelera-

tion in H10 are plotted against their FDR corrected p-values. (B) Similar analysis is performed

on M100 orthologs compared to H100 expression. Prior to plotting top pathways (left) and

TFs/miRNAs (right), enriched terms are subset to include only those which are also significant

(FDR corrected p-value� 1e-2) in the above H10 comparison.

(TIF)
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72. Árnason Ú, Lammers F, Kumar V, Nilsson MA, Janke A. Whole-genome sequencing of the blue whale

and other rorquals finds signatures for introgressive gene flow. Sci Adv. 2018;4. https://doi.org/10.

1126/sciadv.aap9873 PMID: 29632892

73. Matsumiya M, Tomita T, Yoshioka-Kobayashi K, Isomura A, Kageyama R. Es cell-derived presomitic

mesoderm-like tissues for analysis of synchronized oscillations in the segmentation clock. Dev. 2018;

145. https://doi.org/10.1242/dev.156836 PMID: 29437832

74. Chu LF, Mamott D, Ni Z, Bacher R, Liu C, Swanson S, et al. An In Vitro Human Segmentation Clock

Model Derived from Embryonic Stem Cells. Cell Rep. 2019; 28: 2247–2255.e5. https://doi.org/10.

1016/j.celrep.2019.07.090 PMID: 31461642

75. Matsuda M, Yamanaka Y, Uemura M, Osawa M, Saito MK, Nagahashi A, et al. Recapitulating the

human segmentation clock with pluripotent stem cells. Nature. 2020; 580: 124–129. https://doi.org/10.

1038/s41586-020-2144-9 PMID: 32238941

76. Diaz-Cuadros M, Wagner DE, Budjan C, Hubaud A, Tarazona OA, Donelly S, et al. In vitro characteri-

zation of the human segmentation clock. Nature. 2020; 580: 113–118. https://doi.org/10.1038/s41586-

019-1885-9 PMID: 31915384

77. Matsuda M, Hayashi H, Garcia-Ojalvo J, Yoshioka-Kobayashi K, Kageyama R, Yamanaka Y, et al.

Species-specific segmentation clock periods are due to differential biochemical reaction speeds. Sci-

ence (80-). 2020; 369: 1450–1455. https://doi.org/10.1126/science.aba7668 PMID: 32943519

78. Marchetto MC, Hrvoj-Mihic B, Kerman BE, Yu DX, Vadodaria KC, Linker SB, et al. Species-specific

maturation profiles of human, chimpanzee and bonobo neural cells. Elife. 2019; 8: e37527. https://doi.

org/10.7554/eLife.37527 PMID: 30730291

79. Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, et al. Cerebral organoids

model human brain development and microcephaly. Nature. 2013; 501: 373–379. https://doi.org/10.

1038/nature12517 PMID: 23995685

80. Kelava I, Lancaster MA. Stem Cell Models of Human Brain Development. Cell Stem Cell. 2016; 18:

736–748. https://doi.org/10.1016/j.stem.2016.05.022 PMID: 27257762

81. De Los Angeles A, Pho N, Redmond DE. Generating human organs via interspecies chimera forma-

tion: Advances and barriers. Yale J Biol Med. 2018; 91: 333–342. PMID: 30258320

PLOS COMPUTATIONAL BIOLOGY Chimeric conditions affect human stem cell developmental rates

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008778 March 1, 2021 26 / 27

https://doi.org/10.1016/0092-8674%2886%2990843-3
https://doi.org/10.1016/0092-8674%2886%2990843-3
http://www.ncbi.nlm.nih.gov/pubmed/3948247
https://doi.org/10.1016/s0960-9822%2806%2900060-1
http://www.ncbi.nlm.nih.gov/pubmed/9016704
https://doi.org/10.1006/dbio.1999.9524
https://doi.org/10.1006/dbio.1999.9524
http://www.ncbi.nlm.nih.gov/pubmed/10642800
https://doi.org/10.1016/0896-6273%2891%2990053-3
http://www.ncbi.nlm.nih.gov/pubmed/1901716
https://doi.org/10.1073/pnas.0611235104
http://www.ncbi.nlm.nih.gov/pubmed/17360590
https://doi.org/10.1890/03-9000
https://doi.org/10.1098/rspb.2010.1056
http://www.ncbi.nlm.nih.gov/pubmed/20798111
https://doi.org/10.1242/dev.131110
https://doi.org/10.1242/dev.131110
http://www.ncbi.nlm.nih.gov/pubmed/30275240
https://doi.org/10.1152/ajpregu.00568.2006
https://doi.org/10.1152/ajpregu.00568.2006
http://www.ncbi.nlm.nih.gov/pubmed/17234960
https://doi.org/10.1016/0303-2647%2894%2990033-7
http://www.ncbi.nlm.nih.gov/pubmed/8043754
https://doi.org/10.1016/j.ygeno.2013.09.002
http://www.ncbi.nlm.nih.gov/pubmed/24055950
https://doi.org/10.1126/sciadv.aap9873
https://doi.org/10.1126/sciadv.aap9873
http://www.ncbi.nlm.nih.gov/pubmed/29632892
https://doi.org/10.1242/dev.156836
http://www.ncbi.nlm.nih.gov/pubmed/29437832
https://doi.org/10.1016/j.celrep.2019.07.090
https://doi.org/10.1016/j.celrep.2019.07.090
http://www.ncbi.nlm.nih.gov/pubmed/31461642
https://doi.org/10.1038/s41586-020-2144-9
https://doi.org/10.1038/s41586-020-2144-9
http://www.ncbi.nlm.nih.gov/pubmed/32238941
https://doi.org/10.1038/s41586-019-1885-9
https://doi.org/10.1038/s41586-019-1885-9
http://www.ncbi.nlm.nih.gov/pubmed/31915384
https://doi.org/10.1126/science.aba7668
http://www.ncbi.nlm.nih.gov/pubmed/32943519
https://doi.org/10.7554/eLife.37527
https://doi.org/10.7554/eLife.37527
http://www.ncbi.nlm.nih.gov/pubmed/30730291
https://doi.org/10.1038/nature12517
https://doi.org/10.1038/nature12517
http://www.ncbi.nlm.nih.gov/pubmed/23995685
https://doi.org/10.1016/j.stem.2016.05.022
http://www.ncbi.nlm.nih.gov/pubmed/27257762
http://www.ncbi.nlm.nih.gov/pubmed/30258320
https://doi.org/10.1371/journal.pcbi.1008778


82. Wu J, Platero-Luengo A, Sakurai M, Sugawara A, Gil MA, Yamauchi T, et al. Interspecies Chimerism

with Mammalian Pluripotent Stem Cells. Cell. 2017; 168: 473–486.e15. https://doi.org/10.1016/j.cell.

2016.12.036 PMID: 28129541

83. Das S, Koyano-Nakagawa N, Gafni O, Maeng G, Singh BN, Rasmussen T, et al. Generation of human

endothelium in pig embryos deficient in ETV2. Nat Biotechnol. 2020; 38: 297–302. https://doi.org/10.

1038/s41587-019-0373-y PMID: 32094659

84. Masaki H, Kato-Itoh M, Umino A, Sato H, Hamanaka S, Kobayashi T, et al. Interspecific in vitro assay

for the chimera-forming ability of human pluripotent stem cells. Dev. 2015; 142: 3222–3230. https://

doi.org/10.1242/dev.124016 PMID: 26023098

85. Mascetti VL, Pedersen RA. Human-Mouse Chimerism Validates Human Stem Cell Pluripotency. Cell

Stem Cell. 2016; 18: 67–72. https://doi.org/10.1016/j.stem.2015.11.017 PMID: 26712580

86. Yang Y, Liu B, Xu J, Wang J, Wu J, Shi C, et al. Derivation of Pluripotent Stem Cells with In Vivo

Embryonic and Extraembryonic Potency. Cell. 2017; 169: 243–257.e25. https://doi.org/10.1016/j.cell.

2017.02.005 PMID: 28388409

87. Hu Z, Li H, Jiang H, Ren Y, Yu X, Qiu J, et al. Transient inhibition of mTOR in human pluripotent stem

cells enables robust formation of mouse-human chimeric embryos. Sci Adv. 2020; 6: 1–17. https://doi.

org/10.1126/sciadv.aaz0298 PMID: 32426495

88. Placzek M, Furley A. Neural development: Patterning cascades in the neural tube. Curr Biol. 1996; 6:

526–529. https://doi.org/10.1016/s0960-9822(02)00533-x PMID: 8805265

89. Dale JK, Vesque C, Lints TJ, Sampath TK, Furley A, Dodd J, et al. Cooperation of BMP7 and SHH in

the induction of forebrain ventral midline cells by prechordal mesoderm. Cell. 1997; 90: 257–269.

https://doi.org/10.1016/s0092-8674(00)80334-7 PMID: 9244300

90. Lupo G, Harris WA, Lewis KE. Mechanisms of ventral patterning in the vertebrate nervous system.

Nat Rev Neurosci. 2006; 7: 103–114. https://doi.org/10.1038/nrn1843 PMID: 16429120

91. Hodge RD, Bakken TE, Miller JA, Smith KA, Barkan ER, Graybuck LT, et al. Conserved cell types with

divergent features in human versus mouse cortex. Nature. 2019; 573: 61–68. https://doi.org/10.1038/

s41586-019-1506-7 PMID: 31435019
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