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ABSTRACT: Drilling boreholes for the exploration of groundwater incurs high
cost with potential risk of failures. However, borehole drilling should only be
done in regions with a high probability of faster and easier access to water-
bearing strata, so that groundwater resources can be effectively managed.
However, regional strati-graphic uncertainties drive the decision of the optimal
drilling location search. Unfortunately, due to the unavailability of a robust
solution, most contemporary solutions rely on physical testing methods that are
resource intensive. In this regard, a pilot study is conducted to determine the
optimal borehole drilling location using a predictive optimization technique that
takes strati-graphic uncertainties into account. The study is conducted in a
localized region of the Republic of Korea using a real borehole data set. In this
study we proposed an enhanced Firefly optimization algorithm based on an
inertia weight approach to find an optimal location. The results of the
classification and prediction model serve as an input to the optimization model
to implement a well-crafted objective function. For predictive modeling a deep learning based chained multioutput prediction model
is developed to predict groundwater-level and drilling depth. For classification of soil color and land-layer a weighted voting
ensemble classification model based on Support Vector Machines, Gaussian Naiv̈e Bayes, Random Forest, and Gradient Boosted
Machine is developed. For weighted voting, an optimal set of weights is determined using a novel hybrid optimization algorithm.
Experimental results validate the effectiveness of the proposed strategy. The proposed classification model achieved an accuracy of
93.45% and 95.34% for soil-color and land-layer, respectively. While the mean absolute error achieved by proposed prediction model
for groundwater level and drilling depth is 2.89% and 3.11%, respectively. It is found that the proposed predictive optimization
framework can adaptively determine the optimal borehole drilling locations for high strati-graphic uncertainty regions. The findings
of the proposed study provide an opportunity to the drilling industry and groundwater boards to achieve sustainable resource
management and optimal drilling performance.

■ INTRODUCTION
Drilling boreholes for groundwater exploration and acquisition
incurs high costs bearing significant risks and failures; therefore,
the need for finding optimal borehole drilling locations cannot
be overemphasized. Due to increased population, agriculture,
industry, and urbanization, the rate at which groundwater is
being pumped out has increased dramatically. The reliance on
groundwater by around a third of the world’s population has
contributed to its gradual depletion. Nevertheless, groundwater
is not an infinite resource, recognizing its potential is critical to
ensuring its future usage. For these reasons drilling companies
require a robust solution for finding the best borehole drilling
location to extract water. Researchers demonstrate that1

inappropriate selection and placement of boreholes account
for a billion dollar increase in allocated budgets. Due to high cost
many drilling companies undergo a third-rate investigation for

finding an appropriate drilling location, resulting in million-
dollar resource losses to companies per annum. Drilling
engineers commonly conduct site investigation data and use
prior knowledge of local geology for an optimal drilling location
search; however, this method might face serious difficulties in
cases when there is a lack of sufficient data.2 Moreover it is
challenging to directly examine, characterize, or measure the
subsurface environment due to its heterogeneity and complex-
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ity. Subsurface heterogeneity can have a significant influence on
groundwater acquisition. Subsurface heterogeneity refers to
variations in the hydro-geological properties of subsurface
materials, such as differences in rock type, porosity, and
permeability. The geological conditions and the formation
structures have a significant impact on the water-storing capacity
of a rock. For instance in the case of granite, a crystalline rock,
there is almost no room for water storage. River gravel and
limestone, on the other hand, are examples of loose soils that can
retain and release significant volumes of groundwater. The
permeability of a formation determines how quickly water can
move through it, and this in turn is affected by the pore and void
sizes and the connectivity between them. Additionally top-
ography, climate variability, land use, vegetation parameters,
hydrology, and human activities are just few of the many factors
that can influence groundwater. In general, subsurface
heterogeneity can affect groundwater acquisition in the
following ways:

(1) Influencing the location of groundwater. Subsurface
heterogeneity can cause variations in the location of ground-
water, with some areas having higher or lower levels of
groundwater than others. This can make it difficult to predict
the location of groundwater resources and can affect the
feasibility of drilling a borehole in a particular location.

(2) Affecting the quantity of groundwater. Subsurface
heterogeneity can influence the amount of groundwater that is
available in a particular area. In some cases, subsurface
heterogeneity may cause variations in the porosity and
permeability of subsurface materials, leading to differences in
the amount of groundwater that can be stored and extracted.
The potential of the groundwater is evaluated based on the
geological and hydro-geological circumstances, and in accord-
ance the required drilling resources, suitable rig types and
budgets are suggested. Overall, subsurface heterogeneity can

have a significant influence on groundwater acquisition, and it is
important to consider these factors when selecting a location for
a borehole and assessing the potential for groundwater
extraction.

There are a number of approaches for the determination of
drilling location. Recently geographical information systems
(GIS) and remote sensing methods have become important
tools for optimal drilling sites for exploration and management
of groundwater resources. The adaption of a GIS based solution
is attributed to their ability to analyze massive volumes of spatial
data. Besides physical and nonphysical testing methods, the
research on groundwater extraction and optimal bore-well
placement is mainly divided into two categories, data-driven3

and knowledge-based.4 The former method is based on
historical data, while the latter relies on expert opinions.
Statistical models and data-mining based approaches are
subtypes of data-driven methods. Traditional statistical methods
and machine learning methods often employ bivariate and
multivariate methods.5 In recent years, numerous data mining
techniques have been successfully applied to address complex
real-world problems. Finding an optimal drilling site through
machine learning methods brings considerable financial gains by
accurately modeling down-hole conditions.6 Example solutions
for modeling groundwater and hydro-geological problems
include Support Vector Machine,7 Adaptive Neuro-Fuzzy
Inference System (ANFIS),8 the Artificial Neural Network
(ANN),9 Boosted Regression Tree (BRT),10 Adaptive Boosting
(Ada-Boost), Naive Bayes (NB),11 and the Convolution Neural
Network (CNN).12 In addition, they find extensive application
in sectors like land, flood, and soil erosion. Likewise, their
adaption in geo-engineering problems have proven to be a
substantial advantage. Meta-heuristic optimization has been
recently adapted by scientists for use in hydro-geological
contexts.13 In order to find optimal parameters, certain meta-

Figure 1. Overview of subsurface environment for groundwater extraction.
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heuristic algorithms are employed to tune parameters of
machine learning models.

Unfortunately, the scope of existing studies is limited because
of model parameters and data set accuracy. While manually
tuning model parameters and hyper-parameters or using default
values often results into poor generalization ability, the
appropriate selection of model parameters and relevant features
is critical for borehole location. Both of these criteria influence
the dependability and precision of practical models. Till now
there is no quantitative or objective method for selecting the
right locations taking into account strati-graphic uncertainty.
Clearly, there is a dire need to devise a mechanism for finding an
optimal drilling location for groundwater extraction.14

2. RELATED WORK
This section presents an overview of existing solutions for
determination of optimal borehole locations for groundwater
extraction and potential mapping. Finding an optimal borehole
location is highly desirable to meet the diversified needs of safe
drinking water and productive drilling operations.15 Knowledge
about regional subsurface features, such as the spatial variability
of soil at a given borehole location, is crucial for the selection of
the drilling site.16

The down-hole environment can have a significant influence
on the success of bore-well drilling operations. High temper-
atures and pressures can cause damage to drilling equipment and
decrease its efficiency, while complex geology can make it
difficult to navigate the well bore and maintain a stable borehole.
Additionally, the down-hole environment can affect the choice
and performance of drilling fluids, which are used to cool and
lubricate the drill bit and remove cuttings from the well bore.
Careful planning and attention to the down-hole environment
can help ensure the success of bore-well drilling operations.
Figure 1 illustrates the down-hole environment for acquisition of
groundwater. The figure presents an overview of geological
conditions within a well bore. A down-hole environment refers
to the conditions and surroundings within a borehole or well. It
is a challenging environment to work in, as it can be difficult to
access and operate equipment at such depths, and the conditions
can be harsh and unpredictable.

Groundwater is a scarce resource that plays a vital role in
fostering economic development. In addition to providing
irrigation for over 278.8 million acres of agriculture, ground-
water supplies drinking water to over two billion people.17

Contemporary methods for determining the optimal borehole
location rely on a predictive modeling of hydro-geological
features.18 Predictive analytics facilitate the drilling companies in
making the right decisions.19 One of themost successful ways for
managing groundwater is determination of accurate ground-
water levels. In this context accurate mapping of the ground-
water level is essential for water resource management.
Groundwater level prediction models can help monitor the
water level and make informed decisions. The knowledge
enables the drilling companies to discover and mitigate issues
such as water outages, pump failure, and factors impacting the
geographic distribution of groundwater. Machine Learning
techniques have gained enormous attention in the recent past20

owing to their applicability across vast domains. For instance,21

modeled groundwater using ANN, K-nearest neighbors and
Classification and Regression trees (CART). Article22 devel-
oped a CNN-LSTMmodel for the predicting groundwater level.
Similarly, in ref 23 the drilling rate of penetration (ROP) is
predicted using ANN. Ensemble learning techniques are a type

of machine learning in which multiple models are trained to
solve the same problem and their predictions are combined to
produce amore accurate solution. Ensemble learning techniques
are also widely adopted across wide application areas.24 Article
25 proposed an optimized NN based solution for predicting
circulation loss. The performance of ensemble models can be
further improved using an optimal weight assignment scheme.
To achieve this objective, ref 26 proposed a Fuzzy rule-based
weight assignment scheme. while some of the studies reported
the use of Meta-heuristics and probabilistic modeling frame-
works for assigning weights to base models. The research work20

developed a weighted voting ensemble classification model
using Differential Evolution (DE) to categorize land layer and
soil color. Meta-heuristics are algorithms that can be used to
solve optimization problems, including the search for optimal
borehole locations. These algorithms are designed to find
approximate solutions to complex problems by exploring a large
search space and identifying promising areas for further
exploration. In the context of borehole location search, meta-
heuristics can be used to identify locations that are most likely to
yield a sufficient quantity of high-quality water. Some common
meta heuristics for borehole location search include Genetic
algorithms, Simulated Annealing, and Ant ColonyOptimization.
These algorithms can be customized to take into account a
variety of factors, such as geology, hydrology, and drilling costs.
Genetic Algorithm (GA) has been applied to find optimal
testing locations for boreholes associated with pile foundation
performance.27 Several researchers focused on finding solutions
for finding bore-well trajectories based on Genetic Algorithm
(GA) and Particle Swarm Optimization (PSO) algorithm.28

Experimental results proved that meta-heuristics can achieve
superior performance under operational constraints. Another
work29 proposed a biobjective GA for optimization of drilling
location. A multiobjective optimization solution for bore-well
placement is presented by ref 30. Similarly, a Greedy
Randomized Adaptive Search Procedure (GRASP) for oil well
drilling is proposed in ref 31. While ref 32 proposed a
Nondominated Sorting Genetic Algorithm (NSGA-II) based
solution for solving the multiobjective optimization problems.
Literature reports the use of physical methods to determine the
best drilling site for a borehole.33 These methods involve
collecting and analyzing data about the geology and hydrology of
the area to identify locations that are most likely to yield a
sufficient quantity of high-quality water.34

However, extensive literature review findings suggest that the
data-driven methods provided comparatively better results in
assessment of borehole and groundwater related parameters,35

whereas conventional methods are unable to achieve the desired
level of accuracy.36 Despite all these efforts, the existing
literature provides a little guidance on how to find optimal
borehole drilling locations while taking into account the strati-
graphic uncertainties.

Optimal borehole drilling for water extraction heavily
depends on the strati-graphic properties of a drilling region. In
order to take into account the uncertainties in the formation
structure, it is important to conduct thorough research and
analysis, using drilling logs and subsurface modeling to gain a
better understanding of the conditions and potential risks at the
site. To this aim we conducted a pilot study using land layer, soil
composition, drilling depth, and groundwater level as key
parameters for finding the best location for borehole drilling.
The proposed study employs a real borehole data set comprised
of borehole logging and lithology information. Our proposed
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work aims to find the best drilling location that helps with
minimum drilling cost and computational complexity. The main
contributions of the proposed work are concisely stated as
follows: Development of a new predictive modeling assisted
optimization strategy to find the best drilling location, that holds
a rising groundwater level, minimum drilling depth, and softer
and thicker land layer formations. To the best of our knowledge
none of the existing solutions for optimal drilling site search have
considered formation structures and hydro-geological attributes
in the prediction assisted optimization framework. The
proposed solution predicts the hydro-geological features and
then finds the best locations using enhanced FA optimization
model. The main contributions of the study are as follows:

1. Development of strati-graphic uncertainty aware pre-
dictive optimization strategy based on enhanced Firefly
optimization model (EFA) to find optimal borehole
drilling location to ensure efficient drilling operations.

2. Development of a chained multioutput prediction model
based on long short-term memory (LSTM) to predict
drilling depth and groundwater level.

3. Development of a soil color and land layer classification
model using optimal weighted voting ensemble techni-
que. A hybrid meta-heuristic Henry’s Gas Solubility
optimization algorithm and Brain-Storm optimization
algorithm are employed to assign weights.

4. Borehole data analysis and feature engineering for
extracting hidden insights from a data set.

5. To achieve faster convergence, we optimized to the
performance of the original Firefly algorithm to mitigate
the unpredictable behavior of fireflies when the mutual
attraction between them is weak or absent.

3. MATERIAL AND METHODS
This section briefly describes the details of the experimental data
set. Following that, a detailed data analysis and features
engineering are presented. Lastly methodology of the proposed
prediction and classification model is presented. The prediction
model outputs drilling depth and groundwater level prediction
results using a borehole log data set. While the weighted voting
ensemble model provides the soil color and land layer
classification results. The results of prediction model serve as
an input to the optimization model to find the optimal borehole
drilling location.

3.1. Borehole Log Data Set. The experiments are
performed using real borehole data that are carefully examined
for a valid transformation and modeling, and a diagnostic
analysis is also provided to help unearth and extract important
information from the data set. Based on data analysis, hidden
insights are drawn from the data. The data set used in the
proposed study is a real borehole log data set comprising 9287
instances of data representing 1987 unique boreholes drilled at
several locations in a localized region of Republic of South
Korea. The data set comprises geo-spatial and hydro-geological
features. Table. 1 presents the details of the data set.

3.2. Spatial-Temporal Analysis of Borehole Logs.
Figure 2 provides a visualization of borehole distribution with
their respective location coordinates. The x-axis represents
longitude values; whereas y-axis represents latitude values. It is
evident from the figure that boreholes are not evenly distributed
geographically. The concentration of boreholes is higher in areas
where these factors are favorable for drilling, and lower in areas
where they are less favorable.

Figure 3(a) and 3(b) present the distribution of boreholes
and their total depth in meters. Each vertical block shows one-
day digging depth. The total height of the bar shows the total
depth of a single bore in meters. The variation in drilling depth is
associated with the water availability. A high groundwater table
is a condition where the level of the groundwater is close to the
surface of the ground so the drilling depth is minimum. This can
happen in areas with high levels of precipitation or where the
water table has risen due to an influx of water. On the other hand
a low groundwater table is a condition where the level of the
groundwater is significantly below the surface of the ground
resulting in maximum drilling depths.

The proposed mechanism employs advanced feature
engineering techniques to determine the underlying character-
istics and unwind the peculiarities of formation structures
against borehole drilling. As bore-hole drilling is a resource
critical activity. Therefore, it is essential to calculate soil and land
layer formation specific time consumed at each borehole site.
For this average digging capacity for each soil color and land
layer is computed. Moreover, total depth on each layer is also
calculated based on starting depth and ending depth as follows:

=
=

D DDepth ( )t
k

n

0
e s

(1)

The total depth is the outcome of a difference function that
calculates the difference of ending and starting depths. The
hardness level of soil can be ascertain based on the statistics of
average digging capacity, as average digging capacity is inversely
proportional to the hardness level of land or rock layers and time
and cost incurred. On account of this computing the average
digging capacity is hugely substantiated. The average digging
capacity is calculated as under

Table 1. Detailed Feature Description

Feature Description

Location coordinates (X, Y) Drilling point location
Starting depth Depth measured at the beginning
Ending depth Depth measured at the end of drilling process
Altitude The height of borehole location
Korean strata Layer of stacked rocks/sediment
Groundwater level Groundwater level water table information
Land layer Groundwater is bounded above and below land
Soil color layers (eight distinct classes)

Figure 2. Distribution analysis of drilled borehole locations.
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where DCavg(SL) is the average digging capacity of the land layer
computed as difference of ending and starting depth divided by
the number of instances for observed land layer.

Borehole data analysis is essential for successful drilling
operations; thus, a curative borehole data analysis is done. As the
subsurface conditions such as formation structures and lithology
influence the drilling location selection process, examining data
from previously drilled boreholes may be advantageous for
reducing drilling costs and time. The borehole data include land
layers information encountered during the borehole drilling
process. These layers include landfill, sedimentary, weathered

rock layer, burlap, alluvial, soft-rock, Gyeongam formation and
remnant soil layers. Each layer possesses unique characteristics
such as color, shape, hardness level, composition, and position.
Figures 4 and 5 present a spatiotemporal analysis in terms of
number of days spent on each distinct land layer and soil type,
total depth achieved, and the average digging capacity. The
analysis revealed that dark brown soil color has the highest per
day average digging capacity of 4.3 m that translates into
excessive rate of penetration due to its high compression ability.
Comparatively, the Partridge soil color has the lowest average
digging capacity of 2.3 m per-day, which means that this soil
encounters more sand-stones with highly acidic pH levels.
Figure 5 shows the spatial-temporal analysis of the land layer, the
average digging capacity recorded across various land and rock

Figure 3. Visualization of boreholes in three-dimensional space.

Figure 4. Spatiotemporal analysis of soil types.

Figure 5. Spatiotemporal analysis of land layers.
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strata. The Gyeongam formation has the highest average digging
capacity, whereas the weathered rock layer attained second
highest ADC. In contrast, the landfill layer has the lowest average
digging capacity, indicating that it has a tougher composition
and is susceptible to the risk of pipe clogging, resulting in
operational failures and large resource losses. The research of
land layers reveals that the sedimentary layer is frequently
encountered during borehole drilling, while the weathered soil
and rock layers rank second and third, respectively. Due to early
disintegration characteristics, the burlap layer is the soil layer
with the smallest total depth. The main components of a soft
rock layer are silty clay and sand, while the lower layers are
formed by weathered rocks. Gyeongam formation is a paddy
layer type located in Gyeongam Province of South Korea.
Among all, the sedimentary layer has a uniform lithology and

texture with a composition of rounded grains containing many
layers because of the disposition of sediments during their
formation. Weathered rocks are known because of the higher
porosity and lower bulk modulus, while burlap as a top soil layer
is able to hold and keep soil in place. The alluvial soil layer is
highly correlated to surface water presence composed of high
absorption fine-grain fertile soil deposited by the flooded water
usually dark in color carrying a mixture of clay slit and sand. The
average digging capacity graph in Figure 6 demonstrate that the
Gyeongam formation layer possesses the highest average digging
capacity of 6.35 m due to low shear strength, while the landfill
layer has the lowest average digging capacity of 1.49 m because
of its stiff and hard nature.

For assessing the hydro-geological properties of subsurface
land layers and subsurface structures at a particular drilling site,

Figure 6. Analysis of land layer in terms of depth, hardness level, and average digging capacity.

Figure 7. Analysis of water level and drilling depth.
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the down-hole information obtained from borehole drilling is
incredibly beneficial. The suggested work presented the
relationship between total depth and water level through a
time series analysis in Figure 7. The total depth of the borehole
varies between 0 and 74.28 m. Due to the presence of variations
in the formation structure, water table and drilling depth also
varies. Moreover, the analysis made it clear that the majority of
borehole sites found the groundwater at a water table depth of
10 m. Figure 8 shows the groundwater bearing strata across

different geo-spatial locations. It is evident from the figures that
groundwater level changes can vary greatly across different
locations.

The geology of an area can affect the amount and distribution
of groundwater, with some areas having more porous or
permeable soils that allow for the infiltration of water, and other
areas having less permeable soils that do not allow for the same
level of infiltration. As a result, it is important to consider the
specific conditions of a given location when assessing changes in
groundwater levels.

3.3. Development of Regression and Classification
Models. Predictive modeling aids effective drilling location
selection decisions. The output of the prediction model directs
the choice of the optimization model and is an integral
component of the goal function designed to enhance the
operational efficiency of drilling.

The optimization procedure employs key-parameters with
related constraints, such as drilling depth, groundwater level,
drilling region, and land layer formation in order to determine
the optimal drilling site in terms of cost. The suggested solution
assures that drilling companies and water boards maximize their
productivity through optimal resource utilization and efficient
drilling operations. Figure 9 explains the development of
ensemble weighted voting classifier for classification of soil
color and land-layer. Before further processing, the raw data are
first preprocessed to remove any abnormalities.

The preprocessing steps involve removal of duplicate records,
outlier detection, removal, and filtration of irrelevant attributes.
Afterward the key features are extracted from the data to apply
the process of feature engineering for construction of new
features. Feature engineering refers to selection and trans-
formation of relevant attributes for achieving superior perform-
ance of the predictive models by preparation of a best-fit data set

for the learning algorithm. The new feature is then normalized
using min−max scaler normalization. Following the preparation
of the data, a comprehensive data analysis is conducted to
provide valuable insight for the identification of patterns and
trends and the creation of noteworthy conclusions. Afterward
the data is split into train and test sets for the model training
procedure.

In the case of ensemble learning frameworks, all the base
models do not perform equally well. The proposed approach
assigns weights to base learners based on their performance so
that overall performance could be potentially improved. The
developed ensemble model employs four base classifiers namely
SVM, Gaussian NB, RF, and GBM with a varied set of hyper-
parameter. The optimal set of weights is determined using a
novel BHO optimization algorithm that is a hybrid of Henry’s
gas solubility optimization algorithm (HGSO) and Brain-storm
Optimization algorithm (BSO). Figure 10 describes the
flowchart of the proposed hybrid optimization algorithm.
First, the base learners are trained using preprocessed data.
Since the hyper-parameter plays a significant role in the model
development process, Bayesian Optimization (BO) is used for
optimal hyper-parameter tuning. The proposed linear SVM
model utilizes a linear kernel function for classification of soil
and land layer characteristics. The hyper-parameters set for the
base model is merely a trade-off coefficient λ with a range of 1
and 2. Likewise, RF are trained with a hyper-parameter class
weight value between 0 and 1, while GBM base learners are
trained with a hyper-parameter step size value as 0.5 and 0.3, and
maximum depth as 10 and 5, respectively. After model training
the outcomes of SVM, RF, and GBM base learners are
ensembled using weighted majority voting. A classification
accuracy-based weight assignment policy is implemented. First,
results from each base learner are obtained. Then, using the
weights obtained during the training phase, a weighted majority
vote of the results obtained from each base learner is used as a
final prediction to classify soil color and land layer. The fitness
function of the hybrid optimization algorithm is formulated as
follows:
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The models that attain low classification accuracy are penalized
by assigning less weight. To reduce a false negative rate initially
the value of δ is set to less than γ, however; with increasing
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Here “j” and “J” represent the current iteration and maximum
iteration, respectively, while “N” denotes the population size.
The flowchart of the HBSO is depicted in Figure 3. The
algorithm begins with defining inputs such as size of population,
upper and lower bounds of solution, dimension of problem,
number of maximum iterations, and algorithm specific

Figure 8. Analysis of groundwater bearing strata.
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parameters. Afterward population is randomly initialized
considering the upper and lower bounds of the solution space.
The next stage, which is based on the greedy approach, involves
replacing the best member of a group with a solution that has
been generated at random in order to investigate other potential
solutions. Subsequently two populations undergo BSO and
HGSO simultaneously and “N” members of the population are
selected out of both populations. To avoid becoming trapped in
local optima, a solution agent is utilized to select the worst-
performing solutions and replace themwith randomly generated
ones. In conclusion, the best performing solutions are returned
as output if the termination requirement is satisfied. Following
the receipt of results from the regression and classification

models, those outputs are then fed into the optimization model
in order to locate the most optimal location for drilling a
borehole.

3.4. Long Short-Term Memory Chained Multi-output
Regression Model. We established and evaluated the LSTM
based chained multioutput regression model developed to
predict water level and drilling depth. Figure 11 shows the
architecture of the proposed chained multioutput regression
model to predict the water level and total drilling depth. A
chained multioutput regression model is a type of machine
learning model that is used for multioutput regression, which is a
type of regression analysis where there are multiple target
variables that need to be predicted. In the proposed chained
multioutput regression model, the predictions for each target
variable are made sequentially, with the predictions for one
target variable serving as input for the next target variable. This
approach can help to improve the overall prediction perform-
ance of the model by leveraging the relationships between the
target variables. To train a chained multioutput regression
model, we first split the data set into training and test sets. We
then trained a separate regression model for each target variable,
using the other target variables as input features. The predictions
from each model would then be used as input features for the
next model, forming a ”chain” of predictions. Themodel will first
make predictions for the first target variable using the input
features, and then use those predictions as input features for the
next target variable, and so on. This sequential approach allows

Figure 9. Operational overview of optimal weighted voting ensemble classifier.

Figure 10. Flowchart of proposed optimal weighted voting mechanism
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the model to take into account the relationships between the
target variables and make more accurate predictions.

4. PREDICTIVE OPTIMIZATION
The proposed prediction assisted optimization model finds the
optimal drilling location by considering uncertainties in the
formation structures. Formation structure refers to its physical
characteristics, such as its composition, shape, and arrangement
of its layers or strata. The formation structure can have a
significant impact on the success of drilling operations, as it can
affect the ease of drilling, the quality and quantity of the fluids
that are produced, and the stability of the well bore. For locating
an optimal borehole drilling site accurately, the drilling depth,
water table, and land layer are predicted at the previously drilled
borehole locations. To this aim an optimization model is
developed. The optimization algorithm implements an objective
function for drilling cost minimization. The goal of Firefly
optimization is to find the solution that maximizes or minimizes
the value of the objective function. Therefore, the design of the
objective function is an important aspect of the Firefly
optimization process. The objective function is carefully chosen
to reflect the specific goals and constraints of the problem at
hand. To solve this complex problem, we formulated a solution
for the optimal drilling location by involving user preferences to
devise a robust model that is scalable across dynamic
environments and resource availability options. Since the
allocated budgets and requirement of each borehole drilling
project vary in terms of hydro-geological aspects, for the sake of
simplicity we defined bounds for the selected parameters. For
finding the optimal drilling location we considered three
parameters: groundwater level, drilling depth, and land layer
properties quantified in terms of hardness and softness level
derived from average digging capacity. The optimal drilling
location depends on the threshold values for the considered
multiparameters. The threshold for each decision variables is
defined as follows:

[ ]P Low, Medium, HighWL,D,LL (7)

The optimal drilling location finding mechanism outputs a
location with minimum drilling cost based on the preset
threshold defined for each constraint. In the proposed research
study, the lower and upper bounds of the decision variables are
quantified in terms of three point scale, i.e., low, medium, and
high. In this way the drilling companies can opt for possible
choices according to resource availability.
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The above equation shows the decision preference threshold for
groundwater level. The available groundwater level preference
options are medium (moderate), low (shallow) and high, to
fulfill varied water level requirements.
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Similarly for the land layer, any of the preferred choices aremade
in terms of hardness level or softness level while for drilling
depth user preferred depth is selected. The values of individual
parameters are restricted between < n1, n2>.
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The developed objective function focuses minimizing the
drilling cost and time through a set of multiparameters and
constraints. Each choice has an associated cost. Based on the
cost less or more weights are assigned to each parameter for
achieving the desired impact in optimal location search. The
minimization objective function is defined as follows:
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Equation 11 provides the drilling cost minimization objective
function. Equations 8, 9, and 10 depict the parameter’s
association, and eq 12 provides the decision bounds of the
water level, drilling depth, land layer hardness/softness level.
The constraint ensures the parameter values must be between
maximum and minimum (upper and lower) bounds. As drilling
a borehole through hard rocks can be a challenging and time-
consuming process, the difficulty of the process depends on the
type and strength of the rocks, as well as the depth of the
borehole and the equipment being used. In general, drilling
through hard rocks requires specialized equipment and

Figure 11. Architecture of proposed chained multioutput regression
model.
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experienced operators, and can take significantly longer than
drilling through softer materials. For instance in the case of soft
land layer, a shallowwell can be dug with an auger drill, but in the
case of hard rocks, a deeper hole will likely need to be dug with
an air core drill. Thus, drilling through extremely difficult land
layers such as rocks, or dolomite formations, requires expertise,
special equipment, licenses, and proper training, adding an up-
charge to the job. Figure 12 presents the predictive optimization
mechanism for locating the optimal drilling location. First, the
location will be converted to regions based on coordinates
information. The output of prediction and classification models
serve as input to the optimization model. The optimization
model considers a particular region and populates locations in
the given regions. The objective function is implemented
through the EFA Optimization Algorithm. Based on the
objective function the optimization algorithm finds the global
optimal location considering the cost and associated constraints.

4.2. EFA Optimization Model. To find an optimal drilling
location a cost minimization objective function and defined
constraints evolve to relate to independent vectors and possess
bounds between minimum and maximum values. Figure 13
presents the functional diagram of the EFA model.

The constraints get the minimum values in the first iteration
until it receives maximum values with subsequent increments.
The process continues until an optimal borehole drilling
location is found. The proposed optimization model is
attributed to the unknown solution space for the optimal
location problem. This method can be safely utilized because
solution space is nonconvex in nature. To achieve superior
optimization, an EFA is developed. The algorithm implements a
prevention strategy that restrains the random motion of fireflies
in the case of zero or lowest possible attraction between fireflies,
since the attraction between flies is affected by the value of the
light absorption coefficient. The algorithm employs an inertia

Figure 12. Optimal borehole drilling location search mechanism based on EFA.

Figure 13. Flow-chart of the EFA optimization model.
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weight approach for improving the standard Firefly algorithm to
achieve superior convergence and global optimization. A least
attraction framework is introduced for preventing firefly from
randommotion and is described as an attraction between flies in
terms of Cartesian distance.

= +s j( ) ( ) s m
lm lm min 0 min

2

(13)

where α0 = 1.0, and the minimum attraction between them can
be [0,1] The developed inertia weight strategy involves
logarithmic decrement. At the start, the inertia weight strategy
is linear in nature; hence, a less bright fly is attracted by a brighter
one such that its early motion drives it toward global search.
With increasing iteration, the fly moves closer to the optimal
value being in a steady state for enhancing the local search
ability, avoiding vertical oscillations, and overshooting the
problem. The equation for logarithm inertia weight is

= × ×w w w w x( log ) ( ) logx x1 adj 1 2 (14)

The initial weight and final inertia weights are represented by w1
and w2, respectively, logadj is the adjustment factor of logarithm,
whereas ‘x’ and ‘X’ show the current and maximum number of
iterations. For further dealing with random turbulence resulting
in a slow convergence, a step adjustment factor is introduced as
follows:

=k X j( )x Xdf ( / ) (15)

The search dimension of a firefly is given as τdf ∈ [0, 1]. With
increasing search dimensions, the random step size is decreased.
The adjustment factor is introduced to limit the change in
random step size of firefly to achieve performance gains. Lastly
the position of fireflies is updated on the basis of attraction
between a highly brighter initialization fly toward a lower
initialized brightness using the following equation:
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Algorithm 1 presents stepwise enhanced FA optimization
model. FA has received enormous attention in the recent past

because of its vast applications. The detailed pseudocode for the
optimization process is depicted in Algorithm 1.

5. EXPERIMENTAL RESULTS AND DISCUSSION
For performance evaluation the classification model Accuracy,
Precision, and Recall/sensitivity are used as evaluation metrics.
The results of the model are provided in Tables 2 and 3.
Accuracy is a measure of how often the model correctly predicts
the outcome. Precision is a measure of how often the model’s
predictions are correct when they predict a positive outcome,
while Recall is a measure of how often the model predicts a
positive outcome when the true outcome is positive. To analyze
the prediction performance of a model, these metrics are
calculated using the predicted outcomes and the true outcomes
from a test data set. After that we compared the values of these
metrics for counterpart models to determine which model has

Table 2. Comparative Analysis of the Proposed Optimal Weighted Voting Ensemble Model with Counterpart Solutions for Soil
Color Classification

Validation set Test set

Classifier AC P R AC P R

SVM 85.21 ± 1.22 84.21 ± 1.21 86.21 ± 1.68 87.32 ± 1.19 84.14 ± 0.79 86.74 ± 0.83
GBM 81.32 ± 0.67 77.55 ± 1.82 80.21 ± 1.16 84.56 ± 0.87 80.38 ± 1.01 79.91 ± 1.14
RF 78.01 ± 0.20 72.86 ± 1.09 73.55 ± 1.54 81.07 ± 2.04 74.61 ± 1.29 73.74 ± 0.87
GNB 82.31 ± 1.06 78.73 ± 1.27 84.23 ± 1.98 85.28 ± 1.81 83.87 ± 1.45 85.33 ± 1.23
MVE 89.55 ± 1.27 88.41 ± 1.33 90.22 ± 0.52 91.83 ± 1.27 92.94 ± 0.63 91.58 ± 0.66
Proposed WVC 91.24 ± 1.88 90.30 ± 0.62 89.46 ± 1.24 93.45 ± 0.56 91.86 ± 0.78 93.11 ± 1.25

Table 3. Comparative Analysis of the Proposed Optimal Weighted Voting Ensemble Model for Land Layer Classification

Validation set Test set

Classifier AC P R AC P R

SVM 86.21 ± 0.34 85.59 ± 1.12 82.21 ± 1.02 88.32 ± 0.14 85.14 ± 1.45 85.74 ± 0.83
GBM 79.32 ± 0.78 79.55 ± 0.65 78.21 ± 0.45 83.56 ± 1.82 82.38 ± 0.52 84.91 ± 1.71
RF 82.01 ± 1.20 79.86 ± 0.55 84.55 ± 0.87 85.07 ± 1.06 83.61 ± 0.67 78.74 ± 0.89
GNB 81.67 ± 1.05 86.73 ± 0.76 85.23 ± 1.65 82.88 ± 1.37 79.87 ± 0.93 90.95 ± 0.63
MVE 90.55 ± 1.53 91.41 ± 1.87 90.81 ± 0.23 93.44 ± 0.86 94.9 ± 1.03 92.58 ± 0.54
Proposed WVC 92.18 ± 0.94 92.47 ± 0.62 89.46 ± 1.04 95.34 ± 0.71 96.86 ± 1.56 95.11 ± 1.76
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the best prediction performance. For the training of weighted
voting classifier, 10-fold validation has been employed. At each
iteration nine out of 10-folds are used to train the model. The
upper and lower bounds of standard deviation of the evaluation
metrics Precision, Recall and Accuracy is reported for each
classification model. The results of the proposed model are
compared with standalone models as well as the majority voted
ensemble model. The weights are assigned to each learner based
on classification accuracy; thus, a candidate learner with higher
accuracy is given more priority in decision making.

As target attributes, soil color and land layer have multiclasses
so the classification results are based on a mean result of all
classes. The comparative analysis of the proposed weighted
voting ensemble classification model with baseline models was
performed. Extensive experimentation revealed that the
proposed ensemble model achieved higher accuracy and
performance for both testing and validation set. The validation
and testing accuracy achieved by the classification model for soil
color classification is 91.24% and 93.4%, respectively, while the
performance of the majority voting ensemble model is
competitive to the proposed model with test accuracy of
91.83%. The rest of the stand-alone model failed to produce
results with high accuracy.

For land layer classification the proposed weighted voting
scheme attained 95.34% accuracy on test data. While the
majority voting ensemble model achieved an accuracy of
93.44%. In the case of the independent SVM model, the
accuracy dropped to 88.32%. The performance of the proposed
ensemble model is attributed to the optimal weight assignment
technique. The proposed approach optimally assigns weights to
each base learner during the training phase to get results for each
learning model that guides the final prediction model. Through

incorporating the knowledge of all base learners, the proposed
ensemble classification model outperformed the rest of the
solutions.

The prediction results of groundwater level and drilling depth
is presented in Figures 14 and 15. We employed the chained
multioutput regression model for prediction and made a
comparative analysis with conventional machine learning
models. For evaluating the performance of regression models
the mean absolute error (MAE), mean square error (MSE), and
R-squared score (R2 score) have been employed. The mean
absolute error (MAE) is a measure of the average magnitude of
the error in a set of predictions. Mean squared error (MSE) is a
measure of the average squared difference between the predicted
values and the true values. The R-squared score, also known as
the coefficient of determination, is a measure of the goodness of
fit of a regression model. It is a statistic that provides a measure
of how well the model fits the data. For model training, K-Fold
cross-validation is employed. Closer inspection of actual training
and testing prediction results reveals that the model produced
remarkable results with lower error rate between actual and
predicted values of groundwater level and drilling depth.

Table 4 compares the performance of proposed chained
multioutput prediction model with conventional machine

Figure 14. Ground water level prediction using chained multioutput regression model.

Figure 15. Drilling depth prediction using chained multioutput regression model.

Table 4. Performance Analysis of Chained Multi-Output
Regression Model for Groundwater Level Prediction

Model MAE MSE R2 score

Linear regression 7.34 122.56 64.14
K-nearest neighbor 3.65 60.71 79.02
Decision Tree 8.10 106.42 68.72
Proposed 2.89 53.73 85.43
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learning models for groundwater level prediction. Accurate
groundwater level prediction is an important factor to consider
when choosing a drilling site. This is because the groundwater
level can affect the success and sustainability of the drilling
project. Therefore, accurately predicting the groundwater level
at a potential drilling site can help ensure the success and
sustainability of the project. This results are quite revealing that
the proposed prediction model acquired the lowest MAE of
2.89%. While the Decision Tree model achieved a MAE score of
8.10%.

It is evident that compared to LSTM model the conventional
machine learning models remained unable to generalize the data
well, as the drilling depth varies across different geographical
regions depending upon the availability of groundwater
resource. Accurate drilling depth prediction is important for
several reasons. In the context of borehole drilling, it can help to
ensure that the borehole is drilled to the desired depth and that it
reaches the target geological formation. For drilling depth
prediction Table 5 shows that the proposed model achieved the

lowest MAE score of 3.11% while the independent Decision
Tree and K-nearest Neighbor classifier achieved MAE of 5.89%
and 5.92%, respectively. The results of the proposed model are
more precise than the counterpart conventional machine
learning model. In summary the accurate prediction insights
can help save resources by avoid overdrilling or underdrilling,
which can be costly and time-consuming to correct. The
performance evaluation and results suggest that the proposed
chained multioutput regression model produced highly accurate
results and performed fairly well in terms of MSE, MAE, and R2
score. The performance achieved by the proposed regression
model is attributed to the ability of the LSTM model to map
spatial and temporal correlations from data.

Table 5 presents the results of drilling depth. Accurate depth
prediction of a drilling site can be an important factor in

determining the optimal drilling site. Accordingly the proposed
deep learning based prediction model achieved the lowest MAE
score of 2.89%. Thus, the LSTM model outperformed all the
counterpart solutions in terms of MAE, MSE, and R2 score.
Lastly Figure 16 describes the simulation results of our proposed
optimal drilling location finding mechanism along the complex-
ity and convergence analysis of an enhanced Firefly meta-
heuristic algorithm that is inspired by the behavior of fireflies.
The firefly algorithm uses the concept of attractiveness and light
intensity to simulate the movement of fireflies in search of a
mate. The algorithm works by having each firefly in the
population move toward the firefly with the highest attractive-
ness. This movement continues until the fireflies converge on
the firefly with the highest attractiveness, which represents the
global optimum solution to the problem being solved.

Therefore, we first analyzed specific factors and constraints
that are relevant to the optimal drilling location finding including
geology of the area, the water table depth, availability of
equipment and resources. Then we designed the Firefly
optimization algorithm to take these factors into account and
to search for solutions that meet the desired criteria. The
optimization algorithm aim to find a location that provides the
maximum water yield for a given drilling depth, or find the
location that minimizes the overall cost of the drilling project.
Figure 17 presents the results of optimal drilling point search
using the EFA model. The results of the model prove the
effectiveness of the developed solution based on low cost and
high performing solutions. In terms of convergence, the firefly
algorithm uses a combination of exploration and exploitation to
find the global optimum solution. During the exploration phase,
fireflies move randomly in search of new solutions. This helps to
ensure that the algorithm does not get stuck in a local optimum.
During the exploitation phase, fireflies move toward the firefly
with the highest attractiveness, which helps to refine the solution
and improve its quality. The result for the optimal drilling point
search shows superior optimization results with a faster
convergence. The algorithm has explored the search space and
identified the locations that meet the specified constraints,
providing a list of potential drilling location solutions last
converging to an optimal location. The computational complex-
ity analysis of the proposed EFA is O(N) for the initialization
phase while due to an inertia weight factor, the computational
complexity for finding the optimal drilling point for the borehole
placement is + * * + * * *O N X N O P X( ) (3 ) (2 obj )s dc . The ob-

Table 5. Performance Analysis of Chained Multi-output
Prediction Model for Drilling Depth Prediction

Model MAE MSE R2 score

Linear regression 8.75 111.70 61.14
K-nearest neighbor 5.92 57.31 79.46
Decision Tree 5.89 110.36 75.83
Proposed 3.11 51.20 91.56

Figure 16. Optimal drilling location result by EFA optimization
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jective function takes as input the values of the decision variables
for a particular solution, and it returns a location that represents
the quality of the solution.

■ CONCLUSION

In attempts to provide a reliable source of clean and safe water,
the location of the borehole drilling is one of the many factors
that becomes very crucial to take into consideration. However,
optimal drilling location is highly dependent on hydro-
geological properties of the site under consideration. To resolve
this issue a predictive optimization approach is proposed
considering three critical stratigraphic factors. For prediction a
competitive chained multioutput prediction model based on the
LSTM model is developed to predict the drilling depth and
groundwater level simultaneously. Furthermore, a novel
weighted voting ensemble classification model is developed for
classification of soil color and land layer. The weighting
mechanism is devised using a hybrid meta-heuristic optimiza-
tion algorithm to assign weights to model by making use of
extraordinary exploitation and exploration abilities with reduced
computational cost. A specially designed fitness function is
developed for assisting the classification model to achieve high
accuracy. For finding the optimal location for bore well drilling,
FA based on an inertia weight approach is developed. The
enhanced FA algorithm relies on an autotuned logarithm inertia
weight to attain a minimal attraction phenomenon. The use of a
step adjustment factor has greatly enhanced the optimization
performance by providing robust solutions. The statistical
goodness of fit of prediction and classification models is
confirmed by the results of the hypothesis testing. Experimental
results indicate a high level of concordance between the actual
and predicted values that translates in to high predictive
performance. Furthermore, the cost and convergence analysis
results prove the effectiveness of the proposed prediction
assisted optimization mechanism. The results of the proposed
pilot study can open avenues for drilling companies and water
boards to apply such frameworks for determination of optimal
drilling sites.
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