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Abstract

Conventionally viewed as male hormone, androgens play a critical role in female fertility.

Although androgen receptors (AR) are transcription factors, to date very few direct transcrip-

tional targets of ARs have been identified in the ovary. Using mouse models, this study pro-

vides three critical insights about androgen-induced gene regulation in the ovary and its

impact on female fertility. First, RNA-sequencing reveals a number of genes and biological

processes that were previously not known to be directly regulated by androgens in the

ovary. Second, androgens can also influence gene expression by decreasing the tri-methyl

mark on lysine 27 of histone3 (H3K27me3), a gene silencing epigenetic mark. ChIP-seq

analyses highlight that androgen-induced modulation of H3K27me3 mark within gene bod-

ies, promoters or distal enhancers have a much broader impact on ovarian function than the

direct genomic effects of androgens. Third, androgen-induced decrease of H3K27me3 is

mediated through (a) inhibiting the expression and activity of Enhancer of Zeste Homologue

2 (EZH2), a histone methyltransferase that promotes tri-methylation of K27 and (b) by induc-

ing the expression of a histone demethylase called Jumonji domain containing protein-3

(JMJD3/KDM6B), responsible for removing the H3K27me3 mark. Androgens through the

PI3K/Akt pathway, in a transcription-independent fashion, increase hypoxia-inducible factor

1 alpha (HIF1α) protein levels, which in turn induce JMJD3 expression. Furthermore, proof

of concept studies involving in vivo knockdown of Ar in the ovary and ovarian (granulosa)

cell-specific Ar knockout mouse model show that ARs regulate the expression of key ovar-

ian genes through modulation of H3K27me3.

Author summary

Androgens are traditionally viewed as the male hormone. Interestingly, in the last couple

of years, androgens have emerged as a key regulator of fertility and health in women.

High androgens are associated with polycystic ovary syndrome (PCOS) and is detrimental

to women’s health. Conversely, androgen supplementation is now being used in clinical
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practice for a subgroup of women suffering from infertility as direct androgen actions are

deemed essential for female fertility. However, in the ovary, which genes are regulated by

androgens and how are poorly understood which is a limitation towards developing thera-

peutic or diagnostic strategies. We have discovered many important ovarian genes that

were previously not known to be directly regulated by androgens. Additionally, we find

that androgens influence the expression of a large number of ovarian genes critical for

female fertility through epigenetic changes. Epigenetics govern whether a gene is “on” or

“off” thereby affecting gene activity and expression. Here, we provide a mechanistic

insight into how androgens decrease an epigenetic mark associated with gene repression.

Our findings provide a comprehensive understanding of the overall impact of androgens

on ovarian gene expression and physiology that can potentially improve female fertility

and pathophysiological conditions like PCOS.

Introduction

Androgens are traditionally considered as male hormones with well-established roles in male

physiology and prostate cancer. However, in the last decade, several genetic models and in
vitro studies have proven that androgens acting through androgen receptors (AR) are critical

for ovarian function and female fertility [1–6]. While excess androgen level leads to polycystic

ovary syndrome (PCOS) [7–9], a certain amount of direct androgen actions through the

androgen receptor (AR) are essential for normal ovarian function [10]. Thus, it is now believed

that with respect to androgen actions in the ovary, balance is key [4]. To date, in addition to

the global androgen receptor knockout (ARKO) mouse models [11–13], AR has been knocked

out specifically in different cell types along the hypothalamus-pituitary-gonadal (HPG) axis,

namely granulosa cells (GCARKO) [14,15], theca cells (TCARKO) [16], oocyte (OoARKO)

[15], pituitary (PitARKO) [17] and neurons (NeuroARKO) regulating the HPG axis [18]. All

of these ARKO mouse models establish that the granulosa cells (GCs) of the ovary are the pri-

mary site of androgen actions in regulating normal follicular development and female fertility;

while in hyperandrogenic conditions, neuroendocrine ARs play a major role in the develop-

ment of PCOS [18]. Moreover, ex vivo [5,19], in vitro [20–23] and clinical studies [10,24–31]

show that androgens are essential for follicle growth while simultaneously preventing follicular

atresia. Despite these studies, how androgens regulate these follicular endpoints is poorly

understood.

The major androgens in women, in descending order of serum concentration, are dehydro-

epiandrosterone sulphate (DHEAS), dehydroepiandrosterone (DHEA), androstenedione

(A4), testosterone (T), and dihydrotestosterone (DHT) [32]. However, direct androgenic

actions through the AR can only be mediated by T and DHT, as these are the only two andro-

gens that bind to AR, the latter being more potent [33]. The rest of the androgens are more

like androgen precursors that require conversion to T and/or DHT to exert androgenic effects.

In the ovarian follicle and stroma, androgen synthesis primarily involves the conversion of

cholesterol into pregnenolone (by CYP11A1) that is metabolized to DHEA (by CYP17A1) and

then A4 (by 3β-HSD), the immediate precursor of testosterone [34]. A4 is converted into tes-

tosterone (17β-HSD), that can then be aromatized into estradiol (E2) by aromatase (CYP19a1)

or reduced to DHT by 5α-reductase [34,35]. In women, 5α-reductase (SRD5A1 and A2)

mRNA expression has been found in both PCOS and non-PCOS women and interestingly,

this expression is higher in granulosa cells than in theca cells [36,37]. In studies determining

androgen actions in the ovary, DHT, which is non-aromatizable, is primarily used
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[5,19,38,39]. This is because T can be aromatized to estradiol, making it difficult to differenti-

ate whether the downstream effects are due to estrogenic or androgenic actions, thereby con-

founding the results.

Androgen actions are mediated by “nuclear” transcriptional signals or “extra-nuclear”
kinase actions [40–42]. Primary AR target genes are those at which AR occupies an androgen

response element (ARE) on the promoter of a gene and regulates gene transcription. However,

to date, very few ovarian genes have been identified as AR-ARE target genes and, intriguingly,

there are no studies on the global impact of androgens on GC gene expression under normal

conditions. Here we describe androgen-induced gene expression profiles in mouse GCs and

provide molecular insight into the underlying mechanism of how androgens regulate the

expression of these genes.

Importantly, this study also shows that androgens can regulate gene expression in an

AR-ARE independent fashion, involving membrane-initiated androgen signaling [5,43–45].

Previously [38], we have reported that androgens influence gene expression through post-

translational histone modifications. We have shown [38] that H3K27me3 (tri-methyl lysine 27

histone3) which is a gene silencing mark [46] is a downstream target of androgen actions.

Here using ChIP-seq studies with H3K27me3 antibody we identify the ovarian (GC-specific)

genes and their enhancer regions that are regulated by androgen-induced modulation of

H3K27me3 mark. H3K27me3 is regulated by Enhancer of Zeste Homologue 2 (EZH2), a his-

tone methyltransferase that promotes tri-methylation of lysine 27. Androgens, through both

the extra-nuclear and nuclear pathways, inhibit the activity of EZH2 as well as Ezh2 expression,

respectively [38]. Epigenetic modulation of gene expression is dependent partly on the

dynamic balance of histone methylation/demethylation on the enhancers and promoters. This

is mediated by regulating the expression and activity of methylating and/or demethylating

enzymes [47,48]. We demonstrate that in addition to inhibiting Ezh2 expression and EZH2

activity, androgens also induce the expression of a histone demethylase called Jumonji domain

containing protein 3 (Jmjd3/Kdm6b), that is responsible for removing the H3K27me3 mark.

We find that in GCs, androgen in a transcription-independent fashion, increases hypoxia-

inducible factor 1 alpha (HIF1α) protein levels, which in turn induce Jmjd3 expression. This

study not only provides a mechanistic understanding of the global impact of androgens in nor-

mal follicular development, but may also contribute to comprehending the effects of excess

androgens as seen in disease conditions like PCOS.

Results

Effect of androgen on granulosa cell (GC) transcriptome

Global effects of androgens in GCs were elucidated by RNA-seq analysis in primary mouse

GC cultures treated with media (control) or DHT. The overall similarity among samples was

assessed by the Euclidean distance between samples (S1 Fig). DESeq2 analysis identified a total

of 190 annotated significant differentially expressed ENSEMBL genes (DEGs). Out of these

genes, 129 were upregulated and 61 were downregulated genes (FPKM>1). The global tran-

scriptional change across the two groups compared (control vs DHT) is represented by a vol-

cano plot in Fig 1A and hierarchical clustering of all the significant DEGs in control vs DHT

treated GCs are shown in Fig 1B. The complete list of significant DEGs is presented in S1 Data-

set. In silico analysis revealed that all of the DEGs have at least one or more ARE sequences in

the promoter and/or distal (within 5Kb) region thereby suggesting that most of these genes are

regulated directly by AR, rather than secondary effects of hormone exposure. Based on estab-

lished ovarian functions, 4 DEGs- Bmp4, Angpt1,Mmp2 and Lhcgr were selected to further

verify that AR, through direct ARE binding, regulates the expression of these genes. Fig 1C
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shows DHT treatment significantly increases mRNA abundance of Bmp4, Angpt1,Mmp2 and

Lhcgr. Moreover, ChIP-qPCR studies with AR antibody show that DHT treatment increases

AR binding to AREs located on the promoter region of the above-mentioned genes (Fig 1D).

Gene ontology (GO) enrichment analysis (Fig 1E) of the DEGs revealed angiogenesis/tie

pathway, cholesterol and lipid metabolism, steroid biosynthesis, oxidation-reduction process,

ovarian follicle development and positive regulation of cell proliferation as some of the pri-

mary biological processes to be significantly affected by DHT treatment. Specific genes that are

upregulated or downregulated in these pathways following androgen treatment are further

shown in Fig 1E. These pathways/genes were previously not known to be regulated by andro-

gens and, thereby, this study reveals that androgens affect a wide range of biological processes

critical for normal follicular development and thus, ovarian function.

Androgens significantly modulate H3K27me3 mark on gene promoters

and enhancers

Previously [38] we have shown that androgens decrease the H3K27me3 mark in GCs. To eval-

uate the impact of androgens on genome-wide distribution of H3K27me3 landscape, we per-

formed ChIP with the H3K27me3 antibody followed by high-throughput sequencing in

control vs. DHT treated GCs.

Fig 1. Androgen-induced transcriptome analysis in primary mouse granulosa cells (GC). A: Volcano plot: Representing the global transcriptional change across the

groups compared. Each data point in the scatter plot represents a gene. Genes with an adjusted P� 0.05 and a log2 fold change� 1 are indicated by red dots and

represent up-regulated genes. Genes with an adjusted P� 0.05 and a log2 fold change� -1 are indicated by blue dots and represent downregulated genes. B: Heatmap of

differentially expressed genes sorted by adjusted p-value by plotting their log2 transformed expression values in samples. C: Relative expression of Bmp4 (Bone

morphogenetic factor 4), Angpt1 (Angiopoietin 1),Mmp2 (Matrix Metallopeptidase 2) and Lhcgr (Luteinizing hormone/Choriogonadotropin receptor) mRNA levels by

quantitative PCR in primary mouse GCs treated with media or DHT (25nM for 24h). Data are displayed as means ± SEM (n = 3 experiments, for each experiment GCs

isolated from 5 mice were pooled together) and normalized to Rpl19 (� P� 0.05, vsmedia). D: Anti-AR ChIP-assay in mouse primary GC cultures treated with media

(control) or DHT (25nM for 24h) showing AR binding to different ARE sequences (P1/P2/P3) on Bmp4 (-693/-383Kb from TSS), Angpt1 (-1074Kb from TSS),Mmp2
(-937/-753/-332Kb from TSS) and Lhcgr (-47Kb from TSS) promoter region. IgG represents non-specific antibody. Values represent percentage input. Data are displayed

as mean ± SEM (n = 3 experiments, for each experiment GCs isolated from 10 mice were pooled together) and � P� 0.05, vsmedia. E: Gene ontology analysis: Gene

ontology terms of significantly enriched pathways with an adjusted P-value� 0.05 in the differentially expressed gene sets.

https://doi.org/10.1371/journal.pgen.1009483.g001
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Total H3K27me3 peaks modulated by DHT. The analysis of sequencing reads revealed

16,345 H3K27me3 peaks in control and 3975 H3K27me3 peaks in DHT treated samples: a

75% reduction in peaks in the DHT treated samples. Fig 2A shows a heat map of genome wide

H3K27me3 peaks in GCs from control and treatment groups. Each row in the heatmap corre-

sponds to a H3K27me3 signal peak identified from either controls or DHT treated samples.

The normalized ChIP-seq read densities around the peaks are shown with the summits of the

Fig 2. Genes associated with androgen-induced decrease in H3K27me3 mark in the gene body and overlapping with promoters and distal enhancers involving

long-range regulation of gene expression. A: Heat maps showing the read density change along the peak regions for the 16345 control peaks and the 3975 treatment

peaks. B: H3K27me3 signals in control and DHT treatment groups along the gene body of Fshr- follicle stimulating hormone receptor, Cyp19a1- aromatase, Lhcgr-
luteinizing hormone/Choriogonadotropin receptor, Runx1- runt-related transcription factor 1, Egfr–epidermal growth factor receptor and Smad3- Mothers against

decapentaplegic homolog 3. Log2 fold change was calculated as log2{(H3K27me3 control signal)/ (H3K27me3 treatment signal)}. Regions along the gene body with

higher signals in the control group are represented as positive value- blue peaks and regions where signal was higher in the treatment group are shown as negative

value-red peaks. C: Heatmap showing H3K27me3 peak counts in control and DHT-treated samples for 28 differentially expressed genes identified by comparing

genes containing H3K27me3 peaks in the gene body with DEGs from the RNA-seq data. D: Average number of H3K27me3 peaks per 50bp overlapping with the

promoter regions of 160 genes in the control samples and 55 genes in the DHT-treated samples. E: Degree analysis of enhancer-gene interactions for genes associated

with significant decrease in H3K27me3 peaks in their enhancer regions with respect to DHT treatment. F: Distance between the promoters of genes and their

corresponding enhancers that have decreased H3K27me3 signal by DHT treatment. G: Enriched transcription factor binding motifs in distal enhancers of genes

associated with decrease in H3K27me3 signal with DHT treatment. E-values were< 0.1 and indicate the probabilities of observing the enrichment from random

control DNA sequences. For each transcription factor, the upper motif logo corresponds to the consensus motif based on HOCOMOCO database and the lower motif

logo corresponds to the observed sequence motifs that are enriched in linked distal enhancers.

https://doi.org/10.1371/journal.pgen.1009483.g002

PLOS GENETICS Androgen actions in the ovary

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009483 March 30, 2021 5 / 21

https://doi.org/10.1371/journal.pgen.1009483.g002
https://doi.org/10.1371/journal.pgen.1009483


peaks in the middle, along with +/-10kb flanking regions. Of 16,345 H3K27me3 peaks in con-

trol samples, 5513 peaks were within gene bodies while 153 peaks were in promoter regions. In

contrast, there were only 1389 H3K37me3 peaks in the gene body and 54 peaks in the pro-

moter region in the DHT treated samples. S2 Fig represents the number of H3K27me3 peaks

overlapping different genomic annotations in the control and treatment (DHT) group.

DHT-induced modulation of H3K27me3 peaks in gene bodies. To further analyze the

influence of androgen-modulated epigenetic dynamics on genes, we examined genes with

gene bodies overlapping with H3K27me3 peaks. We identified 3144 genes in control and 1146

genes in DHT treated GCs with H3K27me3 peak signal across the gene body. Comparison of

these two gene sets revealed that 2462 genes exclusively had H3K27me3 peak signal across the

gene body in the control but not in the DHT-treated samples (S2 Dataset). Fig 2B demon-

strates log2-fold change of H3K27me3 peaks overlapping with gene bodies of six representa-

tive genes (Fshr, Cyp19a1, Lhcgr, Runx1, Egfr and Smad3) that are known to play critical roles

in ovarian function. For each gene, the H3K27me3 mark in control and treatment signals

along the gene body was calculated by dividing each gene into 1000bp windows. The number

of reads falling under each 1000bp window were considered the H3K27me3 signal in that win-

dow and log2 fold change of H3K27me3 signals along the gene body was calculated. Results

show that DHT-treatment significantly lowers the H3K27me3 signal in all of the genes.

Subsequently, we compared the list of genes containing H3K27me3 peaks in their gene

bodies with the list of DEGs from the RNA-seq data. We found 28 genes (22-upregulated and

6-downregulated genes) that were both differentially expressed and overlapped with

H3K27me3 peaks, suggesting that the condition-specific epigenetic landscape of H3K27me3

may be related to the transcriptional variation of these genes. Fig 2C is a heat map representing

the number of H3K27me3 peaks in the gene body (TSS to TES) for the 28 DEGs. Most of the

upregulated genes had significantly lower levels of H3K27me3 marks while the downregulated

genes had higher H3K27me3 marks in DHT-treated GCs than in controls. This shows that in

addition to AR-ARE, the expression of these genes may also be regulated by androgen-induced

H3K27me3 modulation.

DHT-induced modulation of H3K27me3 peaks in the promoter region. Further analy-

sis revealed that there were 160 genes in control and only 55 genes in the DHT treated samples

with H3K27me3 peaks located specifically in the gene promoter regions. Fig 2D (Left panel)

represents the average number of H3K27me3 peaks per 50bp in the promoter region (TSS

+/-1KB) for the 160 genes in the control group and corresponding average peaks for the same

genes in the treatment group. Similarly, Fig 2D (right panel) represents the average number of

H3K27me3 peaks per 50bp in the promoter region (TSS+/-1KB) for the 55 genes in the treat-

ment group and corresponding average peaks for the same genes in the control group. The list

of all the genes with promoters overlapping with H3K27me3 peaks in the control and treat-

ment groups is provided in the supplemental data (S3 Dataset). Considering the complex regu-

latory activities in promoter regions, these androgen-induced differential H3K27me3 peaks

located in the promoters may play pivotal roles in regulating the transcriptional levels of the

corresponding genes.

DHT-induced modulation of H3K27me3 peaks in the enhancer region. Since large por-

tions of the mouse genome are non-coding regions with numerous enhancers widely spread

[49], we further extended our analysis to non-coding regions and focused on distal enhancers

that have long-range chromatin interactions with promoters and may play a crucial role in

controlling the expression of genes. While enhancers act through the binding of transcription

factors just like promoters, their location greatly vary from the transcription start site (TSS) of

the gene they regulate. Moreover, while a single enhancer can influence the expression of mul-

tiple genes, a single gene can be regulated by multiple enhancers. Thus, we determined
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enhancer-gene pairs for the 2462 genes in which the H3K27me3 signal peaks were significantly

decreased by DHT treatment (genes with exclusive H3K27me3 peaks in the control group).

For these genes, the chromatin interaction data including Hi-C and Capture-C were used to

find potential enhancers (Bioinformatics analysis for ChIP-seq, S1 Text). For each gene, the

H3K27me3 in the gene body and H3K27me3 level in each of its potential enhancers were cal-

culated. We found 1380 genes where DHT treatment lowered the H3K27me3 signal (S5 Data-

set). For enhancer–gene pair, the correlation between the gene body H3K27me3 level and

enhancer H3K27me3 level was calculated and only positively correlated enhancer–gene pair

(Pearson correlation > 0.4) were selected. Results show 3447 enhancer–gene pairs. Next, we

determined the number of enhancers that regulate the same gene (Fig 2E). Results show that

45% of these genes are regulated by only 1 enhancer region while 21% of the genes are regu-

lated by 2 enhancers. Furthermore, we calculated the distance between the promoters and

their corresponding enhancers that have decreased H3K27me3 signal by DHT treatment. Fig

2F shows the distance analysis of the enhancer–gene interactions for the genes that show

DHT-induced decrease in H3K27me3 levels. 33% of the enhancer–gene pairs that show

decreased H3K27me3 with DHT treatment have 0 to 100KB distance between the gene and

the enhancer. These analyses show that androgens can modulate gene expression not only by

reducing the H3K27me3 mark in the promoter region of genes but also in distal enhancers.

Moreover, comparing the chromatin contact maps (ChIP-seq data) with the androgen-

induced DEGS revealed 186 enhancers whose H3K27me3 levels were significantly negatively

correlated (Pearson correlation < -0.4) with the expression of 99 DEGs, out of which 66 were

upregulated and 33 were downregulated genes (S6 Dataset) across samples of controls and

DHT treated GCs. This highlights the importance of complex long-range multi-enhancer reg-

ulation of AR regulated genes in the ovarian GCs.

Motif analysis of the enhancers. Given that H3K27me3 is a gene repressive mark, it is

likely that the androgen-induced decrease of H3K27me3 allows specific transcription fac-

tors to bind to these enhancer regions. We analyzed the enhancer regions linked with

H3K27me3 peaks for motif enrichment using MEME-ChIP as described in bioinformatics

analysis for ChIP-seq, (S1 Text). Four transcription factors (TFs), FOXJ3 (forkhead box j3;

p-value 1.44e-04 and q-value 1.49e-01), MAZ (MYC associated zinc finger protein; p-value

6.85e-08 and q-value 7.05e-05), SALL1 (spalt like transcription factor 1; p-value 2.20e-04

and q-value 9.90e-02) and SMAD3 (p-value 3.20e-05 and q-value 3.32e-02) with E-

value < 0.1 were identified as candidate factors associated with epigenetic changes in distal

enhancers (Fig 2G).

Androgens through the PI3K/Akt pathway, in a transcription-independent

fashion, increase HIF1α protein levels, which in turn induce the expression

of JMJD3 / KDM6B in mouse granulosa cells

Next, we determined the underlying mechanism by which androgens modulate H3K27me3.

We have reported [38] that androgens inhibit the expression and activity of the histone

methyltransferase EZH2, that promotes the H3K27me3 epigenetic mark. Here we wanted to

determine if androgens have any effect on the expression of histone demethylases. Results (Fig

3A) show that 24h of DHT (25nM) treatment specifically induces the expression of a Jumonji

domain containing demethylase called Jmjd3 (Kdm6b). There was no effect of DHT on the

expression of other Jumonji domain containing demethylases namely, Jmjd1a (Kdm3a),
Jmjd2b (Kdm4b), Jarid1b (Kdm5b), Jmjd2a (Kdm4b) and Jarid2. Intriguingly, Jmjd3 specifi-

cally demethylases H3K27me3 and therefore we further explored the mechanism by which

androgens regulate the expression of Jmjd3.

PLOS GENETICS Androgen actions in the ovary

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009483 March 30, 2021 7 / 21

https://doi.org/10.1371/journal.pgen.1009483


In silico analysis of the Jmjd3 promoter revealed the presence of HRE (Hif1α response ele-

ment) regions (S3A Fig). Interestingly, studies in mouse and humans show that HIF1α can

induce Jmjd3 both under normal conditions and hypoxic stress [50]. Therefore, to determine

if HIF1α plays any role in DHT-induced expression of Jmjd3 in mouse GCs, we knocked

down the expression ofHif1α withHif1α -specific siRNA (Fig 3B) in primary mouse GC cul-

ture. siRNA-mediated knockdown ofHif1α completely blocked the DHT-induced increase of

Jmjd3 mRNA (Fig 3C) and JMJD3 protein levels (Fig 3B) in mouse GCs. Furthermore, ChIP

studies with HIF1α antibodies (Fig 3D) show increased binding of HIF1α on one of the two

HRE sequences on the Jmjd3 promoter region with DHT treatment. This establishes that

androgens, through HIF1α, mediate the expression of Jmjd3 in mouse GCs.

We further wanted to understand how androgens regulate HIF1α. In prostate cancer, it has

been reported that androgens acting through the PI3K/Akt pathway, in a transcription-inde-

pendent fashion, increase HIF1α protein levels [51]. Consequently, we and others have also

reported that DHT treatment activates the PI3K/Akt pathway in GCs [6,19,38]. Results show

that similar to prostate cancer, in mouse GCs, DHT stimulation does not affectHif1αmRNA

levels (Figs 3B and S3B) but increases HIF1α protein levels (Fig 3B and 3E). This increase in

HIF1α protein by DHT stimulation is blocked by flutamide (AR inhibitor), LY294002 (PI3K

inhibitor) and cycloheximide (CHX, a protein translational inhibitor) (Fig 3E). Moreover,

CHX-chase studies with DHT revealed no difference in HIF1α protein degradation (S3C Fig),

indicating that DHT increases HIF1α protein levels through a translation-dependent

Fig 3. Androgens through HIF1α regulate JMJD3 expression. A: Relative expression of Jumonji histone demethylase mRNA levels by quantitative PCR in mouse

primary GC cultures treated with media containing vehicle (control) or DHT (25nM for 24h). Data are displayed as mean ± SEM (n = 3 experiments, for each

experiment GCs isolated from 5 mice were pooled together) and normalized to Rpl19 (� P� 0.05, vsmedia). B: siRNA-mediated knockdown ofHif1α in mouse primary

GC cultures. C: Effect of siRNA-mediated knockdown ofHif1α on Jmjd3mRNA levels in mouse primary GC cultures treated with media containing vehicle (control) or

DHT. Data are displayed as mean ± SEM (n = 3 experiments, for each experiment GCs isolated from 5 mice were pooled together) and normalized to Rpl19 (� P� 0.05,

vsmedia). D: Anti-HIF1α ChIP-assay in mouse primary GC cultures treated with media containing vehicle (control) or DHT (25nM for 24h) showing HIF1α binding to

two (P1/P2) HRE sequences (-0.2/+4.2Kb from TSS) on Jmjd3 promoter region. IgG represents non-specific antibody and “Nsp” represents non-specific primers. Values

represent percentage input. Data are displayed as mean ± SEM (n = 3 experiments, for each experiment GCs isolated from 10 mice were pooled together) and � P� 0.05,

vsmedia. E: HIF1α protein levels in mouse primary GC cultures treated with media containing vehicle (control) or DHT (25nM for 24h) in presence of flutamide (AR

inhibitor, 100nM), LY294002 (PI3K inhibitor, 10μM) or cycloheximide (CHX, a protein translational inhibitor, 1μM). Epidermal Growth Factor, EGF (20ng/ml) was

used as a positive control. F and G: Relative expression of Jmjd3mRNA and protein levels (F) and H3K27me3 levels (G) in mouse primary GC cultures treated with

media containing vehicle (control) or DHT (25nM for 24h) in presence of flutamide (AR inhibitor, 100nM) and LY294002 (PI3K inhibitor, 10μM). Data are displayed as

mean ± SEM (n = 3 experiments, for each experiment GCs isolated from 5 mice were pooled together) and normalized to Rpl19 (P� 0.05, � vsmedia and �� vsDHT). H:

Proposed model of androgen-induced translation-dependent increase in HIF1α protein levels and its role in Jmjd3 expression. I: Effect of siRNA-mediated knockdown

ofHif1α and Jmjd3 on H3K27me3 levels in mouse primary GC cultures treated with media containing vehicle (control) or DHT (25nM for 24h).

https://doi.org/10.1371/journal.pgen.1009483.g003
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mechanism. Notably, inhibition of AR and the PI3K pathways attenuated DHT-induced

increase in Jmjd3mRNA (Fig 3F), JMJD3 protein levels (Fig 3F) and JMJD3 enzymatic activity

(S3D Fig) as well as the global decrease in the H3K27me3 mark (Fig 3G) in mouse GCs. Thus,

these studies show that androgens, through PI3K/Akt signaling, in a translation-dependent

pathway enhance HIF1α protein levels that in turn bind to HRE sequences on the Jmjd3 pro-

moter region and induce the expression of Jmjd3 in mouse GCs (Fig 3H).

Furthermore, to directly establish the AR-HIF1α-JMJD3 pathway to the downstream mod-

ulation of H3K27me3 mark, we knocked down Jmjd3 andHif1α by siRNAs and determined

H3K27me3 levels (Fig 3I), as well as performed ChIP assays with H3K27me3 antibody on

Lhcgr, Cyp19a1, Fshr and Runx1 promoter regions (S4A Fig). Results show that ablation of

Jmjd3 andHif1α expressions block the androgen-induced decrease of total H3K27me3 levels

(Fig 3I) and the H3K27me3 mark in the promoter region of the above-mentioned genes (S4A

Fig).

Previous studies have shown that hypoxia alone or Clioquinol, a Hif1α activator under nor-

moxia, can induce Jmjd3 expression [50]. Therefore, to determine whether exogenous activa-

tion of HIF1α in absence of AR can rescue Jmjd3 expression and H3K27me3 levels, we

knocked down Ar by LNA-siRNA in primary mouse GC cultures and treated the cells with/

without Clioquinol (50μM) in presence or absence of DHT (S5 Fig). Similar to previous stud-

ies, Clioquinol induces JMJD3 protein and lowers H3K27me3 level in mouse primary GCs

(S5A Fig). However, in absence of AR, while Clioquinol completely rescues JMJD3 level, the

downstream effect on H3K27me3 level (decrease of H3K27me3) was only partial (S5B Fig).

This suggests that androgen-induced modulation of the H3K27me3 mark is mediated through

a synergistic regulation of the expression and activity of the two opposing enzymes, EZH2 and

JMJD3 that specifically target tri-methylation of H3K27. In addition to H3K27me3 levels, we

also determined H3K27ac levels, a well-recognized marker for active enhancers. H3K27ac lev-

els were significantly elevated in GCs treated with DHT compared to controls (S4B Fig).

Androgen-induced modulation of H3K27me3 regulates expression of genes

critical for ovarian function

Finally, as a proof of concept, we knocked down AR expression in vivo by injecting LNA-con-

taining oligonucleotides targeting AR or non-specific control into the ovarian bursa of mice

(Fig 4A). Loss of AR expression in vivo significantly increases the H3K27me3 mark in the GCs

that corresponds to increased expression of EZH2 and decreased levels of HIF1α and JMJD3

than in non-specific controls (Fig 4A). ChIP-PCR studies (Fig 4B) with H3K27me3 antibody

also reveal higher level of H3K27me3 within the gene body of key ovarian genes, Lhcgr, Fshr,
Cyp19a1 and Runx1. The downstream effect of increased H3K27me3 levels was further

reflected by decrease in the mRNA levels of Lhcgr, Fshr, Cyp19a1 and Runx1 in the GCs treated

with LNA-AR siRNA compared to non-specific control (Fig 4C).

To further prove that the androgen/AR-induced modification of H3K27me3 is physiologi-

cally important, we determined H3K27me3 levels and expression of Lhcgr, Fshr and Cyp19a1
in GCs isolated from ovaries of 24-25-week-old GC-ARKO mice. Notably, we have shown pre-

viously [15,38] that GC-specific knockout of AR causes premature ovarian failure character-

ized by higher rate of atresia and fewer ovulated oocytes. Based on our present data it can be

speculated that one of the reasons for the premature ovarian failure in the GC-ARKO mice is

due to the loss of androgen-induced decrease in H3K27me3 mark that in turn regulates the

expression of many key ovarian genes. Supporting this hypothesis, results show that knockout

of ARs, specifically in the GCs of the ovary, indeed increases H3K27me3 and EZH2 levels (Fig

4D) with decrease in JMJD3 protein levels. Moreover, expression of Lhcgr, Fshr and Cyp19a1
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are significantly lower (Fig 4E) in the GCs isolated from the ovaries of GC-ARKO animals

compared to wild type.

Discussion

In the ovary, androgens are not merely a substrate for estrogen synthesis, but direct androgen

actions through the ARs are critical for normal follicular development and female fertility

[2,4]. However, there is a dearth of knowledge about the genes and biological pathways regu-

lated by androgens, which is a significant limitation towards understanding how androgens

regulate follicular growth and function. This study for the first time provides three critical

insights about androgen actions in the ovary.

First, we have identified a large number of genes and biological processes that were not for-

merly known to be regulated directly by androgens in GCs. Results show that genes like Bmp4
[52], Lhcgr [53], Adamts4 [54], Ptgds4 and Mmp2 [55–57], that are critical for follicular func-

tion are AR-induced genes. Previously, we [5] and others [6,19] have reported that androgens

primarily maintain normal follicular development by regulating pre-antral to antral follicle

transition by increasing FSH receptor levels and prevent follicular atresia. However, our gene

expression data now clearly show that androgens have a much far-reaching impact on

Fig 4. In vivo knockdown of androgen receptors increases H3K27me3 mark and inhibits the expression of key ovarian genes. A: Protein levels of androgen receptor

(AR), HIF1α, JMJD3, EZH2, H3K27me3, and H3 in GCs isolated from ovaries of mice injected in the ovarian bursa with LNA-locked Ar siRNA and non-specific (Nsp)

siRNA control. B and C: Anti-H3K27me3 ChIP-assay showing H3K37me3 levels within the gene body of Lhcgr (+641/+740 bp from TSS), Fshr (+379/+488 bp from

TSS), Cyp19a1 (+553/+653 bp from TSS) and Runx1 (+579/+693 bp from TSS) (B) and relative expression of mRNA of these genes (C) in GCs isolated from ovaries of

mice (n = 15 mice) injected in the ovarian bursa with LNA-locked Ar siRNA and non-specific (Nsp) siRNA. IgG represents non-specific antibody. ChIP assay values

represent percentage input and data are displayed as mean ± SEM (n = 3 ChIP assays, for each experiment GCs isolated from 5 mice were pooled together) and
�P� 0.05, vs non-specific siRNA. Relative expression of mRNA is displayed as mean ± SEM (n = 3 experiments, for each experiment GCs isolated from 5 mice were

pooled together) and normalized to Rpl19 and �P� 0.05, vs non-specific siRNA. D and E: H3K27me3, EZH2, JMJD3 and H3 protein levels (D) and relative expression

of Fshr, Lhcgr and Cyp19a1mRNA levels (E) in GCs isolated from ovaries of 24-25-week-old GC- specific ARKO (GCARKO) and wild type (WT) mice. Data are

displayed as mean ± SEM (n = 4 mice) and normalized to Gapdh (�P� 0.05 vsWT). F: Proposed model of androgen-induced modulation of H3K27me3 through

regulation of Ezh2 and Jmjd3 expression and activity.

https://doi.org/10.1371/journal.pgen.1009483.g004
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follicular function. For example, the angiopoietin-tie pathway, many of the genes of which we

find to be directly induced by androgens, are not only vital for the remodeling and maturation

of the developing vasculature that helps in the formation of dominant follicle/s but also play an

essential role in non-angiogenic functions like follicular survival and steroidogenesis [58,59].

Inhibition of ANGPT1 increases follicular atresia [60] and the follicles which undergo early

atresia show a higher ANGPT2:ANGPT1 ratio [61–63]. This is consistent with our results—

DHT treatment increases Angpt1 expression and lowers Angpt2 transcript levels. ANGPT2 is

considered a natural antagonist of ANGPT1 [64,65]. The latter induces the phosphorylation of

Tie2, which subsequently transduces a biological effect while ANGPT2 binds to Tie2 with the

same affinity as ANGPT1 but does not phosphorylate the receptor [64,65]. Therefore, it is

likely that the androgen-induced regulation of the angiopoietin–tie pathway is another mecha-

nism by which androgens prevent follicular atresia. Notably, the fact that androgen treatment

directly induces genes in the cholesterol-lipid metabolism, steroid biosynthesis and oxidation-

reduction pathways, which are some of the basic biological processes involved in maintaining

normal follicular development [66–68], further highlights the importance of androgens in fol-

licular development. Given that preovulatory androgens are essential for normal ovarian func-

tion and female fertility, while excess androgen is one of the well-established underlying causes

for PCOS, we propose that there exists a critical balance between the essentiality of androgens

for normal follicular function and the detrimental effects seen in hyperandrogenic conditions.

For example, a number of genes like Lhcgr [69], Angpt1 [70] andMmp2 [71], that were upregu-

lated following androgen treatment (RNA-seq data), not only play critical role in follicular

development but have also been shown to be elevated in PCOS patients.

Moreover, androgen treatment also resulted in downregulation of 61 genes. Interestingly,

comparison of the RNA-seq and ChIP-seq dataset revealed that out of all the downregulated

genes, only 6 genes had higher H3K27me3 mark (Fig 2C). This suggests that androgen-

induced downregulation of genes may be a secondary effect of androgen treatment. For exam-

ple, we have reported previously [38] that androgens induce the expression ofmiR-101 that in

turn downregulates the expression of Ezh2. Another example is androgen-induced expression

ofmiR-125b that decreases the expression of pro-apoptotic proteins [5].

Second, we have performed ChIP-seq analysis in GCs to determine the DHT-induced

changes in H3K27me3, which is a gene silencing mark. Control of gene expression is exerted

at a number of levels, one of which is the accessibility of genes and their controlling elements

to the transcription machinery. Accessibility is dictated broadly by the degree of chromatin

compaction, which is influenced in part by post-translational histone modifications. Our

results highlight an important concept: in GCs, in addition to the genomic actions of andro-

gens through the “classical” AR-ARE binding, androgen-induced decrease in H3K27me3

mark is another avenue through which androgens can regulate gene expression. The fact that

we identified only 190 DEGs (from RNA-seq study) that are directly regulated by androgens in

contrast to 2462 genes (from ChIP-seq) that specifically had lower H3K27me3 mark in DHT-

treated GCs, clearly shows that androgen-induced modulation of H3K27me3 mark has a

much broader impact than the direct effects of androgens on GC function. On the basis of our

present study, we propose that in GCs, androgens prime the promoter and/or enhancer

regions of genes by lowering the H3K27me3 mark, that enables other transcription factors to

induce the expression of these genes. In fact, we have reported previously [38] that Runx1,

a gene critical for ovulation, is one such downstream target and androgens remove the

H3K27me3-repressive mark from the Runx1 promoter. This enables the hCG-induced tran-

scription machinery to access the Runx1 promoter region leading to increased expression of

Runx1. Intriguingly, previous studies have reported that androgen treatment increases the

expression of genes like Fshr [6,72–75] and Cyp19a1 [1,76,77] that are critical for follicular
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development. However, there was no evidence that these genes are direct targets of AR-ARE

mediated actions. Prior to this study, it was not known how androgens regulated the ex-

pression of these critical ovarian genes to promote ovarian function and female fertility, in

general. We now show that androgen treatment significantly lowers the H3K27me3 mark in

the gene body of Fshr and Cyp19a1 which provides a mechanistic explanation of how andro-

gens, independent of AR-ARE interaction, through H3K27me3 modulation may influence the

expression of these genes. Moreover, some of the genes with lower H3K27me3 mark on the

gene body/enhancer regions following DHT treatment, like Cyp19a1 [78], Adamts15 [79]

Casp7 [80], Erbb4 [81] and Lepr [82] have been reported to be elevated and/or associated with

PCOS.

Third, our studies highlight that in GCs, androgens modulate the H3K27me3 mark by bal-

ancing the expression and activity of two opposing epigenetic enzymes, EZH2 and JMJD3.

While on one hand androgens inhibit EZH2 [38], which causes the tri-methylation of H3K27,

androgens also induce the expression of Jmjd3, which is a histone demethylase that specifically

removes the tri-methylation mark from H3K27 (Fig 4F). Moreover, in addition to the ‘geno-
mic’ effects of AR, it is well-established that androgens can also induce transcription-indepen-

dent ‘non-genomic’ effects [40–42,45]. Our studies not only establish HIF1α as one of the

downstream targets of non-genomic androgen actions, but also demonstrate that androgens

indirectly induce the expression of Jmjd3 in GCs. Studies [83] in rat models show thatHif1α is

expressed in the GCs throughout follicular development (from primary to pre-ovulatory folli-

cles). Moreover, in pre-ovulatory follicles, Hif1α gene expression has been reported to be regu-

lated by the actions of progesterone–progesterone receptor [84]. It is possible that dependent

on the stage of follicular development, HIF1α may be regulated by different steroid hormones.

For example, based on AR expression level at different follicular stages [1,85] as well as studies

on androgenic effects during follicular development [4], it is believed that AR-mediated

actions are predominantly in the pre-antral and small antral follicles and these effects diminish

as the follicle develops to large antral/pre-ovulatory stage. Therefore, it can be speculated that

in the pre-antral and small antral stages, androgens regulate HIF1α protein levels and follow-

ing the LH surge, progesterone becomes the primary regulator ofHif1α. Further studies are

needed to establish this hypothesis. Given that androgens increase HIF1α protein levels, it is

likely that in addition to Jmjd3 expression, other HIF1α-target genes also get induced follow-

ing androgen treatment. Intriguingly, a large number of upregulated genes in our RNA-seq

data are HIF1α target genes. For example, Bmp4 [86,87], Angpt1 [88],Mmp2 [89,90], Has2
[91], Pcsk9 [92], Erg (ETS transcription factor) [93,94] and Ifitm1 [95] are some of the genes

that have previously been reported to be HIF1α target genes. Studies [96] in cancer cells have

reported significant crosstalk between AR and HIF1α. Co-immunoprecipitation assays have

confirmed a direct interaction between AR and HIF1α, and ChIP analysis showed HIF1α
interacts with the AR in genes involved in prostate cancer [96]. Similar interactions may also

occur in the GCs.

Interestingly our studies also show that in addition to lowering the gene repressive

H3K27me3 mark, androgens increase the gene activating H3K27ac mark. This is in accor-

dance with previous studies that show reciprocal changes of H3K27ac and H3K27me3 modifi-

cations at the promoter regions of genes [97,98]. Moreover, EZH2 (inhibited by androgens)

may function as an “on-off” switch, that acts not only as a critical epigenetic repressor, but also

as an activator for specific downstream targets [99]. The EZH2 molecular switch functions

mainly between H3K27me3 repressive mark and H3K27ac positive mark. EZH2 antagonizes

CBP/p300 actions (primary enzyme for acetylation of lys-27 on H3) and inactivation or

decrease of EZH2 increases CBP/p300-mediate acetylation of H3K27 [98,100]. Therefore, it is

possible that in GCs, androgens by inhibiting Ezh2 and inducing Jmjd3 expression lower
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H3K27me3 mark and also simultaneously increase the H3K27ac mark. Further studies are

needed not only to establish this hypothesis but also to determine the H3K27ac pattern with

respect to gene expression in GCs following androgen treatment.

In summary, given the role of androgens in female fertility and women’s health in general,

results of this study provide a global perception of androgen effects in follicular function and

insights into the androgen-induced molecular mechanisms responsible for normal ovarian

physiology as well as for disease conditions like PCOS.

Materials and methods

Details of all experimental methods are provided in the supplemental information (S1 Text).

Ethics statement

Mouse studies were performed in accordance with the guidelines for the care and use of labo-

ratory animals and were approved by the Institutional Animal Care and Use Committee

(IACUC) at MSU under the approval number PROTO202000156.

Animals and cell culture

Unless otherwise mentioned, mouse experiments were performed in 8–9 week old C57BL/6J

mice (The Jackson Laboratories). Collection and culture of mouse GCs were performed as

described previously [5,38,44,98,101–103]. Different concentrations of DHT (5nM, 10nM and

25nM) were used to determine the effect of androgen on HIF1α, JMJD3 and H3K27me3 levels

(S6A Fig) as well as gene expression of Bmp4, Angpt1, Lhcgr and Mmp2 (S6B Fig). All DHT

concentrations showed similar results and based on our previous studies [38,45] 25nM DHT

concentration was selected. DHT instead of testosterone was used in order to avoid misinter-

pretation of results due to aromatization of testosterone to estradiol.

siRNA knockdown experiments

siRNA-mediated knockdown experiments in primary mouse GCs [5,98,103] and ovarian bur-

sal injections [5,38] were performed as previously described.

Chromatin immunoprecipitation (ChIP) assay

ChIP was performed as previously described [5,38,98,103,104] and List of ChIP primers (S4

Dataset) and antibodies (S7A Fig) are provided in the supplemental data.

RNA isolation, RNA-seq and Bioinformatics analysis

Total RNA isolation, library construction and RNA-sequencing services were carried out by

Genewiz, Inc. Details of the RNA isolation, RNA-seq and bioinformatics analysis of RNA-seq

data are provided in the supplemental material.

A list of all the differentially expressed genes is shown in S1 Dataset. The RNAseq data is

available in the Gene Expression Omnibus GSE152727 (https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE152727).

Chromatin immunoprecipitation-sequencing (Chip-seq)

Chromatin isolation, chromatin shearing, ChIP, library preparation and Bioanalyzer QC was

performed by EpiGentek, details of which are provided in the supplemental material. The
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ChIPseq data is available in the Gene Expression Omnibus GSE152791 (https://www.ncbi.

nlm.nih.gov/geo/query/acc.cgi?acc=GSE152791).

Supporting information

S1 Fig. Sample similarity assessment: The overall similarity among samples were assessed

by the euclidean distance between samples. The shorter the distance, the more closely related

are the samples.

(TIF)

S2 Fig. Different genomic annotations associated with genome wide H3K27me3 peaks in

granulosa cells treated with (treatment group) or without (control group) DHT (25nM for

24h).

(TIF)

S3 Fig. A: HIF1α response elements (HRE) in Jmjd3 promoter region. B: Relative expression

ofHif1αmRNA levels by quantitative PCR in mouse primary GC cultures treated with media

(control) or DHT (25nM for 24h). C: Androgens do not suppress HIF1α protein degradation.

Time course of HIF1α protein degradation in presence of the translational inhibitor cyclohexi-

mide (CHX, 1μM) in mouse primary GC cultures treated with media (control) or DHT (25nM

for 24h). D: Jmjd3 enzymatic activity in mouse primary GC cultures treated with media (con-

trol) or DHT (25nM for 24h) in presence of flutamide (AR inhibitor, 100nM) or LY294002

(PI3K inhibitor, 10μM). Data are displayed as means ± SEM (n = 3 experiments, for each

experiment GCs isolated from 5 mice were pooled together) and normalized to total protein

(P� 0.05, � vsmedia and �� vs DHT).

(TIF)

S4 Fig. A: Anti-H3K27me3 ChIP-assay in primary mouse GC cultures treated with Jmjd3

siRNA, Hif1α siRNA or non-specific (Nsp) siRNA and stimulated with/without DHT (25nM

for 24h) showing H3K37me3 levels within the gene body of Lhcgr (+641/+740 bp from TSS),

Fshr (+379/+488 bp from TSS), Cyp19a1 (+553/+653 bp from TSS) and Runx1 (+579/+693 bp

from TSS). IgG represents non-specific antibody. Values represent percentage input. Data are

displayed as mean ± SEM (n = 3 experiments, for each experiment GCs isolated from 10 mice

were pooled together) and � P� 0.05, vsNon-specific siRNA. B: H3K27ac levels in primary

mouse GCs treated with DHT (25nM for 24h).

(TIF)

S5 Fig. Effect of Clioquinol, a HIF1α activator in presence/absence of AR on JMJD3 and

H3K27me3 levels. Primary mouse GC cultures were treated with AR specific LNA-siRNA or

nonspecific siRNA control, and stimulated with/without DHT (25nM for 24h) in presence or

absence of Clioquinol (50μM).

(TIF)

S6 Fig. A: Effect of different concentrations of DHT on HIF1α, JMJD3 and H3K27me3 pro-

tein levels in primary mouse GC cultures. B: Expression of Bmp4, Angpt1, Lhcgr and Mmp2
with respect to different concentrations of DHT in primary mouse GC cultures. Data are dis-

played as mean ± SEM (n = 3 experiments, for each experiment GCs isolated from 5 mice

were pooled together) and normalized to Rpl19 (P� 0.05, � vsmedia)

(TIF)

S7 Fig. A: Antibody List. B: Taqman Gene expression assay Primers. C: Inhibitor List.

(TIF)
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S1 Dataset. List of differentially expressed genes (control vs DHT).

(XLSX)

S2 Dataset. Genes with H3K27me3 peaks in the gene body of control and DHT-treated

samples.

(XLSX)

S3 Dataset. Genes with promoters overlapping with H3K27me3 peaks in control and
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(XLSX)

S4 Dataset. ChIP primer list.

(XLSX)
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