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The vast potential of non-viral delivery systems of messenger RNA (mRNA) and
plasmid DNA (pDNA) has been demonstrated in the vaccines against coronavirus disease
2019 (COVID-19). Indeed, two formulations of mRNA vaccines from Pfizer–BioNTech and
Moderna were approved for emergency use within one year after the pandemic outbreak,
and have been administered to billions of people worldwide [1]. Furthermore, a pDNA
vaccine developed by Zydus Cadila also obtained emergency approval in India, exhibit-
ing high efficiency for preventing infection in a large clinical trial [2]. These successful
examples prompt further research and the development of vaccines and therapeutics based
on mRNA and pDNA. The target areas are not limited to preventive vaccination for in-
fectious diseases but expand to therapeutic cancer vaccines, genome editing, and protein
replacement therapy.

However, current non-viral systems need improvement. For example, the relatively in-
tense adverse effects of mRNA vaccines, including myocarditis, provoke vaccine hesitancy
and debates about repeated boosting. Thus, safer formulations are in demand for mRNA
vaccines to become platforms for various infectious diseases. Meanwhile, therapeutic
cancer vaccines require more efficient formulations to overcome the immunosuppressive
nature of cancers. For other applications, including genome editing and protein replace-
ment therapy, delivery carriers should reach specific tissues and introduce pDNA and
mRNA without damaging the tissues. The present Special Issue addresses vigorous efforts
to develop mRNA and pDNA delivery systems and apply them to disease treatment to
meet these demands.

The development of non-viral delivery systems has two directions. One focuses on
the general improvement of delivery processes, which includes preventing extracellular
mRNA and pDNA degradation by nucleases, intracellular targeting of mRNA and pDNA
to the desired sites, and prolonging the duration of protein expression from mRNA and
pDNA. In the other direction, delivery systems are fine-tuned for specific purposes, such as
reaching particular tissues and cells to achieve therapeutic goals and stimulating innate
immune systems when used in vaccinations.

Several articles and reviews in this Special Issue address the general development of
delivery systems. Lipid-based systems are among the most advanced techniques, with two
approved mRNA vaccines based on lipid nanoparticles. While numerous reviews focus
on lipid-based delivery systems of mRNA and pDNA [3], Delehedde et al. focused on the
intracellular processing of LNP mRNA [4]. The cellular uptake pathways, the efficiency
of endosomal escape, and the intracellular distribution of mRNA largely influence the
protein expression efficiency from mRNA and the therapeutic potentials. Recent advances
in the molecular design of LNPs allow the modulation of these processes to maximize the
potential of mRNA therapeutics.

LNPs possess strong immunostimulating properties and liver tropisms [5,6], which
may cause problems in applications other than vaccinations and the treatment of liver
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diseases. These issues have motivated many researchers to pursue other delivery op-
tions. Cell-penetrating peptides (CPPs) have several features distinct from LNPs, and
Yokoo et al. reviewed this emerging field [7]. CCPs can work as a ligand to target specific
cells, modulate cellular uptake pathways, and protect mRNA from degradation in the
cytosol. Strikingly, CPPs from arginines and α-aminoisobutyric acid (Aib), the simplest
form of an α,α-disubstituted amino acid, were stably bound to mRNA in the cytosol for
mRNA protection, allowing for prolonged protein expression from mRNA at least for three
days [8]. However, obtaining this functionality using lipids is challenging because lipids
are likely to integrate into membrane components and release mRNA after cellular uptake.

Nasr et al. developed an elaborate design for the co-delivery of mRNA and pDNA [9].
As these two nucleic acid species exhibit different temporal protein expression profiles,
their co-delivery allows the sequential expression of proteins. They first prepared the
core from gelatin and pDNA and coated it sequentially with cationic peptides and mRNA.
Their system provided more efficient protein expression from mRNA and pDNA than
commercial lipid and polymer transfection reagents.

Both cationic lipids and polymers have a toxicity issue, and thus, several clinical trials
of mRNA therapeutics used naked mRNA [10–12]. However, naked mRNA was susceptible
to nuclease attack, requiring systems for improving nuclease stability without cationic
lipids and polymers. Yoshinaga et al. proposed mRNA PEGylation by hybridizing mRNA
with PEGylated complementary RNA oligonucleotides [13]. PEGylation improved nuclease
stability in a test tube. Notably, the translational activity of mRNA was preserved even
after PEGylation, presumably because PEGylated RNA oligonucleotide may be detached
from mRNA selectively in the cytosol during the process of translation [14,15].

Minicircle DNA is a robust technique to improve the efficiency of pDNA delivery.
Minicircles are prepared by removing bacterial backbones from pDNA by recombination.
Their small size is favorable for efficient pDNA introduction. While this technique is
versatile for various biomedical purposes, Rim et al. reviewed its application to cartilage
diseases [16]. The introduction of anti-inflammatory and chondrogenic genes has promise
for treating osteoarthritis and rheumatoid arthritis, which are intractable due to the limited
regenerative capacity of cartilage. Interestingly, the minicircle technique has also been used
for the basic research of cartilage diseases and the preparation of disease models.

Alongside improving the general performance of mRNA and pDNA, fine-tuning the
delivery systems for specific therapeutic purposes is critical. In many therapeutic settings,
efficient and selective delivery of mRNA and pDNA to particular cells and tissues is neces-
sary. Ligands’ introduction to delivery carriers is a well-established method of targeting.
Serra et al. utilized mannose ligands for delivering minicircle DNA to macrophages for
future application in DNA vaccines [17]. Singh et al. equipped selenium-based mRNA
nanoparticles with lactobionic acid, a ligand of the asialoglycoprotein receptor, for targeting
hepatocellular carcinoma [18]. Notably, the compositions of delivery nanoparticles were
optimized to maximize the ligands’ functionalities in both cases.

Modulating the physicochemical characteristics of mRNA and pDNA carriers provides
another option for tissue targeting. For example, negatively charged mRNA lipoplexes se-
lectively accumulated to the spleen after systemic injection, providing an excellent platform
for cancer vaccination [19]. Indeed, one such system demonstrated promising outcomes
in a clinical trial of mRNA-based vaccination for melanoma [20]. Tusup et al. employed
this system for mRNA cancer vaccines targeting CDR3 hypervariable regions of T cell
receptors [21]. This region undergoes gene recombination during T cell development and
thus can be considered a neo-antigen, an effective target of cancer vaccines. Experiments
using a mouse model successfully provided proof of concept for this strategy.

The brain is among the most challenging organs for delivering mRNA and pDNA,
as the blood-brain barrier (BBB) inhibits the transport of materials from the blood to the
brain. One approach to brain targeting is introducing ligands onto delivery carriers, such as
transferrin, to facilitate the transport across the BBB. Alternatively, the BBB can be bypassed
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by injection to the brain parenchyma or cerebrospinal fluids. Hauck et al. reviewed this
research field [22].

Only a small number of organs, such as the liver and spleen, are effectively targeted
by the current delivery systems of mRNA and pDNA. Meanwhile, numerous diseases
require the expression of therapeutic proteins in non-targetable organs. For example, Fabry
disease, caused by the deficiency of a lysosomal enzyme, α-galactosidase A (α-Gal A),
results in the deposition of glycosphingolipids in vascular endothelial and smooth muscle
cells throughout the body. Notably, α-Gal A is secreted systemically once expressed in some
organs. Rodriguez-Castejon et al. utilized this property to introduce α-Gal A pDNA to the
liver using LNPs and successfully treated a mouse model of Fabry disease [23]. Similarly,
the LNP-based delivery of mRNA and pDNA to the liver is often employed to systemically
supply secreted proteins [24].

Vaccination requires unique designs for mRNA and pDNA delivery systems to simul-
taneously induce proper immunostimulation and efficient antigen expression. Complexes
from protamine and mRNA possess these dual functions. Jarzebska et al. reviewed the
research on this system, including its clinical application to infectious disease prevention
and cancer immunotherapy [25]. By incorporating the functionalities of immunostimu-
latory adjuvants into the delivery material, this strategy minimizes the components for
mRNA vaccines. Such minimalistic approaches were employed in other types of nucleic
acid vaccines, including those based on LNPs, as reviewed by Abbasi et al. [26]. No-
tably, the immune receptors responsible for the adjuvant effects have been discovered in
many vaccines.

In addition to the in vivo delivery of mRNA and pDNA, the combination of their
ex vivo delivery with cell transplantation therapy has garnered much attention. In many
clinical trials, mRNA electroporation was used to introduce tumor-associated antigens into
dendritic cells and chimeric antigen receptors or T cell receptors into T cells for cancer
immunotherapy. Campillo-Davo et al. comprehensively reviewed this topic, from the
physics and biology of electroporation to mRNA production and electroporation in clinical
settings [27].

The present Special Issue provides comprehensive reviews of non-viral mRNA and
pDNA delivery by addressing the various delivery technologies of mRNA and pDNA,
from basic research to therapeutic and clinical application.
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