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Abstract
Plankton imaging systems are capable of providing fine-scale observations that enhance

our understanding of key physical and biological processes. However, processing the large

volumes of data collected by imaging systems remains a major obstacle for their employ-

ment, and existing approaches are designed either for images acquired under laboratory

controlled conditions or within clear waters. In the present study, we developed a semi-auto-

mated approach to analyze plankton taxa from images acquired by the ZOOplankton VISu-

alization (ZOOVIS) system within turbid estuarine waters, in Chesapeake Bay. When

compared to images under laboratory controlled conditions or clear waters, images from

highly turbid waters are often of relatively low quality and more variable, due to the large

amount of objects and nonlinear illumination within each image. We first customized a seg-

mentation procedure to locate objects within each image and extracted them for classifica-

tion. A maximally stable extremal regions algorithm was applied to segment large

gelatinous zooplankton and an adaptive threshold approach was developed to segment

small organisms, such as copepods. Unlike the existing approaches for images acquired

from laboratory, controlled conditions or clear waters, the target objects are often the majori-

ty class, and the classification can be treated as a multi-class classification problem. We

customized a two-level hierarchical classification procedure using support vector machines

to classify the target objects (< 5%), and remove the non-target objects (> 95%). First, histo-

grams of oriented gradients feature descriptors were constructed for the segmented ob-

jects. In the first step all non-target and target objects were classified into different groups:

arrow-like, copepod-like, and gelatinous zooplankton. Each object was passed to a group-

specific classifier to remove most non-target objects. After the object was classified, an ex-

pert or non-expert then manually removed the non-target objects that could not be removed

by the procedure. The procedure was tested on 89,419 images collected in Chesapeake

Bay, and results were consistent with visual counts with >80% accuracy for all three groups.
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Introduction
A central goal of plankton ecology is to understand the spatial and temporal dynamics of
planktonic organisms and how they overlap and interact with their environments. While nets
remain the primary sampling tool for zooplankton, imaging systems provide fundamental
measurements and observations that enhance our understanding of key physical and biological
processes at small scales [1]. In the past three decades various optical technologies capable of
imaging zooplankton have been developed, including bench-top type imaging systems such as
ZooScan and FlowCAM [2–4] as well as in situ systems such as the Video Plankton Recorder
(VPR) [5, 6], Underwater Vision Profiler (UVP) [7, 8], ZOOplankton VISualization system
(ZOOVIS) [9], the Lightframe On-sight Keyspecies Investigate System (LOKI) [10], Shadow
Image Particle Profiling Evaluation Recorder (SIPPER) [11, 12], and the In Situ Ichthyoplank-
ton Imaging System (ISIIS) [13]. While the technical advances in hardware allow the deploy-
ment of imaging systems under various environmental conditions, including estuarine systems
[14], extracting useful information from the large numbers of acquired images remains a major
challenge [15–17].

The basic steps to extract information from images acquired by different systems are similar.
The first step is to segment objects, i.e., identify pixels in an image that share certain character-
istics and locate and extract objects [18]. After the object is identified, a set of feature descrip-
tors, e.g., length, area, histogram of oriented gradients (HOG), are selected to describe the
object [19]. Then the segmented objects are mapped from unlabeled instances to classes using
a classifier. In the past two decades, several approaches have been developed to process zoo-
plankton images. For example, Culverhouse et al. [20] used the Artificial Neural Network
(ANN) and the Radial Basis Function classifier along with the multi-layer perceptron classifier
to identify dinoflagellates from images acquired under a microscope. Sieracki et al. [4] devel-
oped a method based on fluorescence and size to separate microzooplankton. Gorsky et al. pro-
posed a procedure using a random forest classifier to process images from ZooScan [21]. Ye
et al. [22] applied a Bayesian approach to process images acquired from ZooScan. Hu and
Davis [23, 24] developed a package for the VPR using the Support Vector Machine (SVM) clas-
sifier. Similar procedures have been applied with other systems, e.g., Shadow Imaging Particle
Profiler and Evaluation Recorder (SIPPER) [25]. However, these methods are designed for im-
ages acquired either under controlled conditions or from in situ imaging systems within clear
waters, where images are more consistent and of high quality.

Processing images acquired from highly turbid waters remains a major challenge. First, re-
duced visibility in high-turbidity waters rapidly attenuates and scatters light, which restricts
the capability of acquiring high quality images, e.g., non-uniform background illumination and
low contrast (Fig 1).This makes it difficult to reliably isolate Regions of Interest (ROIs) or ob-
jects from the background. Second, the high numbers of particles in each image (Fig 1) often
leads to large amounts of segmented objects, and it is difficult to classify them into proper clas-
ses. The first challenge is particularly problematic for imaging systems using scattered light
sources, which attenuates rapidly in high-turbidity waters. However, it could be partially over-
come using shadowgraph imaging, an approach that has been employed with ZOOVIS, ISIIS
and SIPPER. Bi et al. [14] demonstrated that ZOOVIS could acquire images with acceptable
quality in the middle section of Chesapeake Bay during the summer months.

In the present study, we intend to develop a procedure to process the relatively “noisy” and
complex images from turbid waters, like Chesapeake Bay, because the existing procedures are
designed for images collected from waters with high clarity and require a considerable amount
of effort to adapt them to “noisy” images. The procedure includes four steps: segmenting ROIs,
ROI denoising, feature descriptors, and lastly, taxonomic classification using the SVM.
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Methods and Materials

Study site and sampling
The Chesapeake Bay is the largest estuary in the United States, extending approximately 320
km from its head to its mouth near Virginia Beach, Virginia. We deployed ZOOVIS in the
middle portion of Chesapeake Bay near the Patuxent River mouth (longitude range: 76°18´W
—76°20´W, latitude range: 38°20´N—38°23´N) on October 13, 2011. No specific permissions
were required for these locations/activities. The location is not privately-owned or protected in
any way. The field studies did not involve endangered or protected species. The turbidity ran-
ged from 4–8 NTUs in the surveyed region and the Secchi depth was less than 2 m. The vessel
steamed at 1 m s-1 and wire on the winch was paid out, or hauled back at 0.15 m s-1 to deploy
ZOOVIS along an undulating (tow-yo) trajectory. All tows were within 2 m from the bottom
to avoid possible damage to ZOOVIS and within ~ 1 m from the surface to avoid imaging with-
in the bubble field of the ship’s wake. Grayscale images, 2448 by 2050 pixels with pixel resolu-
tion ~10 μm, were acquired at approximately 15 Hz.

In total, 89,419 images were acquired during the deployment. Images acquired within the
study area were generally darker with relatively low contrast, so it was difficult to separate or-
ganisms into detailed taxonomic groups. Meanwhile, the abundances of some organisms were
rare within the sampling area, e.g., larval fish and mysids, it was difficult to separate these or-
ganisms into proper taxonomic groups with enough individuals to build a proper library for
classification. In the present study, all the images were visually counted and organisms were
classified into categories: arrow-like organisms including chaetognatha and larval fish, cope-
pod-like organisms including copepods, amphipods, mysids, and other crustaceans and gelati-
nous zooplankton including ctenophores and hydromedusae. In the present study, the semi-
automatic procedure was developed in MATLAB 8.3 using the computer vision toolbox and
statistical toolbox (The MathWorks Inc., Natick, MA, 2014).

Fig 1. An example of a raw image collected by the ZOOplankton VISualization system in Chesapeake
Bay, showing the large amount of particulates along with an arrow worm.

doi:10.1371/journal.pone.0127121.g001
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Thresholding grayscale to binary images and segmenting ROIs
Due to the non-uniform illumination over the field of view, it is difficult to use a single global
threshold value to convert the grayscale images to binary images, i.e., all the pixels below the
threshold value are black and all those above or equal are white. Global threshold approaches
can cause two types of problems. First, large gelatinous zooplankton, are often segmented
into separate objects, and it is time-consuming and complex to merge these parts together
after segmentation. Secondly, (Fig 2A and 2B) small organisms like copepods are often
missed (Fig 2B).

For large ROIs (> 5000 pixels, ~0.5 mm2), we applied Maximally Stable Extremal Regions
(MSER) to identify connected areas characterized by similar intensity and surrounded by con-
trasting backgrounds [26, 27]. The basic concept of MSER is similar to thresholding, except
that MSER only selects the regions which remain nearly the same over a range of thresholds.
The number of areas identified largely depends upon the step size between the intensity thresh-
old levels, and the maximum area variation between extremal regions at varying intensity
thresholds. Large gelatinous zooplankton, with both transparent and more opaque body parts
had different intensities, so we specified a relatively high area variation and a small step size to
maintain their integrity (Fig 2C). In doing so, the procedure returned a large amount of small
ROIs, so that in the present study this procedure was only applied to ROIs with> 0.5 mm2.

We also developed an adaptive threshold approach which worked well on small organisms.
Considering the gray level distribution of images were different among individual images, we
first determined the range of gray levels (Eq 1). Specifically, the variance between the fore-
ground and background was computed for the original image based on Otsu’s method [28],
and then the variance was calculated using a smoothed histogram of gray levels with a window
size of 5.

S ¼ arg max
T

fW0ðTÞ � ðm0 � mtÞ � ðm0 � mtÞ þW1ðTÞ � ðm1 � mtÞ � ðm1 � mtÞg ð1Þ

Where, S is the variance, T is a global threshold ranging from 0 to 255. w0(T) and w1(T) are
the percentage of foreground and background pixels in the full image, μ0 and μ1 are the mean
gray value of foreground and background pixels respectively, and μt is the mean gray value of
the full image.

Then the Sauvola adaptive thresholding approaches [29] were used to convert grayscale im-
ages to binary images (Eq 2).

Tði; jÞ ¼ mði; jÞ 1þ k � Sði; jÞ
R

� 1

� �� �
ð2Þ

Wherem(i, j) is the average and standard deviation value of the sliding window, k is a posi-
tive value based on the variance between foreground and background, and R is the maximum
value of the standard deviation (R = 128 for a grayscale image) with the sliding window size as
77�77 pixels (~ 3% of image size). In present study, we tested the adaptive algorithm on a set of
35 pre-selected images which had different a number of copepods in each of them. By varying
k and visualizing the segmented ROIs, the number of missing copepods, i.e., copepods were
not segmented, were recorded and then k was determined by identifying the value with the
minimum number of missing copepods. In the present study, k was set at 0.6.

The adaptive threshold procedure performed well for small organisms such as copepods,
which often have a solid darker foreground. Yet for larger organisms, such as hydromedusa,
the procedure most often divided them into pieces (Fig 2D). Consequently, this lead us to
combine two binary images, to get a final binary image. From the combined binary image the

Plankton Image Analysis

PLOS ONE | DOI:10.1371/journal.pone.0127121 May 26, 2015 4 / 17



connected components were then identified. The pixel indexes for each connected-component
image region, along with other statistical properties such as length of major and minor axes,
the area of each object and bounding box were extracted. Each connected component was then
treated as a ROI, cropped from the original image, and saved for the next step.

Fig 2. An example of a raw image collected by the ZOOplankton VISualization (ZOOVIS) system in
Chesapeake Bay, and results from various thresholding approaches: A ZOOVIS image showing a
hydromedusa, copepods and other particulates. B Binary image from the global threshold approach showing
the amount of segmented objects,C Binary image fromMaximally Stable Extremal Regions (MSER)
approach showing hydromedusa and other large particulates, D Binary image from the customized adaptive
thresholding approach showing copepods and other small particulates, and E Final combined binary image
with red boxes showing the segmented objects.

doi:10.1371/journal.pone.0127121.g002
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ROI denoising and feature descriptors
The above segmentation procedure intended to crop a ROI with a rectangular bounding box to
contain a single object, however, there were often multiple objects in an individual ROI (Fig
3A–3C). To filter out “bad components” and exclude them from the list of components, the
ROI was first converted to a binary image using the global threshold method. The size of ROI
was relatively small relative to the entire image (2448 by 2050 pixels), consequently its back-
ground tended to be more uniform. We chose to use the global threshold approach. Once the
ROI was converted to binary format, the connected components were identified. Grayscale val-
ues for the largest connected component were extracted from the original ROI and the rest of
the connected components were assigned with the average gray value. We used the gray values
from the original ROI instead of the binary values to retain internal structure, with special re-
gard to gelatinous zooplankton, and then we constructed texture features for each ROI.

To analyze the patterns in the segmented ROIs and classify them into different classes, the
ROIs were normalized. Then, Histogram of Oriented Gradients (HOG) features [30, 31] were
constructed to describe the shape for each ROI. To construct a HOG feature descriptor, each

Fig 3. Examples of model species and construction of feature descriptor. A—C: Examples of segmented arrow-like, copepod-like, and gelatinous
zooplankton, D—E: standardized (250 by 250 pixels) denoised cropped images, and F—H: Histogram of Oriented Gradients feature descriptors for
three categories.

doi:10.1371/journal.pone.0127121.g003
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normalized ROI was decomposed into small, squared cells so that each cell had 16�16 pixels.
Then, each cell was represented by a histogram of edge orientations and in the present study we
set the number of orientation histogram bins to 9 (Fig 3G–3I). The cell size was determined by
varying the HOG cell size, 8�8, 16�16, and 32�32, visualizing the results, and then examining the
effect of the cell size on the amount of shape information. Increasing and decreasing cell sizes
were potentially useful for capturing large-scale and small-scale spatial features, respectively.

SVM classifier
Images acquired under laboratory controlled conditions or within clear waters tend to have
much less non-target objects, i.e., non-target objects are the minority and target objects are the
majority class. In existing approaches, ROIs are directly classified into different classes with all
non-target objects lumped together as one class. Whereas in images acquired from turbid wa-
ters, non-target objects, the majority class, often significantly outnumber the target objects, the
minority class. In the present study, the target objects in each image made up< 5% of the total
segmented objects. Non-target objects can take various forms and certain types of non-target
objects are similar to a specific group of organisms. For example, air bubbles in near surface
water generated by boat propellers, are often similar to jellyfish in terms of shape and size and
some particulates are similar to arrow worms. Therefore, we designed a two-step procedure
using SVM techniques.

Representative images for each taxon were selected and the ROIs were manually cropped
which served as the target objects in the library. The SVM classifier (described next) was first
trained using the library. Each segmented ROI was first re-sized to 250�250 pixels (2.5�2.5
mm2), the same order of the size of a copepod, but slightly larger. The HOG feature descriptor
was constructed for each ROI and compared against the target objects. Then each segmented
ROI, regardless of whether or not it contains a target object, will be classified into one of three
classes: gelatinous zooplankton, arrow-like, and copepod-like. In this step, some ROIs were ac-
tually classified into more than one class.

In the second step of classification, we constructed a specific classifier for each group. Repre-
sentative images for each taxon were selected and the ROIs were manually cropped, which
served as the target objects in the library. A SVM classifier was trained for each class. Similar to
the first step, the ROI was normalized to 150�150 pixels (1.5�1.5mm), about the size of a large
copepod, Eurytemora affinis, a common species in the Bay. Then HOG feature descriptors
were constructed and compared against the library. In this step, the SVM classifier is a group
specific binary classifier (true or false) for each taxon.

The SVM is a relatively new learning method used for binary classification. In contrast with
classical statistical approaches where the dimensionality of a feature’s space is decreased to con-
trol the performance, the SVM dramatically increases dimensionality, relying on large margin
factors or supporting vectors [32, 33]. In short, the SVM discriminative classifier is defined by
a hyperplane, instead of a single line to separate data perfectly into two classes. Furthermore,
the identified hyperplane has an equal distance to the two classes. SVMs are inherently two-
class classifiers. To extend this approach to multiclass classification, the most common way is
to build one-versus-rest classifiers (commonly referred to as “one-versus-all”), and to choose
the class which classifies the test datum with the greatest margin. We used a simple linear clas-
sifier, f(X) =WTX+b to map each ROIs to different classes, where W is a weight vector, X is a
feature vector, b is the bias.

The SVM classification has been applied to plankton classification by Hu and Davis [23] and
Luo et al. [34, 35]. In the present study, there are three classes that constitute this step. First,
each model species or ROI was translated into one observation with paired values: a vector of x
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and a predicted value of y, where x is a vector containing the HOG descriptors, and y is the pre-
dicted value. For example, let the vector x contain information for copepods; if the ROI contains
a copepod, y would be 1 and if the ROI did not contain a copepod y would be 0. In the first step,
the training library included the following images; 80 arrow-like, 65 copepod-like, and 65 gelati-
nous zooplankton. These model images represent organisms with different shapes, sizes,
and orientations.

In the second step, each ROI was passed through a group-specific binary SVM classifier
trained to separate target and non-target objects. For example, the library for copepod-like ob-
jects includes 65 ROIs that contain a copepod and 985 ROIs that do not. Similar classifiers
were built for arrow-like organisms and gelatinous zooplankton. These classifiers could be
built through a reiterative process. For example, our library for the copepod-like group initially
only contained copepods and a few non-copepods. We applied the procedure to 400 randomly
selected images and visually examined the resulted ROIs, which all were supposed to contain a
copepod. Those ROIs that did not contain a copepod were moved into the library as non-target
objects. The schematic flowchart in Fig 4 illustrates the proposed procedure.

Validation
The performance of the classifier is often evaluated by a confusion matrix showing the pre-
dicted and actual classifications [19]. Through this matrix, various measurement can be calcu-
lated. In the present study, we were not able to track non-target objects classified by the
classifier because in general there were hundreds, sometimes thousands, of non-target objects
within each individual image (89,419 images in total). Furthermore, the computational de-
mands to write out those non-target objects, classified by the classifier, and to then perform vi-
sual counts is too high. Therefore, we only calculated the true-positive rate, the rate to which
target objects were classified as target objects by the classifier. The false positive rate, the rate
by which non-target objects were classified as target objects by the classifier, and precision, the
percentage of true-target objects in the target objects classified by the classifier.

We performed visual counts on over 89,419 images to get the total number of target objects,
and then we examined the target objects identified by the classifier to separate true-target ob-
ject and false-target objects. All images were manually visualized and organisms within each
image were enumerated by one person (H. Bi) to reduce potential inconsistency.

Results
Out of the 89,419 images, a total of 7026 copepod-like organisms, 116 gelatinous zooplankton,
and 146 arrow-like organisms were visually counted. Copepod-like organisms (primarily cope-
pods) were encountered in 5372 (~6%) images, gelatinous zooplankton (primarilyMnemiopsis
leidyi and Liriope tetraphylla) in 115 (~0.13%) images and arrow-like organisms (primarily
chaetognatha) in 142 (~0.16%) images. Note that many organisms such as the large gelatinous
zooplankton and arrow-like organisms in particular, were distinguishable but out-of-focus,
which could lead to an overestimation of their abundances because imaging volume only con-
sidered in-focus organisms.

The semi-automated procedure yielded 6293 copepod-like organisms from 5333 (~6%) im-
ages, 92 gelatinous zooplankton from 92 (~0.10%) images, and 128 (~0.14%) arrow-like organ-
isms from 119 images. The number of organisms classified by the semi-automated procedure
tended to be lower than the visual counts with copepod-like organisms (~10% lower), gelati-
nous zooplankton counts were ~20% lower, and arrow-like organisms were ~13% lower. The
overall true-positive rate was>80 for all three classes. The procedure performed well on cope-
pod-like organisms and extracted copepods with different orientations and sizes (Fig 5). The

Plankton Image Analysis

PLOS ONE | DOI:10.1371/journal.pone.0127121 May 26, 2015 8 / 17



Fig 4. A schematic flow chart showing the proposed image processing procedure.

doi:10.1371/journal.pone.0127121.g004
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semi-automated program was capable of extracting a wide range of gelatinous zooplankton
with different sizes (Fig 6), but gelatinous zooplankton remained the main challenge for the
program because some of them were segmented into different parts, although the duplicated
parts were removed from the result in the present study. Overall the false positive rate appeared
to be closely related to how representative the model species was. Note that the procedure was
initially tested with 7 arrow-like organisms and 26 gelatinous zooplankton and resulted with
~30–40% of target objects being misclassified as non-target objects for both gelatinous zoo-
plankton and arrow-like organisms.

Discussion

1. Challenges
Like any other existing approach, the first set in the current procedure is isolating objects from
the background which turns out to be very challenging. Images acquired from turbid waters
are often characterized by non-uniform background and low contrast ratios between objects
and background. Estuarine systems are often characterized by distinct vertical structures, often
with particle-laden, low-salinity water on top of the relatively clear high-salinity coastal water.
In the present study, the imaging system was towed with an undulated trajectory and resulted

Fig 5. Example of copepods extracted with different sizes and orientations using the computer from
the semi-automated procedure. Note the cropped images were denoised and then classified by
the classifier.

doi:10.1371/journal.pone.0127121.g005
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in images with different qualities. Furthermore, when the system was towed near surface, im-
ages often contained low amounts of air bubbles generated by boat propellers. The hybrid pro-
cedure developed here is more consistent in terms of isolating individuals. However, there are
still a few issues. First, it is difficult for the procedure to separate large organisms on the edge
from the background because the edge tends to be dark due to nonlinear illumination. Second,
when an organism is connected with another object or organism, the procedure will segment
them as one ROI. Finally, some organisms will be cut into various parts, gelatinous zooplank-
ton in particular, due to different intensities of different body parts causing duplicated counts.

Most existing approaches in plankton imaging recognition use a flat multi-class classifier in
which non-target objects are often pooled together as one class and the amount of non-target
objects tend to be smaller than the present study. In turbid waters, there are often large
amounts of particulates, hundreds if not thousands in each image, in the water column, espe-
cially in estuarine waters, which can exhibit diverse morphology similar to living organisms.
This will cause problems in two different aspects. First, the presence of a large number of non-
target objects will cause some statistical problems which could be biased towards non-target
objects [36]. Second, non-target objects with diverse morphology make it difficult to separate
them from the target objects. The magnitude of this problem is contingent on the amount of
detritus in the water column. In the present study, we customized a two-step classifier. In the

Fig 6. Example of ctenophores and hydromedusae with different shapes and sizes extracted using the semi-automated procedure.Note the
cropped images were denoised and then classified by the classifier.

doi:10.1371/journal.pone.0127121.g006
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first step, all objects including both target and non-targets will be separated into three different
classes based on their shapes. The rationale for this step is that some non-target objects are sim-
ilar to a specific group of organisms, e.g., air bubbles versus jellyfish and long particulates ver-
sus arrow worms. Once objects are classified into different categories, they will be again
classified into group-specific binary classifiers. In this second step, the majority of non-target
objects are removed.

2. Performance of the procedure
The proposed procedure satisfies our need to process large amounts of images acquired from
highly turbid waters with a precision> 80% for all three categories. There were very few non-
targeted objects that occurred in the gelatinous zooplankton and arrow-like groups, however
the number of non-target objects tended to be high in the copepod-like group. The relatively
high false positive rate related to the copepod-like group was due to the different orientations
and sizes of copepod-like organisms, which make it difficult to distinguish them from the par-
ticulates in various forms. For the gelatinous zooplankton group, there is still duplication
caused by the segmentation procedure, because their body parts (hard tissue versus soft tissue)
tended to have different intensities. To increase the precision, we performed a visual examina-
tion on the segmented ROIs that were classified as target objects by the classifier, to remove the
false positives in each group.

The performance of the semi-automated procedure is a compromise between the true-
positive rate and false positive rate. Lowering the false positive rate, often requires increasing
the number of non-target objects in the library to better represent all non-target objects in the
images and better train the classifier. This often leads to a low true-positive rate because an
SVM classifier, trained on an imbalanced dataset, often produces models which are biased to-
wards the majority class and have low performance on the minority class [36]. Chang et al.
[37] also reported that balanced training had higher accuracy at recognizing rare taxa but low
accuracy at abundant taxa. In the present study, the ratio of target objects (minority class) and
non-target objects (majority class) in the library was ~ 8% and was consistent with the ratio in
the images 1–5%. In the customized procedure, we controlled the false positive rate (<10%)
and accuracy (>80%) and then manually removed the misclassified non-target objects (false
positives) to increase accuracy to a maximum level.

The performance of the customized procedure for rare groups is closely related to number
of model species in the library during the binary classification step. The number of model spe-
cies, i.e., how representative the model species are, is essential to the performance of the proce-
dure. In the present study, we found that by increasing the number of model species for rare
organisms, e.g., gelatinous zooplankton and arrow-like organisms, we could significantly re-
duce the number of target objects which were classified as non-target objects by the classifier.

Another important factor that can affect the true-positive rate and false positive rate is the
feature descriptor. The HOG descriptors were adopted to train the SVM classifier. We tested
the potential of using statistical properties including size, axis length etc., and the procedure
yielded a large amount of false positives because there were large amounts of particulates in the
estuarine water with similar statistical features as organisms. The cell size for the HOG descrip-
tors could have a large impact on the missing rate and error rate. Large cell size, i.e., intensity
gradient over a large area, means fewer feature descriptors and coarse resolution, which leads
to higher false positive and true-positive rates. To contrast this, small cell sizes mean more fea-
ture descriptors and fine resolution, which leads to lower false positive and true-positive rates.

Another important factor to consider is the processing speed, especially with the large
amount of images collected in each cruise. The processing speed varies a lot depending on the
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contents, i.e., the number of segmented objects, in each image. However, a general rule for the
SVM classification is that an increase in dimensions, including number of groups, number of
model species in the library, and number of feature descriptors will slow down the processing
speed. Our customized procedure was tested on a small workstation with an AMD Optimum II
processor and resulted in an acceptable processing speed of 8,000–12,000 images per day, de-
pending on the contents. Increasing the dimension could lead to better control of the error rate
and missing rate at the expense of processing speed. The semi-automated procedure is a com-
promise between error rate, missing rate, and processing speed. However, there is no quantita-
tive measurement to evaluate the performance due to the complex nature of image processing
and classification.

The difference between visual counts and the computer-based procedure arises from two
different aspects: inaccuracy in visual counts, and potential errors from the semi-automated
procedure. One of the main obstacles for visual counting was to consistently separate in-focus
individuals from those that were slightly out-of-focus (Fig 7a), whereas the computer-based al-
gorithm only identifies objects with full features, e.g., copepods (Fig 7b), and is more consis-
tent. Culverhouse et al. [38] showed that human experts were not 100% accurate in plankton
identification and even trained personnel can be expected to achieve 67 to 83% self-consisten-
cy. Therefore, the difference between visual counts and the semi-automated procedure could
be partially attributed to the inaccuracy in the visual counts. To better understand the perfor-
mance of the computer procedure, we need to estimate the error rate in visual counts.

3. Conclusion and future developments
Here we have shown a robust procedure to separate objects from non-uniform background. It
could be enhanced in several different ways. We can apply noise reduction techniques to en-
hance image quality [39, 40] or use an advanced background removal procedure to address the
non-uniform illumination [41] to better separate objects from their background. While these
techniques will certainly improve the performance of the procedure, the improvements come
at a price of high computational demand. Given the large volume of images from the in situ im-
aging systems, it is necessary to control computational demand.

Classification is an integral part of plankton image analysis. Babbar et al. [42] showed that
when the classification problem is highly unbalanced, hierarchical classifiers would perform
better than flat multi-class models. In the present study, we employed a two-level hierarchical
model and results are promising. In the future, we will move towards a multi-level hierarchical
model and conduct comparisons among different classification models. Meanwhile, it is im-
portant to determine the proper number of classes/groups to optimize a classifier. As the num-
ber of classes increases, so do the computation demands and the false positive rate. Selecting an
appropriate number of categories is therefore a balance between adequate taxonomic discrimi-
nation and classifier accuracy. Rare species will continue to be a major challenge because a
well-trained classifier requires a library that can represent all objects that it will encounter. Rel-
atively large gelatinous zooplankton are problematic, mainly due to variations in tissue opacity,
which are represented with different intensities within the grayscale images, and quite often
segmented into separate objects rather than as a whole organism. The development of an algo-
rithm that equalizes the light illumination to segment gelatinous zooplankton without cutting
them into multiple parts is also important.

There is also a need to determine the optimum number of classes, which is a balance between
increasing precision and processing time. We need to develop a quantitative approach that pro-
duces a detailed comparison on the performance with a different number of classes. We also
need to evaluate how the imbalanced classifier affects the performance of the procedure when

Plankton Image Analysis

PLOS ONE | DOI:10.1371/journal.pone.0127121 May 26, 2015 13 / 17



Fig 7. An example of image comparing visual counts and results from computer-based procedure. A)
A raw image contains copepods showing copepods in focus indicated by red boxes and out of focus indicated
by yellow boxes.B) The same image processed by the computer-based procedure with red boxes indicating
segmented objects and resulting copepods were numbered.

doi:10.1371/journal.pone.0127121.g007
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the non-target objects makes up>95% of the segmented objects. Furthermore, we need to build
training sets that are representative of the spatial and temporal diversity of zooplankton taxa
present in the study area, so that appropriate training sets are available to train the classifier
based on the presence of rare or particular taxa of interest.

Our work underscores the challenges involved with developing semi-automated procedures
for plankton identification, especially with images collected from highly turbid estuarine wa-
ters. Regardless, it has proved to be a promising technique that was able to produce estimates
similar to visual counts. We have tested different types of feature descriptors, but with limited
success in terms of controlling the precision, false positive rate and processing time. Develop-
ment of useful feature descriptors, e.g., fast identification of the presence of key features such as
antenna for copepods, would improve the accuracy of the semi-automated procedure.

Fast and accurate image processing and classification remains a major bottleneck for the
deployment of in situ plankton/ichthyoplankton imaging systems. The proposed procedure in
the present study was built in Matlab. Like other existing techniques, the procedure can process
images in common forms, thus it can be easily adapted to different imaging systems. As image
processing theories and techniques advance, we expect new tools will continue to emerge and
facilitate the development of semi-automated plankton imaging analysis and identification.

The source code is available at https://github.com/bihshlsu/ZOOVIS_image_processing.git.
Raw images are available upon request. Please contact Hongsheng Bi at hbi@cbl.umces.edu.
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