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Abstract

Despite considerable interest in enhancing, preserving, and rehabilitating working memory (WM), 

efforts to elicit sustained behavioral improvements have been met with limited success. Here, we 

paired WM training with transcranial direct current stimulation (tDCS) to the frontoparietal 

network over four days. Active tDCS enhanced WM performance by modulating interactions 

between frontoparietal theta oscillations and gamma activity, as measured by pre- and post-

training high-density electroencephalography (EEG). Increased phase-amplitude coupling (PAC) 

between the prefrontal stimulation site and temporo-parietal gamma activity explained behavioral 

improvements, and was most effective when gamma occurred near the prefrontal theta peak. These 

results demonstrate for the first time that tDCS-linked WM training elicits lasting changes in 

behavior by optimizing the oscillatory substrates of prefrontal control.
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1. Introduction

Working memory (WM), the mental workspace in which information is maintained and 

manipulated, is capacity-limited to ~4 items (Cowan, 2001). As the foundation of successful 

cognitive performance, it is understandable that WM improvement is sought through 

training (Morrison and Chein, 2011; von Bastian and Oberauer, 2014; Berryhill, 2017). Yet, 

WM resists reliable, generalized improvement. Studies of cognitive training are plagued 

with mixed results and report little to no transfer of training gains (Morrison and Chein, 

2011; Sala and Gobet, 2017; Nguyen et al., 2019; Schwaighofer et al., 2015). Augmenting 

WM training with noninvasive neurostimulation, such as transcranial direct current 

stimulation (tDCS), has shown promise in enhancing behavioral outcomes beyond training 

alone (Berryhill, 2017). Noninvasive neurostimulation techniques such as tDCS modulate 

the resting potentials of underlying neuronal populations (Nitsche and Paulus, 2001; Stagg 

and Nitsche, 2011; Nitsche et al., 2008) and are thought to facilitate neuroplasticity (Filmer 

et al., 2014). Specifically, tDCS interacts with multiple neurotransmitters and 

neuromodulators (Stagg and Nitsche, 2011) and increases the hemodynamic response within 

stimulated regions (Jones et al., 2015; Muthalib et al., 2018). In addition to these 

physiological effects, recent research reports that tDCS also affects neural oscillations (Luft 

et al., 2018; Reinhart et al., 2015), and enhances both functional and resting state 

connectivity (Kunze et al., 2016; Mangia et al., 2014; Park et al., 2013). However, the 

absence of a mechanistic account of tDCS-linked performance gains remains a critical gap 

in knowledge.

Here, we used high-density electroencephalography (EEG) combined with current modeling 

to investigate how four sessions of WM training paired with frontoparietal tDCS improved 

young adults’ WM. Previous analysis revealed that active tDCS strengthened the task-

relevant frontoparietal network, as demonstrated by increased theta (4–8 Hz) connectivity 

and alpha desynchronization compared to sham stimulation (Jones et al., 2017). Indeed, our 

initial report is one of many linking cognitive performance to coordinated theta activity 

across spatial scales (Alekseichuk et al., 2017; Hsu et al., 2017; Polania et al., 2012; 

Reinhart et al., 2017; Anguera et al., 2013; Solomon et al., 2017; Johnson et al., 2017). In 

contrast, cross-frequency coupling between theta oscillations and gamma (>30 Hz) activity 

permits information transfer across temporal (and spatiotemporal) scales during cognitive 

tasks (Bonnefond et al., 2017; Canolty and Knight, 2010; Helfrich and Knight, 2016). Theta-

gamma phase-amplitude coupling (PAC) increases with WM load (Axmacher et al., 2010; 

Leszczynski et al., 2015), supports stimulus processing (Johnson et al., 2018; Daume et al., 

2017), and carries information about perceptual and mnemonic representations (Heusser et 

al., 2016; Watrous et al., 2015). These findings corroborate theta-gamma PAC as a 

neurophysiological signature of WM.

Recent studies report changes in both theta-gamma PAC and WM performance acutely 

following transcranial alternating current stimulation (tACS; Hanslmayr et al., 2019). In 

addition to increasing the strength of PAC in temporal regions (Reinhart and Nguyen, 2019), 

tACS-linked WM benefits were shown to be maximal when gamma tACS was applied at the 

peak of the theta wave (i.e., phase-dependent coding; Alekseichuk et al., 2016). These 

findings suggest that both the strength and timing of theta-gamma interactions might track 
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WM performance gains. Despite the central role of PAC in WM, only one study has 

investigated whether WM training might elicit sustained changes in PAC — and it was 

conducted in children. That study reported increased PAC between frontoparietal alpha-beta 

oscillations and left temporal gamma activity (Barnes et al., 2016). There are no reports in 

adults of PAC and behavioral improvement with cognitive training or tDCS.

In the present study, we hypothesized that augmenting WM training with tDCS would shift 

both the strength and timing of theta-gamma PAC and that changes in PAC would track an 

individual’s performance gains. To test this hypothesis, we re-analyzed data from a double-

blind, sham-controlled, within-subjects training study in healthy young adults with 

frontoparietal tDCS and pre- and post-training high-density EEG (Jones et al., 2017). We 

chose to use this dataset given the documented WM and frontoparietal theta connectivity 

benefits following training with active, but not sham, tDCS. The task’s high trial count (n = 

432) and difficulty further ensured both stable EEG data on the individual level and high 

numbers of correct and incorrect trials, permitting investigation of individual subsequent 

memory (SM) effects. Here, we examined PAC between frontoparietal theta oscillations, 

frequency-tuned to individual brain dynamics (Reinhart and Nguyen, 2019), and whole-

brain gamma activity. All PAC data were subjected to two-tiered statistical testing, 

permitting dual assessment of the influence of (1) individual PAC on WM (regardless of 

tDCS group), and (2) tDCS group (active, sham) on PAC. We anticipated that active tDCS 

paired with WM training, beyond WM training alone, would optimize PAC between the 

stimulated frontoparietal network and gamma activity, enhancing WM.

2. Materials and methods

2.1. Participants

Twenty-four right-handed University of Nevada students (mean ± SD, age: 24.20 ± 3.81 

years) participated. The sample size was justified based on a power analysis which 

demonstrated that, for a correlation of 0.5 between individual PAC and WM performance 

(regardless of tDCS group), a sample of 20 participants achieves 80% power (alpha = 0.05, 

two-tailed) (Faul et al., 2009). Participants were randomly assigned tDCS group membership 

(females: active/sham: 5/6). Participants were screened for use of neuroleptic, hypnotic, and 

seizure medications, and reported no history of neurological disorders or brain injury. Data 

for one participant from the active tDCS group were excluded due to excessive noise in the 

pre-training EEG. The University of Nevada Institutional Review Board approved all 

procedures. Participants provided informed consent and were compensated $15/hour ($70 

total).

2.2. WM training

Participants first completed a WM change detection task while high-density EEG was 

recorded, prior to WM training or tDCS (pre-training session; Fig. 1A). The same day 

(Monday), the EEG cap was removed, and participants received tDCS before performing the 

WM task a second time (offline stimulation). On days 2–4 (Tuesday-Thursday), participants 

received tDCS and then completed the WM change detection task. During the final session 
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(Friday), participants completed the WM change detection task during high-density EEG 

recording, but without tDCS (post-training session).

Each WM change detection trial began with a central fixation point (500 ms) followed by 5 

grayscale pictures of common objects (200 ms) drawn from a set of 20 items (ant, axe, 

carrot, chicken, corn, fence, flower, football, eyeglasses, hammer, kettle, kite, leaf, pipe, 

scissors, snake, squirrel, toothbrush, windmill, violin) presented in 5 of 9 pseudorandom 

locations (3.5 × 3.5°; Fig. 1B). A blank delay (1000 ms) was followed by a recognition 

probe. Participants made an old/new judgment (3000-ms limit) indicating whether the probe 

item was encoded in the same location (50% each; Snodgrass and Vanderwart, 1980). The 

inter-trial interval was jittered between 1000 and 1500 ms. Participants completed 432 trials 

per session. Trials were coded as correct (i.e., hits, correct rejections) or incorrect (misses, 

false alarms).

2.3. Neurostimulation

2.3.1. TDCS protocol—Stimulation consisted of a single continuous direct current 

delivered by a battery-driven stimulator (Eldith MagStim, GmbH, Ilmenau, Germany). 

Current (1.5 mA, 15 min) was delivered through two 5 × 7 cm2 electrodes within saline-

dampened sponges (Fig. 1C). Sham stimulation included 20 s of ramping the stimulation up 

and down at the beginning and end of the 15-min period to provide the physical sensation of 

stimulation associated with current change. Participants and experimenters were double-

blinded to the tDCS condition. Participants completed a post-tDCS questionnaire to report 

adverse symptoms; no participants reported any nor indicated they were aware of the 

stimulation condition, consistent with other research groups (Reinhart et al., 2017).

The anode location alternated by session between the right prefrontal cortex (PFC; F4, 

International 10–20 System) and posterior parietal cortex (PPC; P4) in counterbalanced 

order (P4–F4–P4–F4 or F4–P4–F4–P4). The cathode was placed on the contralateral cheek 

for both montages (Jones et al., 2014, 2015, 2017; Jones, 2015; Elmer et al., 2009; Jones and 

Berryhill, 2012; Stephens and Berryhill, 2016; Reinhart and Woodman, 2015). We used this 

F4/P4 alternating approach based on the results of a previous longitudinal WM training 

study in older adults (Jones, 2015). In that study, although all three active tDCS montages 

were linked to statistically significant training and transfer benefits as compared to sham 

stimulation, the alternating F4/P4 montage elicited the greatest numerical benefits. Thus, we 

sought to delineate the EEG correlates of tDCS-linked WM training gains following a single 

neurostimulation protocol that yields benefits in both younger and older adults (Jones, 2015; 

Jones et al., 2017).

2.3.2. Current modeling—Current modeling was performed using the Realistic 

vOlumetric Approach to Simulate Transcranial Electric Stimulation (ROAST) software to 

map electrical field changes throughout the brain (Huang et al., 2018). ROAST is an open-

source MATLAB-based, automated pipeline that applies SPM8 segmentation to the head 

and neck. Following segmentation, typical isotropic electrical conductivities are assigned to 

the tissues and electrodes, typical boundary conditions are assigned to the surfaces, and 
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simulation of current flow is achieved by solving the Laplace equation (Reinhart et al., 

2017):

∇ ⋅ σ∇V = 0 (1)

where V is potential and σ is conductivity. Current modeling was conducted for the two 

anode locations (F4, P4) on the MNI-152 standard head (Grabner et al., 2006) and the 

cathode on the contralateral cheek (Fig. 1D).

2.4. High-density EEG

2.4.1. Data acquisition and preprocessing—EEG was recorded in DC mode at a 

sampling rate of 1000 Hz with a vertex (Cz) reference from 256 high-impedance electrodes. 

Electrodes were mounted in a HydroCel Geodesic Sensor Net amplified by a Net Amps 300 

amplifier and acquired using Net Station 4.5.5 software (Electrical Geodesics Inc., Eugene, 

OR) running on a 2.7 GHz dual-core Apple Power Mac G5. Electrode impedances were kept 

below 50 KΩ.

Raw EEG data were passed through a 0.5–100 Hz two-pass Butterworth infinite impulse 

response (IIR) bandpass filter and 60-Hz line noise was removed using discrete Fourier 

transform. The outputs were manually inspected to reject channels displaying artifactual 

signal (e.g., from poor contact), then down-sampled to 250 Hz and segmented into 3-s trials 

(−1 to +2 s from the onset of each sample array). Independent components analysis (ICA) 

was performed on good channels to remove artifacts (i.e., electrooculogram and 

microsaccadic movements, auricular components, heartbeat, and residual cranial muscle 

activity; Hipp and Siegel, 2013). Channels positioned over the face, ears, and neck were 

discarded, and any rejected channels were replaced via interpolation of the mean of the 

nearest neighboring channels (7.4 channels on average). The remaining 194 channels were 

manually re-inspected blind to task parameters to reject trials containing residual noise, and 

the surface Laplacian spatial filter was applied to minimize volume conduction and increase 

the robustness of the signal source (Cohen, 2015; Perrin et al., 1989; He et al., 2018; Lai et 

al., 2018). All clean trials were analyzed; mean correct + incorrect, active pre-training: 293 + 

139 (SD: 16), active post-training: 314 + 118 (17), sham pre-training: 277 + 156 (48), and 

sham post-training: 286 + 145 (42). Preprocessing routines were performed using custom-

built MATLAB (MathWorks, Natick, MA) scripts with Fieldtrip software (Oostenveld et al., 

2011).

2.4.2. Oscillatory peak detection—The 500-ms baseline and 1000-ms delay data 

segments were zero-padded to 10 s and multiplied with a Hanning taper, and power of 2–10 

Hz (0.1-Hz resolution, 2-Hz bandwidth) was computed using a fast Fourier transform 

approach (Helfrich et al., 2018). Power spectra were averaged across trials. Delay power 

spectra were then log-transformed on the pre-stimulus baseline to remove 1/f background 

activity and reveal oscillatory components induced by the WM task. Individual corrected 

power spectra were averaged across all channels and oscillatory peaks were defined as the 

frequency of maximal prominence from the Gaussian distribution (Haegens et al., 2014). We 

repeated this analysis using only frontoparietal seed channels (described in Section 2.4.3) 

and note that outputs did not differ between approaches (t (1,45) < 1.6).
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2.4.3. Cross-frequency analysis—Phase-amplitude distributions were quantified from 

the 1000-ms delay epochs per the modulation index (MI) method (Fig. 2; Tort et al., 2010). 

First, the event-related potential (ERP) was subtracted from each data segment separately for 

correct and incorrect trials to ensure that input data signals were not contaminated by 

simultaneous voltage shifts across frequencies or channels (Johnson et al., 2017, 2018; Aru 

et al., 2015). The outputs were zero-padded to 10 s, and separately bandpass-filtered at the 

individual peak theta frequency (2-Hz bandwidth) and broadband gamma frequency (30–70 

Hz) using two-pass Butterworth IIR filters, ensuring a narrowband modulatory frequency 

and sufficiently broadband amplitude frequency (Aru et al., 2015; Dvorak and Fenton, 

2014). Next, the phase time series were calculated from the theta signal and the amplitude 

time series were calculated from the gamma signal using the Hilbert transform. Phase time 

series were calculated for the frontoparietal seed channels ipsilateral (F4, P4) and 

contralateral (F3, P3) to anodal stimulation. Amplitude time series were calculated for all 

channels. Using a bootstrapping approach, PAC was computed between each phase seed 

time series and all amplitude time series (Johnson et al., 2018; Barnes et al., 2016; Maris et 

al., 2011; van der Meij et al., 2012; Friese et al., 2013).

To achieve stable, power-controlled estimates of PAC per individual, we randomly selected 

50 correct trials and 50 incorrect trials so that all PAC calculations were performed on the 

same length of input data (Tort et al., 2010). Notably, 50 s of data is well over the 

recommended minimum of 10 s and approximates the MI obtained from all theta cycles 

(Dvorak and Fenton, 2014). This step was repeated 100 times to sample all correct and 

incorrect trials with equal power (i.e., 50 s of data, 100 iterations). For each set of 50 trials, 

the instantaneous phase values were pooled and divided into 18 bins and the analytic 

amplitude envelope was averaged and normalized per phase bin. Phase-amplitude 

distributions were then averaged across all iterations. The MI (i.e., strength of amplitude 

modulation) was calculated from the mean phase-amplitude distribution as the Fisher’s Z-

transformed Kullback-Leibler divergence:

MI = 1
2ln 1 + D P,Q

1 − D P,Q (2)

where D (P,Q) is defined as:

D P,Q = P ∗ log P
Q (3)

where D is Kullback-Leibler divergence, P is the observed distribution, and Q is the uniform 

distribution. We utilized the MI method because it allows for the pooling of non-continuous 

data segments into one distribution (Tort et al., 2010). This makes it well-suited to robustly 

estimate PAC over short epochs provided one epoch contains multiple cycles of the low-

frequency oscillation (Aru et al., 2015).

Because we were interested in the neural mechanisms behind WM success, PAC data were 

first indexed by SM, an approach borrowed from the long-term memory literature (Paller 

and Wagner, 2002). To determine SM strength, we subtracted the incorrect MI from the 

correct MI (Fig. 2C, top left and middle). To determine phase coding of SM, we subtracted 
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the incorrect distribution from the correct distribution and detected the phase of maximal 

difference (Fig. 2C, top right, marked in red). This approach reveals the coupling strength 

and phase features which precede a correct compared to incorrect behavioral response, with 

positive values (i.e., correct > incorrect) reflecting successful WM formation.

2.4.4. Validation against oscillatory power—Because differences in power at the 

modulatory frequency can confound phase estimates and elicit spurious PAC (Aru et al., 

2015; Canolty et al., 2006; Cole and Voytek, 2017; Gerber et al., 2016; Jensen et al., 2016), 

we first validated SM strength and phase data against theta SM power data at each seed 

channel. The 500-ms baseline and 1000-ms delay epochs were filtered at the individual peak 

theta frequency and the amplitude time series were calculated using the Hilbert transform 

and squared to produce power. Delay power time series were then corrected on the pre-

stimulus baseline (i.e., (delay – baseline mean)/baseline mean) and averaged over the 1000-

ms epoch to reveal task induced activity (Jones et al., 2017). To determine SM power, we 

subtracted the mean incorrect power from the mean correct power at each of the four 

frontoparietal seed channels. The PAC SM strength and phase data were averaged across the 

whole brain and correlated with SM power using Spearman’s rank correlation (SM strength 

× SM power; Fig. S1) and circular-linear correlation (SM phase × SM power; Fig. S2). 

Correlations were thresholded at p < 0.05, uncorrected. Circular statistics were performed 

using the CircStat toolbox (Berens, 2009).

2.4.5. Validation against permuted data—The SM strength effects were separately 

validated by comparison against chance effects generated from the analysis of permuted 

time series (Fig. 2C, bottom). This procedure controls for any statistical regularities between 

correct and incorrect trials in the original input data, such as differences in band-limited 

theta or gamma activity, or in noise contributing to spurious PAC (Axmacher et al., 2010; 

Tort et al., 2010; Aru et al., 2015; Dvorak and Fenton, 2014; Canolty et al., 2006; Cole and 

Voytek, 2017; Gerber et al., 2016; Jensen et al., 2016). For each phase bin, the amplitudes 

were randomly permuted across pooled trials and the MI was re-computed. This was 

repeated 10 times per iteration on the same randomly selected 50 trials as the original data 

(1000 iterations total) and then averaged across all iterations. This procedure shuffles the 

timing of the amplitude envelope relative to the phase without altering the phase time series 

or any other aspect of the original data, thereby estimating the MI that would be expected 

solely by chance. If regularities exist in the data which are not related to the temporal 

coordination between theta and gamma signals, then they will be present in the validation 

data.

2.4.6. Statistics—Group-level statistical analyses of SM strength and phase were 

performed using non-parametric tests on the whole brain and corrected for multiple 

comparisons using cluster-based permutation tests (Maris and Oostenveld, 2007). Clusters 

were formed in space by thresholding correlations (ρ) or chi-square ranks (χ2) at p < 0.05 

using the maximum size criterion. Permutation distributions were then generated by 

randomly shuffling labels (i.e., per-subject WM performance or tDCS group; 1000 

iterations) and corrected p-values were obtained by comparing the observed data to the 

random permutation distributions. This is an extremely powerful approach because it 
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recreates any biases in the data with each randomization and thus tests for effects without 

any assumption over where they may occur.

Data were first submitted to correlation testing to analyze the relationship between 

individual PAC and post-training WM performance, regardless of tDCS group (n = 23). SM 

strength data were tested using Spearman’s rank correlation, a non-linear measure that does 

not assume normal distribution, and SM phase data were tested using circular-linear 

correlation. The cluster-corrected correlation masks (Figs. 3A, 4A, 5A and 6A) were used to 

index individual data for visualizing significant brain-behavior relationships (Figs. 3B, 4B, 

5B and 6B). Data were then submitted to independent-samples testing between groups to 

analyze the effect of tDCS group on PAC (n = 11 active, 12 sham). SM strength data were 

analyzed using the Kruskal-Wallis test (i.e., non-parametric ANOVA), a measure of 

independence between distributions, and SM phase data were analyzed using the equivalent 

test for circular data (cmtest.m). Circular statistics were performed using the CircStat 

toolbox (Berens, 2009).

Interpretation was based on three criteria. First, to confirm that SM strength effects were due 

to PAC rather than other statistical regularities between correct and incorrect trials, we 

submitted the amplitude-permuted validation data to the same correlation and between-

groups tests as the real data. Any observation of overlapping effects obtained from 

submitting real versus amplitude-permuted data to the same statistical test would preclude 

interpretation of effects as being due to PAC. The correlation masks obtained using real data 

(Figs. 3A and 4A) were used to index individual amplitude-permuted data to emphasize the 

difference in brain-behavior relationships observed using real data versus those that would 

be expected by chance (Figs. 3B and 4B). Second, to assess whether training with active 

tDCS improved task performance by way of affecting PAC, we compared the masks 

obtained from correlation testing (Figs. 3A, 4A, 5A and 6A; S3A and C; S4A and C) to 

those obtained from between-groups testing (Figs. 3C, 4C, 5C and 6C; S3B and D; S4B and 

D). Third, to confirm that tDCS group effects were due to training with active versus sham 

tDCS and not any other regular variation that may have existed between groups, we 

compared the masks obtained from between-groups testing at the pre-versus post-training 

session. The post-training correlation masks (Figs. 3A, 4A, 5A and 6A) were used to index 

individual pre-training data to visualize training effects associated with active versus sham 

tDCS (Figs. 3D, 4D, 5D and 6D).

Finally, we quantified tDCS-linked training changes using the Cohen’s d measure of effect 

size (i.e., (active mean pre-post change – sham mean pre-post change)/pooled pre-training 

SD; Morris, 2008). This analysis indicates the size of the pre-post training × tDCS 

interactive effect on PAC correlates of WM performance, controlling for pre-training 

variability. Together, these analysis steps yield a conservative approach to test the hypothesis 

that augmenting training with tDCS optimizes theta-gamma PAC, enhancing WM.
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3. Results

3.1. TDCS-linked WM training improves WM

As previously described (Jones et al., 2017), four days of WM training paired with 

frontoparietal tDCS improved WM performance (i.e., proportion correct) significantly more 

than training alone (2 session (pre-, post-training) × 2 group (active, sham tDCS) ANOVA, F 

(1,21) = 4.35, p = 0.049, partial η2 = 0.17, Greenhouse-Geisser corrected). The interaction 

reflected the significant group difference at the post-training session (mean ± SD, active: 

0.76 ± 0.05, sham: 0.70 ± 0.07; t (19.76) = 2.07, p = 0.05, equal variances not assumed), that 

was not present pre-training (active: 0.70 ± 0.05, sham: 0.69 ± 0.09; t (17.19) = 0.29, p = 

0.77). Only the active tDCS group showed training-related task improvement (t (10) = 3.12, 

p = 0.01); the sham group did not improve (t (11) = 0.85, p = 0.41). There was a main effect 

of session (F (1,21) = 9.46, p = 0.006, partial η2 = 0.31, Greenhouse-Geisser corrected), but 

not of group (F (1, 21) = 1.42, p = 0.25). Behavioral effects were observed 24 h after the 

final WM training + tDCS session.

3.2. Frontoparietal tDCS reaches frontoparietal cortex

Current modeling confirmed that the neurostimulation applied during WM training 

maximally affected targeted sites at alternating ends of the frontoparietal network (Fig. 1D). 

Anodal stimulation of right PFC (F4) altered the electrical field in right PFC and, to a lesser 

extent, in frontopolar, orbitofrontal, ventral temporal, and left frontal regions. Anodal 

stimulation of right PPC (P4) altered the electrical field in right PPC and, to a lesser extent, 

in occipital and ventral temporal regions.

3.3. Theta-gamma interactions

To test the hypothesis that theta-gamma PAC tracked individual WM training gains, we 

computed stable, power-controlled phase-amplitude distributions per the MI method (Tort et 

al., 2010). We calculated phase-amplitude distributions between individually-determined 

theta phase time series at the frontoparietal seeds (tDCS sites: F4, P4; contralateral 

homologues: F3, P3) and broadband gamma amplitude time series at all channels (Johnson 

et al., 2018; Barnes et al., 2016; Maris et al., 2011; van der Meij et al., 2012; Friese et al., 

2013), and then extracted the coupling strength and phase features preceding correct 

compared to incorrect responses (Fig. 2). This resulted in four whole-brain PAC SM profiles 

per participant, per session.

Individual peak theta frequency was equal across tDCS groups (pre-training: mean ± SD, 

active: 5.6 ± 0.7 Hz, sham: 5.6 ± 0.9 Hz; t (20.35) = 0.05, p = 0.96; post-training: active: 5.7 

± 0.9 Hz, sham: 5.8 ± 0.9 Hz; t (20.85) = 0.33, p = 0.75; Fig. 2B). To control for spurious 

effects, we ruled out any statistical dependency between theta power and theta-derived 

coupling strength and phase data at the frontoparietal seeds (Axmacher et al., 2010; Tort et 

al., 2010; Aru et al., 2015; Canolty et al., 2006). This analysis confirmed that theta power 

did not correlate with coupling strength or phase outcomes (Figs. S1–S2; p > 0.05, 

uncorrected). Neither were there significant effects of tDCS group on theta power (Jones et 

al., 2017).
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To investigate the relationship between individual theta-gamma interactions and behavior, 

across all subjects regardless of tDCS group, whole-brain PAC SM data were first correlated 

with WM performance at the post-training session. Only then did we test for differences 

between active and sham tDCS groups. We attributed statistically significant effects to 

training + tDCS when there was: (1) overlap in correlation and between-groups effects post-

training, and (2) no between-groups effect pre-training. Pre-post training × tDCS interaction 

effect sizes were then quantified by means of Cohen’s d to show the extent to which tDCS 

induced changes in PAC with training, beyond training alone. The effects were further 

validated against amplitude-permuted chance data to control for any differences afforded 

correct versus incorrect trials that were not due to temporal coordination between theta 

oscillations and gamma activity (Fig. 2C; Axmacher et al., 2010; Tort et al., 2010; Aru et al., 

2015; Canolty et al., 2006).

3.3.1. TDCS enhances coupling strength for WM at the stimulated PFC—We 

first tested whether coupling strength (i.e., SM strength = correct MI − incorrect MI; Fig. 

2C) between theta oscillations at the PFC stimulation site (F4) and whole-brain gamma 

activity correlated with WM performance during the post-training session. Significant 

clusters in the left-central topography reveal a positive relationship between SM strength and 

WM performance (Fig. 3A; mean ρ = 0.482, p = 0.012). To visualize this relationship, we 

averaged individuals’ SM strength data across significant channels, plotted it against their 

behavior, and fit a line to the data post hoc. Individuals with overall superior performance 

exhibited greater PAC between PFC theta and posterior gamma on correct compared to 

incorrect trials (i.e., SM strength > 0; Fig. 3B). There were no significant brain-behavior 

relationships using chance data (mean ρ = −0.002, p = 1), confirming that these effects were 

due to temporal coordination between theta oscillations at the stimulated PFC and posterior 

gamma activity.

Testing of the same whole-brain SM strength data by tDCS group returned multiple 

significant clusters showing predominant overlap in left-central topography (Fig. 3C; mean 

χ2 = 3.529, p = 0.028; pre-post interaction Cohen’s d = 0.793). Between-groups effects 

mirrored the brain-behavior relationships (Fig. 3D), revealing that training + tDCS increased 

PAC between PFC theta and posterior gamma preceding successful behavioral responses, 

partially explaining behavioral training gains in the active tDCS group. Critically, there were 

no overlapping between-groups effects when tested using pre-training data (mean χ2 = 

0.653, p = 1) or chance data (mean χ2 = 0.332, p = 1). Thus, training with active tDCS 

enhanced temporal coordination between PFC theta oscillations and posterior gamma 

activity.

To further characterize the influence of WM training paired with tDCS on PAC outside 

stimulated areas, we submitted the SM strength data calculated from theta oscillations at the 

PFC seed contralateral to anodal stimulation (F3) to the same analyses. Correlation testing 

of the post-training data returned multiple significant positive and negative clusters (Fig. 4A; 

positive mean ρ = 0.383, p = 0.006; negative mean ρ = −0.376, p = 0.048), revealing 

bimodal effects and opposite patterns of WM success in better versus worse performers. 

Notably, superior performance was linked to two patterns: (1) greater PAC between left PFC 

theta and posterior gamma on correct compared to incorrect trials, and (2) less theta-gamma 
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PAC within left PFC (Fig. 4B; chance positive mean ρ = 0.004, negative mean ρ = −0.015, p 

= 1). However, testing the same data between groups returned no significant clusters (Fig. 

4C–D; p = 1), suggesting that tDCS effects were restricted to theta oscillations in the 

stimulated frontoparietal network.

Finally, we submitted the SM strength data calculated from theta oscillations at the PPC 

seeds (P4, P3) to the same set of analyses. Correlation testing of the post-training data at the 

PPC stimulation site returned a negative cluster in the left-central topography (Fig. S3A; 

mean ρ = −0.477, p = 0.002), indicating that decreased PAC was associated with superior 

performance. However, there were no significant effects between tDCS groups (Fig. S3B; p 

= 0.584). Correlation testing of the post-training data at the PPC site contralateral to anodal 

stimulation returned a positive cluster over posterior regions (Fig. S3C; mean ρ = 0.359, p = 

0.008), but no significant between-groups effects (Fig. S3D; p = 0.894). There were no 

significant PPC brain-behavior relationships when tested using chance data (P4 mean ρ = 

−0.047, P3 mean ρ = 0.006, p = 1). These inconsistent PPC results isolate the beneficial 

effects of tDCS on theta-gamma coupling strength to PFC.

In summary, at the post-training session, WM success was linked to greater PAC between 

PFC theta oscillations and gamma activity in posterior regions. In the same individuals, 

greater PAC within left PFC preceded WM failures, revealing a double dissociation. 

Behavioral training gains were maximal when there was greater PAC between PFC theta and 

posterior gamma and less PAC within left PFC during WM formation. TDCS selectively 

enhanced this beneficial coupling between theta oscillations in the stimulated PFC and 

temporo-parietal gamma activity.

3.3.2. TDCS enhances phase coding for WM at the stimulated PFC—We next 

examined the contribution of phase coding, the timing of gamma activity to frontoparietal 

theta oscillations (i.e., SM phase = phase of peak difference, correct distribution – incorrect 

distribution; Fig. 2C, right), to WM performance during the post-training session. SM phase 

data were submitted to the same set of analyses as the SM strength data, using the equivalent 

circular statistical tests (Berens, 2009), to determine whether WM training + tDCS also 

affected phase coding specific to theta oscillations at the stimulated PFC.

Correlation testing of post-training SM phase at the PFC seed ipsilateral to anodal 

stimulation (F4) returned multiple significant clusters across a distributed topography (Fig. 

5A; mean ρ = 0.457, p = 0.022). During successful WM, gamma on the falling flank near the 

peak of the PFC theta wave correlated with superior performance overall (Fig. 5B). Testing 

the same whole-brain SM phase data by tDCS group returned multiple significant clusters 

(Fig. 5C; mean χ2 = 3.023, p = 0.027; pre-post interaction Cohen’s d = 0.621). Between-

groups effects mirrored brain-behavior relationships in the left-central topography (Fig. 5D). 

Training + tDCS improved performance by tuning the timing of gamma activity relative to 

PFC theta oscillations. Critically, the pre-training data show no significant between-groups 

effects (p = 1). Thus, these between-groups effects were due to training paired with active 

tDCS.
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To further characterize the influence of WM training paired with tDCS on phase coding, we 

next examined SM phase data calculated from the PFC seed contralateral to anodal 

stimulation (F3). Correlation testing of the post-training data returned multiple significant 

clusters across a widespread topography (Fig. 6A; mean ρ = 0.445, p = 0.007). During 

successful WM, gamma closer to the peak of the theta oscillation was associated with 

superior performance overall (Fig. 6B). However, testing the same data between groups 

returned no significant clusters (Fig. 6C–D; p = 0.592). This supports the interpretation that 

the effects of tDCS were specific to theta oscillations in the stimulated frontoparietal 

network.

Finally, we examined SM phase data calculated from theta oscillations at the PPC seeds (P4, 

P3). Correlation testing of the post-training data at the PPC stimulation site returned 

multiple significant clusters (Fig. S4A; mean ρ = 0.442, p = 0.036). However, testing the 

same data between groups identified no significant clusters (Fig. S4B; p = 0.499). Testing 

the post-training data at the contralateral PPC seed revealed no significant correlations (Fig. 

S4C; p > 0.07) and sparse between-groups effects (Fig. S4D). These null PPC results isolate 

the effects of tDCS on phase-dependent coding to theta oscillations at the stimulated PFC.

In summary, at the post-training session, WM performance was associated with phase-

dependent coding of SM between PFC theta oscillations and widespread posterior gamma 

activity. Behavioral training gains were maximal when gamma activity associated with 

successful performance occurred on the falling flank near the peak of PFC theta waves. 

TDCS selectively enhanced this beneficial phase coding between theta oscillations at the 

stimulated PFC and temporo-parietal gamma activity.

4. Discussion

This study is the first to investigate the link between cross-frequency coupling and 

behavioral outcomes following WM training or tDCS in adults. We show that shifts in cross-

frequency interactions between theta oscillations in the frontoparietal network and gamma 

activity tracked individual training gains. Specifically, superior performance was associated 

with greater PAC between PFC theta oscillations and posterior gamma activity and less PAC 

within left PFC during WM formation after training. Inferior performance was associated 

with the opposite pattern, revealing a double dissociation in the locus of theta-gamma 

interactions between participants who did and did not benefit from training. We further show 

that augmenting training with tDCS enhanced behavior by optimizing both the strength and 

timing of theta-gamma interactions, specifically between the stimulated PFC and temporo-

parietal regions.

These findings fit proposals that PFC exerts top-down control over representations stored in 

posterior cortical regions, supporting cognitive performance (Friese et al., 2013). Indeed, 

neural oscillations are the purported mechanism for PFC control over posterior regions 

(Helfrich and Knight, 2016; de Vries et al., 2020); we provide critical evidence directly 

linking such oscillatory mechanisms to individual behavioral outcomes. We further 

demonstrate that behavioral change emerges from shifting the oscillatory mechanisms of 
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PFC control. We propose a novel explanation of behavioral enhancement based on fine-

tuning the oscillatory mechanisms of PFC control over posterior regions.

WM training gains, albeit modest at 5% improvement on the group level, were exclusive to 

the active tDCS group (Jones et al., 2017). For this reason, we evaluated this proposal by 

testing whether tDCS shifted theta-gamma interactions in the direction associated with 

superior performance. Behaviorally-relevant effects of tDCS were specific to the modulation 

of gamma activity by theta oscillations at the stimulated PFC. First, WM training + tDCS 

selectively increased the strength of coupling between theta oscillations at the stimulated 

PFC and temporo-parietal gamma activity. Second, WM training + tDCS selectively 

adjusted the timing of temporo-parietal gamma activity toward the peak of theta oscillations 

at the stimulated PFC. Both phenomena were specific to the stimulated PFC as no such 

patterns were observed at the contralateral PFC. Third, PPC effects were sparse and 

inconsistent, isolating behaviorally-relevant effects to PFC. We conclude that frontoparietal 

tDCS optimized both the strength and timing of theta-gamma interactions between the 

stimulated PFC and temporo-parietal regions, explaining WM training gains.

These findings are consistent with the sole report of WM training and PAC, which likewise 

indicated behavioral gains specific to left temporal gamma activity in children (Barnes et al., 

2016). Here, left PFC correlates of WM performance illuminated gamma activity across 

widespread parieto-occipital regions and were unaffected by right-hemisphere tDCS. In 

contrast, anodal tDCS to the right frontoparietal network affected PAC and phase coding 

between right-PFC theta oscillations and left temporo-parietal gamma activity, enhancing 

performance. These converging results show that tDCS-linked WM training not only 

increases coordination across spatial scales within the stimulated network (Jones et al., 

2017), but also across temporal scales selectively between the stimulated network and left 

temporo-parietal regions. This interpretation corroborates that of other reports based on co-

occurring band-limited theta and cross-frequency theta-gamma interactions (Reinhart and 

Nguyen, 2019; Alekseichuk et al., 2016), permitting coordination across both spatial and 

temporal scales in the service of WM.

Understanding the mechanisms by which paired training and neurostimulation affects 

performance is critical for reliable, real-world applications. We provide insight regarding 

how a four-day training program improved WM performance. As previously described 

(Jones et al., 2017), the generalizability of our findings is limited by the sample size, and 

selection of a single task and neurostimulation protocol. That said, a sample of 20–30 

healthy young adults is typical of EEG/MEG studies using homogenous samples, e.g., 

(Daume et al., 2017; Heusser et al., 2016; Friese et al., 2013), and the present study relied on 

individual brain-behavior relationships based on hundreds of trials per participant (Smith 

and Little, 2018). The present findings support the view that some aspects of disordered 

behavior may be altered by adjusting neural oscillations (Salimpour and Anderson, 2019). 

Specifically, theta-gamma PAC is reduced in the mildly cognitively impaired and further 

reduced in those with Alzheimer’s disease compared to healthy other adults (Goodman et 

al., 2018). A recent report indicated that restoring theta-gamma PAC in temporal regions 

improved older adults’ WM acutely following neurostimulation (Reinhart and Nguyen, 

2019). We demonstrate that augmenting training with neurostimulation can elicit sustained 
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changes in theta-gamma PAC, enhancing behavior. Future research should investigate the 

durability of such changes across a range of healthy and clinical populations.

4.1. Conclusion

Pairing frontoparietal tDCS with WM training improved behavior by optimizing the 

oscillatory mechanisms of PFC control. TDCS optimized the strength and timing of theta-

gamma PAC between the stimulated PFC and left temporo-parietal regions, thus linking 

behavioral gains to coordination across spatiotemporal scales between the stimulated PFC 

and left temporo-parietal regions. In short, it is possible to elicit lasting changes in both 

brain and behavior by way of cognitive training. Here, changes in theta-gamma interactions 

persisted for at least 24 h post-training, consistent with the acute effects of directly 

entraining neural oscillations (Hanslmayr et al., 2019; Reinhart and Nguyen, 2019). Future 

studies are needed to investigate the durability of training-related changes in PAC across a 

range of populations and the extent to which these changes transfer to untrained tasks.
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Fig. 1. 
Participants completed four WM training sessions with active or sham tDCS.

(A) WM training. Training took place over four sessions (Monday-Thursday) following 

tDCS. Participants completed the pre- and post-training sessions during high-density EEG 

collection without tDCS (Monday and Friday). Bold, data analyzed.

(B) WM task. Five grayscale items appeared (200 ms) followed by a delay (1000 ms) and an 

old/new change detection recognition probe. Bold, data analyzed.

(C) TDCS protocol. Active anodal stimulation was applied continuously for 15 min and 

sham stimulation was applied for 20 s at the beginning and end of 15 min. Green, active; 

gray, sham.

(D) Electrical field changes following tDCS. 1.5 mA tDCS was applied with the anode 

positioned at F4 (top) or P4 (bottom) and cathode at the contralateral cheek. Anode position 

alternated over the 4 days of training.
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Fig. 2. 
Theta-gamma interactions were computed from the pre- and post-training EEG.

A) Spectral decomposition. EEG data were spatial-filtered and segmented into 1000-ms 

delay trials (left), and then separately filtered at peak theta (middle) and broadband gamma 

(right) frequencies. Theta phase and gamma amplitude time series were extracted using the 

Hilbert transform.

B) Peak theta detection. There was a peak in the theta band in every participant, with no 

differences in peak frequency between Tdcs groups (top). Post-training power spectra were 

aligned to individual peak frequencies for display (bottom). Green, active; gray, sham; error 

bars and shading, SEM.

C) Computation of theta-gamma interactions. Phase-amplitude distributions were 

constructed separately from 50 correct and 50 incorrect trials (top, left and middle; 100 

iterations; 2 cycles shown for clarity). The MI was obtained by measuring the divergence of 

the observed distribution from the uniform distribution. SM strength was calculated by 

subtracting the incorrect MI from the correct MI (here, 18.4–8.8 × 10−5 = 9.6 × 10−5). SM 

phase was calculated as the phase of maximal difference when subtracting the incorrect 

distribution from the correct distribution (top, right; marked in red). SM strength was 

validated by recomputing the chance MI from the same 50 trials with amplitudes permuted 
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(bottom; 1000 iterations). Red, real correct data; blue, real incorrect data; white, same data 

with permuted amplitudes.
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Fig. 3. 
Theta-gamma PAC between the stimulated PFC and posterior sites tracked WM training 

gains.

A) Superior performers showed greater PAC between theta at the PFC stimulation site (F4, 

marked in white) and left-central gamma amplitudes (marked in black) during WM 

formation. Cluster-corrected correlation between SM strength (correct MI – incorrect MI) 

and task performance at the post-training session, regardless of tDCS group. White circle, 

phase seed channel; black circles, amplitude channels that showed significant effects.
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B) The greater the SM effect, the better the performance. The relationship between SM 

strength and WM performance at the channels marked in (A). Green, real active data; gray, 

real sham data; white, same data with permuted amplitudes; red, fit.

C) Active tDCS altered SM strength at a subset of channels in (A). Cluster-corrected 

between-groups test on SM strength at the post-training session, same conventions as (A).

D) Active tDCS increased the SM effect, increasing performance (pre-post interaction 

Cohen’s d = 0.793). Mean SM strength by tDCS group at the pre- and post-training sessions 

at the channels marked in (A). Overlapping correlation and between-groups effects were 

specific to the post-training session. Green, real active data; gray, real sham data; error bars, 

SEM; *, significant.
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Fig. 4. 
Theta-gamma PAC from the contralateral PFC did not differ between tDCS groups.

(A) Superior performers showed both greater PAC between theta at the contralateral PFC 

site (F3, marked in white) and posterior gamma amplitudes (marked in black) and less PAC 

within the contralateral PFC site during WM formation. Cluster-corrected correlation 

between SM strength and task performance at the post-training session, regardless of tDCS 

group. White circle, phase seed channel; black circles, amplitude channels that showed 

significant effects.

(B) Bimodal SM effects for performance. The relationships between SM strength and WM 

performance at the channels marked in (A). Lines were fit separately to the channels 

exhibiting positive (left) and negative (right) brain-behavior relationships. Green, real active 

data; gray, real sham data; white, same data with permuted amplitudes; red, fit of real 

positive effect; blue, fit of real negative effect.

(C) There were no effects of tDCS group. Cluster-corrected between-groups test on SM 

strength at the post-training session, same conventions as (A).
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(D) Mean SM strength by tDCS group at the pre- and post-training sessions at the channels 

marked in (A), separated by the direction of the relationship as in (B). Green, real active 

data; gray, real sham data; error bars, SEM.
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Fig. 5. 
Theta-gamma phase coding between the stimulated PFC and distributed sites tracked WM 

training gains.

A) Superior performers showed phase coding between theta at the PFC stimulation site (F4, 

marked in white) and distributed gamma amplitudes (marked in black) during WM 

formation. Cluster-corrected correlation between SM phase (phase of peak difference, 

correct distribution – incorrect distribution) and task performance at the post-training 

session, regardless of tDCS group. White circle, phase seed channel; black circles, amplitude 

channels that showed significant effects.

B) The closer gamma occurred to the falling flank, near the peak of the theta wave, the better 

the performance. The relationship between SM phase and WM performance at the channels 
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marked in (A). A quadratic line was fit to the data to show phase-dependent coding for 

behavior. Green, real active data; gray, real sham data; red, fit.

C) Active tDCS adjusted phase coding at a subset of channels in (A). Cluster-corrected 

between-groups test on SM phase at the post-training session, same conventions as (A).

D) Active tDCS adjusted gamma toward the falling flank, near the peak of the theta wave, 

increasing performance (pre-post interaction Cohen’s d = 0.621). Mean SM phase by tDCS 

group at the pre- and post-training sessions at the channels marked in both (A) and (B) on a 

schematic theta wave (standard cosine). Overlapping correlation and between-groups effects 

were specific to the post-training session. Inset: histograms of the preferred phase for SM at 

the post-training session. Green, real active data; gray, real sham data; *, significant.
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Fig. 6. 
Theta-gamma phase coding from the contralateral PFC did not differ between tDCS groups.

A) Superior performers showed phase coding between theta at the contralateral PFC site (F3, 

marked in white) and widespread gamma amplitudes (marked in black) during WM 

formation. Cluster-corrected correlation between SM phase and task performance at the 

post-training session, regardless of tDCS group. White circle, phase seed channel; black 

circles, amplitude channels that showed significant effects.

B) SM effects for performance. The relationship between SM phase and WM performance at 

the channels marked in (A). Green, real active data; dark gray, real sham data; red, fit.

C) There were no overlapping correlation and between-groups effects. Cluster-corrected 

between-groups test on SM phase at the post-training session, same conventions as (A). 

There were no overlapping correlation and between-groups effects.
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D) Mean SM phase by tDCS group at the pre- and post-training sessions at the channels 

marked in (A) on a schematic theta wave (standard cosine). Inset: histograms of the 

preferred phase for SM at the post-training session. Green, real active data; gray, real sham 

data.
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