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Abstract
Over a decade's experience of post-stroke rehabilitation by administering the spe-
cific anti-TNF biological, etanercept, by the novel perispinal route, is consistent with 
a wide range of chronically diminished neurological function having been caused by 
persistent excessive cerebral levels of TNF. We propose that this TNF persistence, 
and cerebral disease chronicity, largely arises from a positive autocrine feedback loop 
of this cytokine, allowing the persistence of microglial activation caused by the ex-
cess TNF that these cells produce. It appears that many of these observations have 
never been exploited to construct a broad understanding and treatment of certain 
chronic, yet reversible, neurological illnesses. We propose that this treatment allows 
these chronically activated microglia to revert to their normal quiescent state, rather 
than simply neutralizing the direct harmful effects of this cytokine after its release 
from microglia. Logically, this also applies to the chronic cerebral aspects of various 
other neurological conditions characterized by activated microglia. These include long 
COVID, Lyme disease, post-stroke syndromes, traumatic brain injury, chronic trau-
matic encephalopathy, post-chemotherapy, post-irradiation cerebral dysfunction, cer-
ebral palsy, fetal alcohol syndrome, hepatic encephalopathy, the antinociceptive state 
of morphine tolerance, and neurogenic pain. In addition, certain psychiatric states, in 
isolation or as sequelae of infectious diseases such as Lyme disease and long COVID, 
are candidates for being understood through this approach and treated accordingly. 
Perispinal etanercept provides the prospect of being able to treat various chronic cen-
tral nervous system illnesses, whether they are of infectious or non-infectious origin, 
through reversing excess TNF generation by microglia.
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1  |  INTRODUC TION

Our interest in differential persistence of TNF in the brain 
and elsewhere arose 16 years ago through a report that post-
lipopolysaccharide (LPS)-induced TNF generation in the mouse per-
sists in the CSF for very much longer (at least 10 months) than in the 
serum (all gone in 6 h)1 after intraperitoneal injection of LPS. This 
is consistent with an earlier report by Kuno2 of a positive feedback 
loop existing in the activation of microglia by the TNF that these 
cells generate. In short, Kuno and co-authors argued that an auto-
crine loop, driven by TNF, prolongs the activation of the microglia 
that generate this same cytokine. This has also been expressed 
functionally by demonstrating, in a rabbit model, that usual systemic 
endotoxin tolerance, as expressed in terms of reduced TNF gener-
ation, does not occur in the CSF-containing subarachnoid space.3 
From this background, we discuss cerebral disease states in which 
microglia may remain chronically activated and are kept in this state 
by the very TNF they are generating.

In our view, applying the above seminal work of Kuno and co-
workers to the existence of an autocrine positive feedback loop of 
microglial activation mediated by TNF-TNFR1 signaling illuminates 
much about chronic cerebral conditions. In other words, by block-
ing TNFR1 signaling with an antibody that suppressed most of LPS-
induced TNF release into the culture supernatants, these authors 
demonstrated that LPS-induced, microglia-derived TNF further 
stimulates TNF production via TNFR1 activation in an autocrine 
manner. Subsequent findings4 indicate that the N-glycosylation of 
TNFR1 plays an important role in this process. This implies that the 
pathogenesis of conditions in which microglia are routinely con-
firmed to be activated will demonstrate chronically increased TNF 
levels in the cerebrospinal fluid. Thus, neutralizing the TNF that is 
perpetuating this activation with a specific anti-TNF biological, such 
as etanercept, administered perispinally5 so it reaches where it is 
required, can be expected to long-term deactivate these microglia. 
Chronic cerebral dysfunction would be accordingly terminated. As 
discussed throughout this review, this additional information on the 
relationship between microglia and TNF2 has potentially wide rele-
vance to the pathogenesis and treatment in a surprising number of 
neurodegenerative states (Figure 1). In addition, it accords with the 
outcome of the impressively large number of off-label post-stroke 
treatments accumulating since 2011.5,6 The logic of funding large 
random controlled trials (RCTs) is correspondingly strengthened.

TNF is the most conspicuous cytokine in the literature, and spe-
cific anti-TNF biologicals are the largest aggregate source of income 
for the pharmaceutical industry. In low concentrations, TNF is an es-
sential signaling molecule in physiology across much of non-botanical 
biology, whereas its excessive generation is central to our under-
standing of much human disease. Not surprisingly, therefore, the 
advent of anti-TNF biologicals has led to their widespread successful 

therapeutic use by neutralizing excess TNF generation in a number 
of chronic non-cerebral conditions. Here we discuss the scientific 
rationale for extending this principle to the brain, with specific anti-
TNF biologicals and their biosimilars being equally efficacious in the 
CNS as elsewhere. However, routine intra-cerebrovascular admin-
istration of any large molecule is clinically impractical, and forms of 
anti-TNF biologicals small enough to pass through the blood–brain 
barrier (BBB) are not yet developed.

From our interest in the wide relevance of TNF in the normal and 
dysfunctional brain,7 about a decade ago we contributed a background 
to the roles of microglia in neurodegenerative diseases.8 This included 
the roles of cytokines such as TNF generated by these cells in nor-
mal synaptic function. Ample evidence9,10 also exists that microglia 
directly influence neural networks. Here we review aspects of these 
interactions, focusing on the influence of activated microglia in dis-
ease, and the functions and interactions of the cytokines that mediate 
many of these effects. We particularly consider how non-infectious 
(post-stroke syndromes, traumatic brain injury) or infectious condi-
tions (Lyme disease, COVID-19) can lead to very similar cerebral out-
comes that often become chronic, with life-changing consequences. 
Exposure to danger-associated molecular patterns (DAMPs), from 
either damaged tissue or endogenous cellular material not normally 
released or from external sources or to pathogen-origin molecular 
patterns (PAMPs) on the surface of infectious organisms acting as 
agonists mainly for Toll-like receptors, generate essentially identical 
harmful cerebral outcomes. This occurs through their shared ability 
to induce secreted proinflammatory cytokines, which cause disease 
when generated in excess. We have previously11 discussed the work 
of those who constructed these remarkably useful concepts.12,13

2  |  PERISPINAL ADMINISTR ATION

An alternative route of administration, termed perispinal,6 is dis-
cussed here regarding employing etanercept, one of the specific 
anti-TNF biologicals. As reviewed,5 this route of cerebral venous 
drainage via the cerebrospinal venous system, or Batson's Plexus,14 
has no valves. It has had, since its discovery well over a century and a 
half ago, an intermittent and interesting history in medical advances. 
Its potential as a route of administration inadvertently began in 
1994 when researchers in aviation medicine were exploring an ani-
mal model of the effects of gravity and body position on pilots of 
high-performance aircraft.15 This involved restraining anesthetized 
rabbits on a tilt board and rotating them to a head-down position. 
This considerably increased CSF levels of the plasma protein albumin 
within 5 minutes. The authors noted, in passing, that as well as aiding 
their particular field, their data had implications for getting large mo-
lecular weight molecules into the brain for chemotherapeutic pur-
poses. It so happens that etanercept has a similar molecular weight 
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to that of albumin – hence the mild tilting at the end of the perispi-
nal procedure. However, rheumatoid arthritis, Crohn's disease, and 
psoriasis have been transformed by neutralizing soluble TNF with 
specific anti-TNF biologicals administered systemically, treatment 
of chronic neurological states of clinical importance are yet to gain 
substantially from this developing body of knowledge, despite being 
proposed6 and used widely by the same author in case studies of 
post-stroke patients, as discussed.16–19

3  |  NORMAL HOMEOSTATIC CEREBR AL 
FUNC TIONS OF TNF

The important functional, and cytokine, overlap between the 
brain and the innate immune system is reinforced in compre-
hensive reviews such as that by Yirmiya.20 As Tchessalova and 
co-authors noted,21 the naïve homeostatic baseline is not the ab-
sence of neuroimmune signaling or activity. Instead, these media-
tors physiologically interact with neurons and thus regulate neural 
function and synaptic plasticity. Indeed, as nicely portrayed,22 the 
mediators of innate immunity are, as unlikely as it seems, also rou-
tinely utilized for finely sculpting the circuitry of the normal CNS. 
In particular, TNF, the keystone of much innate immunity, is also 
involved in normal neurotransmission via modulating excitatory 
inputs,23 trafficking of AMPA receptors,24 homeostatic synaptic 
scaling,25 synaptic glutamate levels,26 and long-term potentia-
tion.27 As discussed in Section 4.1, TNF also controls induction of 
C-C motif chemokine Ligand 11 (CCL11).28 TNF also regulates 
neuronal type-1 inositol trisphosphate receptors (IP3R), which are 
central to neuronal Ca++ homeostasis, and thus, the ionic signaling 
cascades on which normal function of neurons depends.29 Appro-
priate levels of this key cytokine also maintain normal background 
levels of neurogenesis.30 Moreover, normal mitochondrial func-
tion, presumably in neurons as much as elsewhere,31 depends on 
physiological levels of TNF, as does regulation of the neurotrans-
mitter, orexin.32 As reviewed,33 orexin then controls an impres-
sively varied list of phenomena, including sleep, motor control, 
focused effort, appetite, and water intake. Consequential distinc-
tive clinical outcomes are to be expected through homeostasis 
being lost by the high local TNF generation by local high PAMP 
and DAMP activity. Unfortunately, it is rarely noted in the neu-
roinflammatory disease literature that these normal, particularly 
synaptic, physiological functions of TNF,23–27 homeostatically 
controlled in health, are clearly vulnerable to inappropriate and 
harmful distortion during neuroinflammation.

4  |  BRIEF SUMMARIES OF T WO 
E X AMPLES OF PAMP-DRIVEN MICROGLIAL 
AC TIVATION

The following two syndromes exhibit prolonged activation of micro-
glia by infectious agents, and associated chronic excess of cerebral 

TNF, with an associated distortion of homeostasis and function loss. 
Detailed clinical consequences of chronically activated microglia in-
evitably depend on the degree and anatomical distribution of this 
activation.

4.1  |  Involvement of the TNF-induced cytokine 
cascade in cerebral long COVID-19

We proposed last year34 that TNF, which initiates this cascade, 
is pivotal to understanding the chronic cerebral consequences 
of not just long COVID but also of similar systemic infections, 
such as Lyme disease, caused by a tick-borne spirochaete, Bor-
relia burgdorferi. These PAMP-driven alterations in brain func-
tion were noted to be the same, in mechanism as well as nature, 
as the syndromes observed after DAMP-induced events such as 
stroke and post-traumatic brain injury induced by excess activ-
ity of the same cytokine pathways. All four cerebral functional 
alterations, two post-DAMP and two post-PAMP, were discussed 
in the same terms, i.e., all being initiated by TNF cascade cy-
tokines generated chronically and excessively from chronically 
activated microglia.34 The physiological homeostasis that these 
cascade-related cytokines normally control is therefore placed in 
jeopardy. As discussed earlier, such homeostasis is required for 
normal physiological neurotransmission via modulating excitatory 
inputs,23 trafficking of AMPA receptors,24 synaptic scaling,25 and 
long-term potentiation.27 Among the basic cerebral physiological 
foundations that can be expected to perform poorly in the face of 
chronically excessive levels of cerebral TNF is neurogenesis.30 Not 
surprisingly, the principles involved can also explain the nature of 
post-sepsis neurological dysfunction.35

Two recent publications in cell respectively generated36 and 
commented upon37 data that, apparently unwittingly, add further 
to our knowledge of the role of the TNF cascade in understanding 
COVID disease, particularly neurological long COVID. They both 
relate the consequences of increased circulating levels of CCL11 – 
a synonym for eotaxin, a chemokine, being central to understand-
ing these conditions. Neither group commented that this places 
CCL11 firmly within the TNF cascade, as evidenced by its induc-
tion by TNF28 and its in vivo reduction by etanercept.38 TNF has 
been observed to be involved in controlling neurogenesis since 
2006,39 and the case has been made34 for significantly reducing 
its concentration in COVID brains with etanercept. The specific 
anti-TNF biological, etanercept, had already been reported to re-
duce TNF, IL-1β, and IL-6 mRNA as well as TNF itself.40 Hence, the 
reduction by etanercept of a cytokine further down the cascade, 
such as CCL11, is to be expected.

4.2  |  Chronic cerebral aspects of Lyme disease

The acute phase of Lyme disease, with its influenza-like symp-
toms, malaise, headache, fever, myalgia, radicular pain, paresthesia, 
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fatigue, and a subjective sense of clouded thinking, is evidently con-
sistent with the excess TNF generation. The notion to search for 
sequestered forms, or fragments, of this spirochaete for their long-
term antigenic activity41 that can induce a persistent, neurological 
stage, and the link, or otherwise, between this and the acute disease 
phase, is the focus of some controversy. Accordingly, literatures on 
two separate clinical entities, post-treatment Lyme disease (when 
pathogen can no longer be detected) and chronic Lyme disease 
(when possible, pathogen remnants are recorded) exist side by side, 
unresolved.42 This conundrum continues to the present day and still 
generates the controversies commented on over 15 years ago.43

In our view, the researchers whose approach is most likely to 
advance our understanding of chronic cerebral Lyme disease are 
those making parallels with chronic inflammation,44,45 a short-
hand term for the prolonged effects of a chronically upregulated, 
TNF-induced, cytokine cascade. We reason that the chronic mi-
croglial activation discussed throughout this Review in conditions 
that include long COVID-19 and the syndromes seen in survivors 
of stroke and traumatic brain injury provide useful background 
material for understanding persistent Lyme disease. As in these 
other conditions, we argue here that the normal homeostatic ce-
rebral functions of TNF in synaptic function, and thus connectivity 
across the brain, are chronically overwhelmed, as reflected in the 
observed functional changes.34 In short, these changes are much 
more likely to arise from chronic TNF generation by chronically ac-
tivated microglia, rather than B. burgdorferi remnants chronically 
acting as perpetual PAMPs. Thus, we see chronic Lyme disease 
and post-treatment Lyme disease as a single functional entity, 
not unlike the cerebral aspects of long COVID. Significantly more 
activated microglia are identified in post-treatment Lyme disease 
patients than in controls46 by employing 11C-PK11195 labeling, 
the same marker used to enumerate these cells in post-stroke syn-
dromes47 and traumatic brain injury (TBI).48

In essence, we make the case for the activity of a TNF-positive 
feedback loop continuing to keep microglia in post-treatment Lyme 
disease activated, with this being performed, as we have noted ear-
lier, by the very TNF their activated state generates. Predictably, 
therefore, removing this excess TNF by administering perispinal 
etanercept can be expected, through deactivating these microglia, 
to be useful for treating persistence of the neurological symptoms’ 
characteristic of this condition. Examples of such syndromes that 
are plausible additional targets are discussed in the next Section.

5  |  E X AMPLES OF CEREBR AL 
DISE A SE-A SSOCIATED DAMP-DRIVEN 
MICROGLIAL AC TIVATION

5.1  |  Post-stroke syndromes

As discussed earlier,34 post-stroke syndromes are consistent with 
the presence of excess cerebral TNF as a component of neuro-
inflammation. Confirmation from basic models continues to 

accumulate,49 with 11C-PK11195, a well-established PET marker 
of in vivo microglial activation, being employed on such patients.47 
The same technique has been also been used to establish the dy-
namics of the same changes along affected nerve tracts,50 includ-
ing in chronically affected patients.51 Others52 have discussed 
the possibility of clinical implementation of this imaging to assess 
stroke-associated neuroinflammation with the potential to pro-
vide image-guided diagnosis and treatment. These authors also 
summarized the results from associated clinical studies evaluat-
ing the efficacy of anti-inflammatory interventions in stroke. This 
is reflected in much, and continuing, off-label clinical experience 
with perispinal etanecept16,17 as well as a modestly sized, public 
donation-funded, RCT.53

5.2  |  Traumatic brain injury and chronic traumatic 
encephalopathy

Researchers investigating the same concepts with TBI patients48 
have observed increased whole-brain binding of 11C-PK11195 
6 months after the damaging event. As has been noted,54 the con-
cept of sustained neuroinflammation after brain or spinal cord 
trauma, a relationship known since the 1950s, is well supported by 
these and similar studies that demonstrate extensive microglial and 
astroglial activation in chronic traumatic inflammatory encephalopa-
thy. Others55 have examined these aspects of microglial activation 
in a rat TBI model and found increased numbers of ionized calcium-
binding adapter molecule 1-positive cells, as well as active inflamma-
tion (e.g., increased levels of TNF, IL-1β, and IL-6). All these changes 
were shown to be significantly reduced by intrathecal etanercept 
treatment. It has subsequently been demonstrated in an experimen-
tal model56 that, in the absence of microglia, neurons do not undergo 
TBI-induced changes in gene transcription or structure. Moreover, 
microglial elimination prevented TBI-induced cognitive changes 
30 days post-injury. This is consistent with mediators secreted by mi-
croglia having a critical role in disrupting neuronal homeostasis after 
TBI, particularly at subacute and chronic timepoints. Predictably, 
these principles have been extended to chronic traumatic encepha-
lopathy (CTE) in head-contact sports injuries.57 This condition has 
also gained attention through its recently recognized high incidence 
in young children, in whom mild trauma has been reported to have 
a previously unsuspected link to persistent behavioral and learning 
difficulties.58

5.3  |  Post-chemotherapy and post-irradiation 
cerebral dysfunction

For some years now, the MRI and PET scanning literatures have 
indicated altered functional and metabolic changes in the post-
chemotherapy brain. Subsequently59 it was argued that TNF was 
likely to be central to post-chemotherapy cerebral dysfunction. 
Impaired cognitive function has been found to be widespread, 
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and to encompass a lower capacity for attention, mental flexibil-
ity, speed of information processing, visual memory, and motor 
function.60 Affected sites include the frontal cortex, cerebellum, 
and basal ganglia.61 More recently, it has been argued at length62 
that chemotherapy-induced microglial activation, a circumstance 
in which excess TNF is generated within the brain, is central to 
the dysregulation of cerebral function that often follows. These 
changes are more pronounced in APOE4+ individuals receiving 
chemotherapy.63 This association is to be expected, since this 
genotype is a known marker for higher levels of TNF induction. 
For example, when bacterial LPS, the TLR4 agonist that is the 
prototype TNF inducer, is administered intravenously to APOE4+ 
and APOE4− volunteers, much higher levels of TNF are gener-
ated in the APOE4+ group.64 The same pattern of events can also 
rationalize post-irradiation cerebral dysfunction, given that irra-
diation induces microglial activation,65 and selective inhibition of 
microglia-mediated neuroinflammation has been reported to miti-
gate radiation-induced cognitive impairment in tumor patients.66

5.4  |  Cerebral palsy

After decades of research activity on this condition, a path through 
to persistent microglial activation arose from the laboratories of Olaf 
Dummann67 and Pierre Gressens.68 This made the field much more 
intelligible, and indeed intriguing, to a wider audience of researchers. 
Within a decade, Galinsky69 had further extended the fetal sheep 
model of cerebral palsy developed by others70 by steering it towards 
the microglial activation ideas outlined above. In brief, late preterm 
fetal sheep were infused with LPS, the prototype TNF inducer, with 
and without etanercept. Etanercept delayed the rise in circulating IL-
6, prolonged the increase in IL-10, and attenuated EEG suppression, 
hypotension, and tachycardia after bolus injection of LPS. It also nor-
malized LPS-induced gliosis, and the increase in TNF-positive cells, 
as well as proliferation of oligodendrocytes.

Subsequently, this group subjected chronically instrumented 
pre-term fetal sheep to 25 minutes of hypoxia-ischemia induced by 
complete umbilical cord occlusion, followed by intracerebroventric-
ular infusion of etanercept.71 This treatment markedly attenuated 
cystic white matter injury on the side of the intracerebroventricular 
infusion, with partial contralateral protection. Three weeks later, 
histology sections showed that etanercept had improved oligoden-
drocyte maturation and labeling of myelin proteins in the tempo-
ral and parietal lobes. As the authors noted, the inference of these 
outcomes is that delayed TNF blockade may be a viable approach 
to reducing the risk of cystic and diffuse white matter injury and 
potentially cerebral palsy after preterm birth, and after an unex-
pectedly favorable therapeutic window. Reflecting on their data,72 
this group proposed that the tertiary phase of injury might be dif-
ferent than previously thought, with a surprisingly wide window of 
opportunity 1 to 2 weeks after hypoxic–ischemic injury to prevent 
delayed cystic lesions, further reducing the risk of cerebral palsy 
after preterm birth.

5.5  |  Fetal alcohol syndrome

Another field of research following a similar pattern concerns fetal 
alcohol syndrome, a consequence of ethanol exposure to the fetus 
during pregnancy. In human studies on chronic heavy alcohol-user 
mothers, TNF, IL-1α, and IL-1β levels have been reported to be 
persistently increased in maternal and cord serum, and in cultured 
cells.73 These disorders can persist, leading to lifelong disabilities, 
with resultant dysfunctional behavior and cognition. Microglial ac-
tivation, associated with high TNF levels, is also recorded.74 Alcohol 
consumed during gestation has recently been shown to prejudice 
brain development by reducing the synthesis and release of neuro-
trophic factors and neuroinflammatory markers into the plasma of 
pre-pubertal children with fetal alcohol syndrome.75 Significantly 
more microglia were also present in the hypothalamus in alcohol-
fed adult rats,76 and these cells showed more TNF and IL-6 expres-
sion in response to LPS than did the same cells from normal rats. In 
2020, others77 reported that mice receiving prenatal and lactational 
alcohol exposure demonstrated increased expression of IL-6 and 
TNF in the hippocampus and frontal cortex, and microglial activa-
tion in the dentate gyrus. Therefore, it is not surprising that elimi-
nation of TLR4 abolishes the effects of ethanol on the innate and 
the adaptive inflammatory response induced by ethanol treatments 
in macrophages.78 Treatment with curcumin (diferuloylmethane), a 
component of turmeric (Curcuma longa), which is inexpensive and 
somewhat reduces TNF,79 is reported to reduce these alcohol-
induced mouse memory deficits.77 Clearly, this condition has many 
parallels, in both pathogenesis and potential therapy, with the rest of 
this group of chronic neurogenic disease states.

5.6  |  The antinociceptive state in 
morphine-tolerant rats

As well-reviewed by Eidson et al80 and earlier authors, the acquisi-
tion of morphine tolerance is best explained nowadays in terms of 
activation in neuroinflammatory cells, such as microglia, and ensuing 
changes in inflammatory cytokine generation. In keeping with this, 
studies exist on etanercept preserving the antinociceptive state in 
morphine-tolerant rats40 and therefore being predicted to extend the 
effectiveness of opioids in clinical pain management. A key step here, 
as described throughout this publication, is microglial activation being 
suppressed by etanercept. As discussed above in the context of cer-
ebral palsy in sheep,69 etanercept reduced post-LPS gliosis in the white 
matter of fetal lambs. Here again, therefore, long-term microglial acti-
vation, consistent with the positive feedback loop described by Kuno,2 
can reasonably be incriminated in morphine tolerance.

5.7  |  Hepatic encephalopathy

Research in a mouse model, designed to understand more about the 
mechanism of hepatic encephalopathy, a serious neuropsychiatric 
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complication of liver failure, unearthed the same general conclusion 
as above. Namely, that microglial activation, assessed by OX-42 im-
munoreactivity, was attenuated by etanercept,81 again implicating 
Kuno's positive feedback loop2 and therefore a plausible application 
of perispinal etanercept.6

6  |  PSYCHIATRIC CONSEQUENCES OF 
ANY E XCESSIVE CEREBR AL INCRE A SE IN 
TNF

Ignatowski et al82 appear to have been the first, in 1996, to awaken 
an interest in cerebral functional changes, whether behavioral, af-
fective, or cognitive, being mediated by cytokines such as TNF. 
Many subsequent publications are consistent with this. For exam-
ple, in 2006 Paterson et al83 demonstrated, using pro-  and anti-
psychotic drugs in a rat model, and in human autopsy brain, that 
levels of TNF in relevant brain regions were altered in ways consist-
ent with a causal TNF link. Indeed, as discussed later in this Section, 
it is increasingly acknowledged that the cerebral functional loss dis-
cussed above in terms of excess TNF, however induced, be it a PAMP 
(long COVID84 or post-treatment Lyme disease85) or a DAMP (post-
stroke86 or TBI87), is associated with an increased incidence of the 
more common psychiatric conditions. Whatever the trigger, the lit-
erature of psychiatric disorders, such as clinical depression, or major 
depression disorder (MDD), schizophrenia,88 and bipolar states,89 is 
increasingly consistent with this association.

For example, it has been reported, after employing [(11)C]PBR28 
binding,88 that microglial activation is elevated in the frontal and 
temporal lobes of patients with schizophrenia. Microglial activation 
at these sites was also present in those with subclinical symptoms of 
a high risk of psychosis and was related to at-risk symptom severity. 
Others have more recently reported that infliximab improved cog-
nitive function in patients with bipolar depression.90 This was found 
to be mediated via secondary changes in leptin, a mediator closely 
associated with TNF in many ways.91 As reported,92 several spe-
cific anti-TNF biologicals, as well as minocycline, a semi-synthetic 
second-generation tetracycline that attenuates TNF production, 
have been demonstrated to be a useful adjunct treatment for MDD, 
schizophrenia, and bipolar disorder. This is consistent with a recent 
extensive study of microglial activation in MDD93 and also a report 
of co-expression networks in brains of patients with psychiatric 
disorders.94 In brief, this genome-wide association study revealed 
that transcripts closely related to innate immunity gene activity 
interacted closely with transcripts of genes associated with CNS 
systems.

6.1  |  Lyme disease and psychiatric disorders

A considerable literature on Lyme disease, a multi-systemic illness, 
demonstrates that it can exhibit late-onset neuropsychiatric changes 
after the pathogen, B. burgdorferi, is no longer present. These changes 

can persist for months or years and have been described as compro-
mising neuropsychological performance, as shown by the WAIS-III and 
WMS-III mental tests.95 Detailed descriptions of what has been docu-
mented in neuropsychiatric Lyme disease are widely available.96

6.2  |  Long COVID and psychiatric disorders

Given their similar presentations – flu-like symptoms of fever, chills, 
sweats, malaise, myalgia and arthralgia, neurological dysfunction, 
all consistent with excess TNF generation in both of these condi-
tions – diagnostic confusion between post-treatment Lyme disease 
and long COVID-19 is to be expected. Hence, a potential delay for 
an accurate diagnosis is a real possibility.97 Predictably, therefore, 
long-term consequences of post-treatment Lyme disease and long 
COVID-19 also have similarities. For instance, long COVID appears 
to share with what could be termed long Lyme disease the increased 
frequency of the MDD and other common psychiatric disorders.84,85 
Our reasoning here is entirely consistent with the outcome of recent 
studies98 that focused on the details of the PAMP activity of certain 
structural proteins of SARS-CoV-2 in this same context. Their con-
clusions also plausibly apply to the psychiatric disorders recorded in 
Lyme disease, above.95

It also warrants noting that CCL11, a chemokine inducted by 
TNF28 and reduced in vivo by etanercept,38 has recently been noted 
to be a marker for long COVID neurological disorders.36,37 This pro-
vides further evidence of the same principles applying across these 
PAMP/DAMP-induced neurological disorders and the common psy-
chiatric disorders. Notably, this chemokine has also been reported 
to be increased in schizophrenia, bipolar disorder, and MDD, often 
correlating with the severity of psychopathological and cognitive 
parameters.99

7  |  CHRONIC NEUROGENIC PAIN A S A 
CONSEQUENCE OF INCRE A SED CEREBR AL 
TNF

For over 20 years, the involvement of cytokines released from 
glial cells to mediate pain has been a topic of basic and clinical 
research.100–106 Milligan and Watson warrant particular acknowl-
edgment.107 Indeed, a few years earlier this group had demonstrated 
that intrathecal minocycline, a selective inhibitor of microglial acti-
vation, attenuates mechanical allodynia in a rat model.108 The ef-
fect was slight, but this agent is a much weaker TNF inhibitor than 
present-day specific biosimilars. Typically, these studies have been 
directed at post-stroke pain, but the literature on TNF-associated 
neurogenic pain extends to essentially all of the disease states dis-
cussed in this review: TBI,109 Lyme disease, long COVID (discussed in 
Section 6.2), cerebral palsy,110 fetal alcohol syndrome,111 and hepatic 
encephalopathy.112 The term Chronic Regional Pain Syndrome113 is 
used generically in this context. It can also include spinal cord injury, 
as outlined in the next paragraph.
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7.1  |  Spinal cord injury as an example of chronic 
neurogenic pain

Examples consistent with the practical application of this evidence for 
a positive feedback phenomenon, with anti-TNF reversing microglial 
cell activation, and thus long-term excess cerebral TNF generation, are 
readily available in the pain literature. For example, 4 years after – albeit  
not noting –  Kuno's study,2 Marchand et al114 investigated, in a rat 
model, the cause of the neuropathic pain that affects some 70% of pa-
tients with spinal cord injury. They reported that etanercept treatment 
soon after injury reduced pain, as assessed by reduction of mechanical 
allodynia for at least a month. It also reduced OX-42 immunostaining, 
an indicator of spinal microglial cell activation. In the same publication, 
minocycline, an established but less potent anti-TNF inhibitor, also sig-
nificantly reduced microglial OX-42 expression, i.e., activation.

7.2  |  The chronic pain of endometriosis

For some time, the severe pain that can accompany endometriosis 
has been associated with excess local TNF levels. Apart from assaying 
for this key cytokine, this has been implicated from evidence for trig-
gering of Toll-like receptor 4 being essential to pain generation,103,115 
Relevant downstream signaling pathway activity has also been re-
ported.116 The hallmark chronicity of this condition is consistent with 
the finding, discussed throughout this review,2 of the TNF generated 
by activated microglia keeping these cells activated. Moreover, much 
evidence exists for microglial activation in this condition – particu-
larly in experimental models, where it is very widespread.117 It is also 
discussed in patient research.118,119 Should microglial activation be-
come accepted as a key phenomenon in human endometriosis pain, 
an interest in perispinal administration of anti-TNF therapy, as for 
post-stroke pain,17,53 is likely to be compelling.

8  |  THER APEUTIC IMPLIC ATIONS

In summary, the case is made here that much shared neurological 
chronicity arises largely from the positive feedback loop described 
by Kuno2 causing the persistence of the activation of microglia by 
the TNF that these cells generate.

Since all of the conditions listed above –  post-stroke syn-
dromes, traumatic brain injury and chronic traumatic enceph-
alopathy, post-chemotherapy and post-irradiation cerebral 
dysfunction, cerebral palsy, fetal alcohol syndrome, morphine 
tolerance, neurogenic pain and hepatic encephalopathy – exhibit 
chronic microglial activation, we proposed that, when further ex-
plored, they will be widely regarded, by the reasoning outlined 
above, to warrant consideration as candidates for treatment with a 
single dose of perispinal etanercept. This is directed at the excess 
TNF that, from Kuno's study,2 is keeping the microglia chronically 
activated, rather have it overwhelmed normal cerebral function 
(see Section 3), although this is plausibly influenced. In summary, 

lowering this excess cerebral TNF by introducing a specific anti-
TNF agent perispinally appears to be a logical routine procedure to 
reverse much of the function loss caused by this persistent, TNF-
maintained, and TNF generating, microglial activation in a range of 
chronic neurological conditions.

In future, these outcomes may well be achieved by potent spe-
cific anti-TNF agents small enough to pass the blood–brain barrier. 
Until then, open-mindedly encouraging large RCTs of delivery of 
etanercept, or similar activity large molecule specific biologicals, 
through the perispinal route shows promise of improving many lives, 
across a range of neurological conditions.

Another agent proving to be instructive in this context is Fingo-
limod, an orally administered fungal derivative.120 Its relevant useful 
activities include protecting against injury in a post-stroke syndrome 
model of brain ischemia, which is associated with reduced activa-
tion of NF-κB signaling pathways, leading to significant improve-
ment associated with reduced levels of inflammatory cytokines.121 
Moreover, illness mitigation by Fingolimod in a mouse model of Gulf 
War Syndrome, a condition with unremitting central nervous system 
function loss, is associated with reduced activity of inflammatory 
signaling pathways and, notably in the present context, decreased 
activation of microglia.122

9  |  R ATIONALIZING A SINGLE 
ETANERCEPT INJEC TION GENER ATING A 
CONTINUING THER APEUTIC EFFEC T

Reported outcomes after a single off-label perispinal treatment of 
post-stroke syndromes are commonly characterized by remark-
ably long-term neurological improvement. This very simply ob-
tained measurement of duration has now been reported for over 
a decade for very many such patients, from the first set of case 
reports in 2011.16 Given the short in vivo half-life of etanercept,123 
this long-term improvement is decidedly counterintuitive, given 
the typical weekly requirement for this class of therapy when 
neutralizing the harmful effects of TNF in rheumatoid arthritis.124 
It seems that Tobinick's initial 2011 proposal16 for a mechanism, 
quoting a capacity of increased etanercept to reduce microglial 
activation,125 and therefore the continuous production of TNF 
by these cells, may require being taken more seriously than it has 
been to date. Importantly, as discussed above, cerebral TNF evi-
dently has a propensity to maintain its own production by keeping 
microglia, the main cerebral cells that produce it, in the activated 
state necessary for its continuous generation. Namely, as Kuno 
and co-authors subsequently established,2 an autocrine-positive 
feedback loop exists whereby TNF can prolong the activation of 
the cerebral microglia that generate it. Indeed, 5 years ago we 
quoted and explained Kuno's data in an Editorial126 in order to ad-
dress neurologists' skepticism of possible longevity of the effect 
of etanercept in post-stroke syndromes.

Accordingly, using perispinal administration of etanercept, an-
other TNF-specific biosimilar, or indeed a smaller equally specific 
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agent by other routes, to remove the excess TNF initiating this 
positive feedback can be expected to prevent activated microglia 
continuing to generate and releasing excess TNF, thus rationalizing a 
long-term therapeutic effect from a single dose.

10  |  CONCLUSIONS

Rewards for performing large perispinal etanercept RCTs are very 
likely not restricted to post-stroke syndromes, for which most 

experience exists. Its usefulness plausibly extends to the chronic 
cerebral aspects of long COVID, post-treatment Lyme disease, 
cerebral palsy, TBI and chronic traumatic encephalopathy, post-
chemotherapy and irradiation cerebral dysfunction, fetal alco-
hol syndrome, the antinociceptive state in morphine-tolerance, 
hepatic encephalopathy, spinal cord injury, certain psychiatric 
states, and chronic neurogenic pain in a number of conditions. 
On a wider canvas, these concepts also link influenza and her-
pesvirus to the risk of various neurodegenerative diseases later 
in life. These pathogens both have documented PAMP activity, 

F I G U R E  1 The proposed consequences of, and how to ameliorate, chronically activated microglia. An illustration of the rationale for the 
long-term effectiveness of a single anti-TNF perispinal treatment through activated microglia reverting to the normal quiescent state, rather 
than simply neutralizing the direct harmful effects of this cytokine. The recorded presence of chronically activated microglia across a range 
of neurodegenerative states thus indicates the predictability of the usefulness of anti-TNF administration so that it reaches the CSF.
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and these neurodegenerative states all possess a literature on mi-
croglia being chronically activated. This combination provides the 
long-term potential to overwhelm the normal homeostatic control 
mechanisms such as synaptic plasticity and scaling. Included here 
is control over the neuronal type-1 inositol trisphosphate recep-
tors (IP3R),29 which are central to neuronal Ca++ homeostasis and 
thus to the ionic signaling cascades on which normal function of 
neurons depend.

In conclusion, the observations of Kuno et al2 warrant being 
taken into consideration when understanding and treating a wide 
array of chronic dysfunctional neurological states.
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