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The binding of transcription factors (TFs) to their specific motifs in genomic regulatory regions is commonly studied in
isolation. However, in order to elucidate the mechanisms of transcriptional regulation, it is essential to determine which
TFs bind DNA cooperatively as dimers and to infer the precise nature of these interactions. So far, only a small number of
such dimeric complexes are known. Here, we present an algorithm for predicting cell-type–specific TF–TF dimerization on
DNA on a large scale, using DNase I hypersensitivity data from 78 human cell lines. We represented the universe of
possible TF complexes by their corresponding motif complexes, and analyzed their occurrence at cell-type–specific DNase
I hypersensitive sites. Based on ~1.4 billion tests for motif complex enrichment, we predicted 603 highly significant cell-
type–specific TF dimers, the vast majority of which are novel. Our predictions included 76% (19/25) of the known dimeric
complexes and showed significant overlap with an experimental database of protein–protein interactions. They were also
independently supported by evolutionary conservation, as well as quantitative variation in DNase I digestion patterns.
Notably, the known and predicted TF dimers were almost always highly compact and rigidly spaced, suggesting that TFs
dimerize in close proximity to their partners, which results in strict constraints on the structure of the DNA-bound
complex. Overall, our results indicate that chromatin openness profiles are highly predictive of cell-type–specific TF–TF
interactions. Moreover, cooperative TF dimerization seems to be a widespread phenomenon, with multiple TF complexes
predicted in most cell types.

[Supplemental material is available for this article.]

Transcription factors (TFs) typically bind the human genome in

clusters to form regulatory complexes (Berman et al. 2002). How-

ever, not much is known about the precise biochemical deter-

minants of clustered TF binding. Moreover, the ability of TFs that

have relatively low sequence specificity in vitro to bind with high

specificity in vivo is one of the long-standing paradoxes of regu-

latory genomics.

One explanation for the above observations is provided by

focal chromatin openness at regulatory elements, which attracts

multiple TFs to the same stretch of genomic DNA, and is further

reinforced by their cobinding. Such indirect cooperativity between

proximal binding sites is mostly nonspecific, since it applies in

principle to any TF pair (Adams and Workman 1995). Moreover,

such cobinding TFs are only subject to the ‘‘fuzzy’’ spacing con-

straint of proximity (Hannenhalli and Levy 2002; Yu et al. 2006).

Another biochemical mechanism is direct cooperativity, as ex-

emplified by homo- or heterodimerization of specific pairs of TFs

on DNA. Note that this mechanism also applies to higher-order

complexes of three or more TFs. However, for simplicity, we will

henceforth only refer to TF ‘‘dimers.’’ Intuitively, one would hy-

pothesize that such dimeric complexes should bind DNA with

rigid or semi-rigid spacing (as opposed to variable or fuzzy spacing)

due to the steric constraints imposed by protein–protein inter-

action. However, the actual prevalence of spacing constraints

in vivo remains unknown due to the lack of comprehensive data.

Important examples of direct cooperativity include the p53 (TP53)

homotetramer (Friedman et al. 1993), the NF-kB (NFKB) hetero-

dimer (Chen et al. 1998a), various bHLH dimers (De Masi et al.

2011), SOX2–POU5F1 (OCT4) dimerization in embryonic stem cells

(Chen et al. 2008), and AR–FOXA1 dimerization in prostate cancer

cells (Wang et al. 2011). Clearly, binding of dimeric TF complexes to

DNA is central to gene regulation in many well-studied biological

contexts. In addition to its role in facilitating TF clusters, direct

cooperativity provides a simple resolution to the paradox of binding

specificity. However, little is known about the overall extent and

tissue specificity of TF dimers in the human genome.

Here we present a method for comprehensively predicting

cell-type–specific TF dimerization based on TF affinity motifs and

DNase I hypersensitivity profiles in 78 human cell types (The

ENCODE Project Consortium 2011). Uniquely, our approach can

model the statistics of overlapping motifs. As we show below,

motif overlap is a feature of most TF dimers, and this capability is
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therefore a major improvement over existing techniques. We

confirm the accuracy of our predictions by multiple means, in-

cluding comparison with large-scale experimental data (Ravasi

et al. 2010). Based on our method, we obtain new insights into the

prevalence and scope of direct TF cooperativity, and the rigidity

and compactness of such interactions.

Our method is based on enrichment analysis of motif pairs at

specific spacings in cell-type–specific hypersensitive sites. Thus, it

differs from several existing bioinformatics approaches that aim to

identify fuzzily spaced cobinding of TF pairs, i.e., indirect cooper-

ativity (Qian et al. 2005; He et al. 2009; Bais et al. 2011; Myšičková

and Vingron 2012). Recently, Whitington et al. (2011) described

a method that, similarly to ours, predicts TF–TF dimerization based

on enrichment of rigidly spaced motif pairs. However, this ap-

proach requires ChIP-seq data for one of the potentially cooper-

ating TFs. In contrast, our approach is more broadly applicable,

since it requires only one experimental data set per cell type.

Consequently, our TF–TF dimer predictions exceeded those of

Whitington et al. (2011) by over a factor of 10, and the number of

predicted dimeric binding sites in regulatory elements was greater

by over a factor of 100.

ChIP-seq data have also been used for TF cooperativity pre-

diction by Wang et al. (2012), who tested for nonrandomly spaced

motif pairs within binding peaks. The latter method is most suited

for detecting fuzzily spaced TF–TF interactions. Consequently, the

resulting predictions are different in nature from, and comple-

mentary to, those we present here.

Results

Overview of the method

To avoid redundancy in our findings, we accounted for the simi-

larities between some of the 78 human cell types by clustering

them by their genome-wide DNase I hypersensitivity profiles

(Supplemental Fig. 1; see Methods). Encouragingly, the resulting

dendrogram recapitulated the expected developmental hierarchy.

For example, blood cells formed a single supercluster, which split

into lymphoid and myeloid branches. The lymphoid set further

split into T-cell and B-cell subclusters, and the myeloid set into

megakaryocytic leukemias (K562, CMK) and myeloblastoid cells

(CD14+ monocytes and the promyelocytic leukemias, HL-60 and

NB4). We manually thresholded the cell-type dendrogram (see

Methods) to define 41 distinct clusters, which we will henceforth

refer to as ‘‘cell types.’’

The 964 vertebrate motifs in TRANSFAC Professional (Wingender

et al. 1996) were used as models of TF-binding specificity, yielding

465,130 potential motif pairs. The central assumption of our

method is that dimeric TF complexes would be juxtaposed in

a constrained fashion when cooperatively bound to DNA. Conse-

quently, the genomic binding sites of cooperating TFs should form

rigid motif complexes, which we define as pairs of motifs with fixed

relative orientation and offset (displacement between left edges of

motifs). We therefore tested all possible compact motif complexes

(motif spacing #50 bp; see Methods) of each motif pair for en-

richment in open chromatin regions specific to each of the 41 cell

types.

To quantify enrichment, we counted the number of motif

complex instances in each set of cell-type–specific hypersensitive

sites, and then compared against a background model based on

the number of instances in the union set of hypersensitive sites

from all cell types (Fig. 1A,B). The significance of enrichment was

assessed using a binomial distribution, after correcting for differ-

ences in motif co-occurrence frequency between foreground and

background sets (see Methods). The validity of our statistical ap-

proach is supported by the observation that our motif complex

enrichment P-values fit the null expectation over four orders of

magnitude and are, if anything, moderately conservative (Fig. 1C).

Motif complexes showing statistically significant enrichment

(P < 0.05 after Bonferroni correction) were recognized as evidence

of cell-type–specific TF cooperativity. Application of the approach

across all ;1.393109 motif and cell-type combinations yielded

Figure 1. Identification of overrepresented cell-type–specific motif complexes. (A) Example of overrepresented motif complex specific to LNCaP
(prostate cancer) cells. Number of instances of AR–FOXA1 motif complexes within LNCaP-specific hypersensitive sites (red bars) as a function of motif
offset. Gray bars denote the expectation based on the background set of all hypersensitive sites (see Methods). Offsets in the interval [�9, 7] correspond to
complexes with overlapping motifs. Offsets disallowed due to excessive motif overlap (see Methods) are indicated. Error bars correspond to P = 0.05 after
Bonferroni correction. The complex with offset 11, marked with an asterisk, was the only one overrepresented in LNCaP-specific hypersensitive sites; its
Bonferroni-corrected P-value is indicated. (B) Examples of AR–FOXA1 motif complexes at three different offsets; (C ) Q-Q plot of observed vs. expected
log10 P-values of motif complex enrichment in all ;1.4 billion hypotheses tested. (Inset) Magnification of the first 10 decades of Q-Q plot. The calculated
P-values fit the null expectation over the first four decades, indicating appropriate choice of statistical model.
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5233 significantly overrepresented motif complexes (Supplemen-

tal Table 4). For example, we found a highly significant AR–FOXA1

motif complex in the LNCaP prostate cancer cell line (P = 8.1 3

10�134) (Fig. 1A,B), suggestive of widespread AR–FOXA1 dimer-

ization at prostate cancer regulatory elements (Wang et al. 2011).

Note that the motif complex was enriched only at one precise

offset, indicating a rigid, strongly constrained heterodimeric

structure.

Since the motif database frequently contains multiple motifs

for a single TF, cooperative binding of one TF pair frequently

resulted in enrichment of multiple equivalent motif complexes.

We therefore clustered the 5233 overrepresented motif complexes

by similarity, so that each cluster constituted a distinct prediction

of direct physical cooperativity in TF-DNA binding (Supplemental

Table 4; see Methods). Clustering yielded 603 distinct predictions,

covering 30 of the 41 cell types (73%). Each cluster was assigned

the P-value of its most significant motif complex, which we refer to

as the signature motif complex. Most cell types were characterized by

multiple TF dimers, with 15 cell types having at least 10 predictions

(Supplemental Table 3). From a TF-centric perspective, we observed

that out of 350 clusters of similar motifs (see Methods), 129 par-

ticipated in at least one prediction.

The number of known TF dimers is difficult to quantify, since

the evidence is scattered over a large number of publications de-

scribing individual cases. We manually compiled a list of 25 known

instances of direct cooperativity in DNA binding from the existing

biochemical literature (Supplemental Table 1). Although this list

is possibly incomplete, it is nevertheless likely that our 603 pre-

dictions outnumber the known TF–TF–DNA complexes by over an

order of magnitude.

Top-ranked predictions include known instances of TF
cooperativity

All of the 10 most statistically significant cooperativity predictions

matched known TF complexes (Fig. 2). Moreover, the predicted cell

type was also consistent with previous studies, in most of the cases.

For example, the well-known cooperative interaction of POU5F1

(OCT4) with SOX2 (Ambrosetti et al. 1997; Chen et al. 2008),

which is central to embryonic stem cell pluripotency, was ranked

fourth and predicted in the correct cell type. Note that the OCT4–

SOX2 heterodimer motif is sometimes mistakenly annotated in

databases as an OCT4 or SOX2 monomer motif due to its high

prevalence at OCT4 and SOX2 binding sites. Note also that the

monomers participating in cooperative binding are typically pre-

dicted only at the TF-family level, i.e., ‘‘OCT’’ or ‘‘SOX,’’ since TFs

within a paralog family generally bind highly similar DNA se-

quences. Thus, additional domain knowledge or expression anal-

ysis is needed to determine exactly which representative of each

TF family is involved in the DNA-bound complex (see, for exam-

ple, Carroll et al. 2005). Occasionally, prior knowledge may alter

the interpretation of TF identity within a dimeric complex. In

most cases, this reinterpretation merely involves substituting one

paralogous TF for another. However, in exceptional cases, such as

the E-box motifs in Figure 2, the TFs implied by the predicted motif

pairs are not paralogous to the actual TFs binding the motif (basic

helix-loop-helix dimers).

Overall, 19 of the 25 known TF dimers (Supplemental Table 1)

were present among our predictions, suggesting that our method

has 76% sensitivity. This number should be considered as a lower

bound, since certain TFs from the set of known dimers may not

be expressed in cell types considered in our study. Notably, our

36th ranked motif complex, NFAT–AP-1 (P = 2.1 3 10�40, http://

bioputer.mimuw.edu.pl/papers/tfdimers/), matches the NFAT–

FOS–JUN trimer that is known to synergistically regulate several

immune-response genes (Chen et al. 1998b). This trimer was pre-

dicted by our algorithm because the sequence recognized by the

FOS–JUN (AP-1) dimer was present as a single motif (accession

number M00926) in TRANSFAC.

Predicted interactions significantly overlap previous systematic
TF–TF screens

To verify our cooperative binding predictions against experimental

data on a large scale, we overlapped them with an atlas of 5238

human protein–protein interactions (PPIs) between transcription

factors. The PPIs were deduced from mammalian two-hybrid as-

says and other forms of experimental evidence (Ravasi et al. 2010).

It is important to note that, even if our predictions were perfectly

accurate, only a fraction of them would be expected to be present

in the PPI set, since existing experimental methods have limited

sensitivity. For example, the mammalian two-hybrid assay has an

estimated sensitivity of 25% (Ravasi et al. 2010). Similarly, even if

our predictions covered every single true interaction, we would still

expect them to include only a portion of the PPIs, due to false

positives in the latter. For example, the false-detection rate of the

mammalian two-hybrid assay is ;53%. Moreover, only a subset of

TF–TF complexes in the PPI set are likely to bind DNA with both

subunits. Nevertheless, we found highly significant overlap (P =

1.2 3 10�82; see Methods) with the atlas.

We also compared our predictions with cooperative inter-

actions inferred from motif analysis of ChIP-seq data (Whitington

et al. 2011). We clustered the 59 human cell-type–specific motif

complexes reported by Whitington et al. (2011) exactly as our

complexes were clustered, and obtained 44 nonredundant pre-

dictions. Of these 44 predictions, 29 were reported in cell types

for which we obtained DNase-seq data. We found that nine of

these 29 (31%) were also predicted by our method in at least one

cell type, and 7/29 (24%) were predicted by our method in exactly

the same cell type (see Methods). Thus, there is a significant (P =

2.6 3 10�23), though incomplete, overlap between the two pre-

diction sets. Apart from false positives and negatives in the two

interaction sets, one possible reason for the limited overlap is that

most of the TF–TF dimers predicted by Whitington et al. (2011)

were predicted to bind at <30 locations in the genome. Our

method, while more general, is only sensitive to TF–TF dimers with

widespread binding, since it does not benefit from the precision of

ChIP-seq data. This distinction is underlined by the observation

that our 603 predicted TF dimers are estimated to bind at 450,652

locations genome-wide. In contrast, the human TF cooperativity

predictions in Whitington et al. (2011) cover 1821 genomic sites.

DNase I cut density independently supports predicted physical
interactions

In predicting TF dimers, we did not use all of the information

contained in the DNase-seq data. Specifically, we ignored variation

in DNase-seq peak height—all hypersensitive sites were treated as

equivalent. Consequently, we would expect false-positive motif

complexes to be randomly distributed relative to peak height. In

contrast, truly cooperative motif complexes should show a skew

toward the ‘‘taller’’ hypersensitive peaks. This is because coopera-

tivity would enhance TF–DNA binding, and thereby enhance av-

erage chromatin openness (Boyle et al. 2011; Pique-Regi et al.
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2011). This opens up another avenue for independently validating

our predictions—we could test each predicted TF–TF dimer for bias

toward taller hypersensitive peaks. Note that there is no circularity

in this validation approach, since we are testing for peak-height

skews within the set of DNase I hypersensitive sites, rather than

between peaks and the rest of the genome.

For illustration, consider again the AR–FOXA1 motif com-

plex. We predicted that AR–FOXA1 would bind cooperatively at

690 locations within LNCaP-specific hypersensitive sites, with the

two individual motifs offset by 11 bp. We constructed the average

density profile of DNase I cuts at cooperatively bound locations by

aggregating over these 690 sites (see Methods). For comparison, we

considered 1909 AR–FOXA1 motif complex instances with ‘‘in-

correct’’ spacing (motif offset between 12 and 21 bp) within the

same set of hypersensitive sites. If the two TFs did indeed bind

cooperatively at the predicted motif offset, this cooperativity

Figure 2. Top 10 predicted motif complexes, ranked by P-value. (Middle) Below each motif complex the locations of underlying individual motifs are
indicated by red and blue lines. (Left) For each motif complex, the enriched cell types are separated by ‘‘+’’ symbols. The number of motif complex
instances in hypersensitive sites specific to each cell type is also indicated. The P-value is given for the most significant prediction across the indicated cell
types. (Right) TF dimer that binds the motif complex, with literature citations.
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would result in stronger average TF–DNA binding at sites with the

correct motif spacing, relative to sites with the incorrect spacing.

Consequently, we would expect the cut density to be greater at the

690 correctly spaced sites, relative to the 1909 incorrectly spaced

sites. This is indeed the case within the central 200-bp window

(Fig. 3A) (P = 1.3 3 10�13). Our examination of the cut density

profiles of other known TF dimers showed the same trend (data not

shown).

We repeated the comparison of DNase I cut density profiles

in Figure 3A for the entire set of 603 signature motif complexes,

and found that, as a group, they collectively showed the expected

cut-density enrichment (P < 10�300). At an individual level, 91%

of the predicted cooperative interactions (549/603) showed sta-

tistically significant enrichment in DNase I cuts after correcting for

multiple testing (FDR < 0.05). Thus, most of our predicted dimers

were independently supported by the cut-density test.

To obtain further insight into the remaining 54 (603 � 549)

predicted motif complexes that were rejected by this test, we av-

eraged their collective DNase I cut profile and compared it with the

profile at the 540 corresponding incorrectly spaced complexes.

Encouragingly, we again found significant local elevation of DNase

I accessibility (Fig. 3B) (P = 0.019), suggesting that deeper se-

quencing of DNase-seq libraries could provide sufficient statisti-

cal power to validate several additional motif complexes.

Evolutionary conservation supports predicted physical
interactions

Yet another approach to validate the predicted TF dimers would be

to compare evolutionary conservation scores between predicted

and incorrectly spaced motif complexes. This test has limited

power, since TF-binding sites are known to diverge very rapidly

between species, and also because informative positions within

motif complexes typically cover only ;5–10 bp. However, we still

expected at least some of our predicted complexes to show a signal

of evolutionary constraint; see, for example, the constraint profile

of the FOXA1 (HNF3A) homodimer (Fig. 4A). For this purpose,

we used primate base-pairwise conservation scores (Pollard et al.

2010), weighted by motif information content (see Methods).

For 23.7% of the predictions (143/603), we observed preferential

evolutionary constraint (FDR < 0.05), further supporting the val-

idity of our predictions (Fig. 4B).

Predicted cooperative interactions are rigid and compact

There is some uncertainty in the literature about the spatial

properties of motif pairs that are bound by TF dimers (Mirny 2010;

Biggin 2011). Here, we define motif spacing as the number of in-

tervening nucleotides between the edges of the two motifs (nega-

tive values indicate motif overlap). As noted above, numerous

studies have tested for fuzzy motif spacing, and predicted TF–TF

interactions with relatively large intermotif distances (;tens of

base pairs). In contrast, some biochemical analyses suggest that

dimeric motif spacings should be rigid or semi-rigid and also

compact (<5 bp). Known TF complexes that fit this pattern include

a number of SOX–OCT heterodimers (Ng et al. 2012) and several

nuclear receptor dimers (Umesono et al. 1991). Our results clearly

fit the latter model, as illustrated by the spatial pattern of motif

complex enrichment scores corresponding to our top 100 pre-

dictions (Fig. 5A). Note that most of the 603 predicted interactions

require completely rigid spacing and the vast majority of the rest

allow only 1 or 2 bp of variation in motif spacing (Fig. 5B).

Interestingly, the vast majority (87.2%) of motif spacings

among our 603 predictions were negative, indicating motif overlap

(Fig. 5C). It is possible that this high frequency of overlap merely

represents an artifact of uninformative base pairs present at the

flanks of TRANSFAC motifs. However, even after trimming po-

tentially redundant motif positions (see Methods), we still found

Figure 3. DNase I cut density near predicted and incorrectly spaced motif complexes. (A) Example of AR–FOXA1. The average number of DNase I cuts in
LNCaP-specific hypersensitive sites is shown in the vicinity of AR–FOXA1 motif complex instances. (Red curve) DNase I cut density averaged over 690
instances of the predicted AR–FOXA1 motif complex (we predict that AR–FOXA1 heterodimer binds at these locations in LNCaP cells). (Black curve) DNase
I cut density averaged over 1909 instances of incorrectly spaced AR–FOXA1 motif complexes (wider than the predicted spacing by 1–10 bp). The DNase I
cut density is significantly higher within 6100 bp of the predicted heterodimer binding sites. (B) Similar to A: DNase I cut density averaged over the 54
predicted motif complexes that failed to show significant enrichment for DNase I cuts when analyzed individually (see Methods).
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that 67.8% of the motif pairs overlapped (Supplemental Fig. 4).

Consistently, a high degree of overlap was observed even among

the trimmed motif pairs corresponding to known TF dimers

(Fig. 5C; Supplemental Table 1). Thus, 87.2% of the associations

detected by our approach would be invisible to existing methods

that do not allow motif overlap. Moreover, even after motif trim-

ming, which is not necessarily advisable in all cases, 67.8% of our

predictions would be undetectable by all existing approaches.

Overall, our results indicate that TF dimers bind rigid and highly

compact motif complexes.

Predicted cooperative interactions indicate key role of FOXA1
in prostate cancer cells

As noted above, all of the top 10 cooperativity predictions matched

known TF dimers (Fig. 2). However, the 11th-ranked prediction,

which implies a FOXA1 (HNF3A) homodimer in prostate cancer

cells (P = 5.1 3 10�93) (Fig. 6B), is, to the best of our knowledge,

novel. This motif dimer also shows a very strong signal of prefer-

ential evolutionary constraint (q = 5.2 3 10�18) (Fig. 4A). Note that

in the same prostate cancer cell line there already exists one well-

known dimeric complex involving FOXA1, namely, AR–FOXA1

(Wang et al. 2011), which ranked sixth amongst our predictions

(Fig. 6A). Inspired by these two cases, we searched for additional

FOXA1 cooperative interactions among our predictions. Strikingly,

we found a second predicted FOXA1 homodimer, with a com-

pletely different structure (ranked 108th, P = 8.8 3 10�18) (Fig. 6C),

as well as a predicted FOXA1–NFI heterodimer (ranked 139th,

P = 6.4 3 10�15) (Fig. 6D). Thus, we predict that FOXA1 is involved

in at least four strong cooperative dimeric binding modes in pros-

tate cancer cells, only one of which was previously known.

To assess whether the four motif dimers involving FOXA1

topologically permit the assembly of dimeric TF complexes, we

attempted to generate structural models. To this end, we first

simulated ideal B-DNA structures containing the dimer motifs

from Figure 6 using the w3DNA server (http://w3dna.rutgers.edu/).

Next, we downloaded structural models from the Protein Data

Bank (PDB) (Berman et al. 2000) containing androgen receptor

(Shaffer et al. 2004) and FOX (Littler et al. 2010) DNA-binding

domains (PDB identifiers 1R4I and 3G73) when bound to DNA

sequences that closely match the consensus of our composite

motifs. Unfortunately, we found no PDB entries with reasonable

sequence similarity to NFI. To assemble hypothetical ternary

TF–TF–DNA complexes, we superimposed DNA strands of the ex-

perimental crystal structures upon the simulated DNA with com-

posite motifs using least-squares fitting in Coot (Emsley and

Cowtan 2004). We then visualized the resulting complexes using

PyMOL (DeLano 2002).

By analyzing the resulting models of TF dimers on DNA, we

found that both homodimeric FOX complexes as well as the het-

erodimeric FOX–AR complex can assemble without any steric

hindrance. Furthermore, the protein interfaces of the FOX–AR

complex (Fig. 6A) as well as the converging FOX homodimer

(Fig. 6C; Supplemental Fig. 5) are positioned favorably such that

they could engage in direct protein–protein interactions. The di-

verging FOX homodimer (Fig. 6B) is arranged on opposing faces of

the DNA double helix, and direct protein–protein interactions

between the DNA-binding domains are less likely in the present

conformation, barring pronounced allosteric effects. It is possible

that FOX–FOX binding cooperativity in this case is mediated by

DNA conformational changes, as has been previously observed

in multiple instances (Baburajendran et al. 2011).

Discussion
Genome-wide scans for DNase I hypersensitivity are a powerful

tool for mapping cis-regulatory elements with high spatial pre-

cision in any given cell type (Crawford et al. 2006). One major

advantage of this method is that, when combined with TF–DNA

affinity models (motifs), DNase-seq can facilitate binding-site

predictions for a broad range of individual TFs (Boyle et al. 2011;

Pique-Regi et al. 2011). We have taken the latter approach one step

further by using DNase-seq data to predict cooperatively bound TF

complexes genome wide. In all, we predicted cooperative binding

of 603 signature motif complexes to 450,652 binding sites in reg-

ulatory regions specific to 28 different cell types. As a resource for

future investigations, we provide these 603 motif complexes, along

with exact genomic coordinates of their occurrences in cell-type–

specific regulatory elements genome-wide (http://bioputer.mimuw.

edu.pl/papers/tfdimers/).

The power of our method derives from the fact that it can, in

principle, predict all TF complexes in a given cell type based on

Figure 4. Evolutionary constraint signatures of predicted motif complexes. (A) Example of FOXA1 (HNF3A) homodimer, ranked 11th and predicted in
LNCaP (prostate cancer) cells. Again, we considered the predicted motif complex (first column) and its 10 incorrectly spaced variants. At each nucleotide
position, color intensity indicates the average phyloP constraint score, weighted by information content at the corresponding motif position (see
Methods). Evolutionary constraint is highest at the predicted motif spacing. (B) Evolutionary constraint q-values and fold change for the top 100 predicted
motif complexes. Evolutionary constraint scores were calculated for each predicted motif complex and its 10 incorrectly spaced variants (see Methods). For
each prediction, we tested whether the corresponding motif complex instances were enriched for evolutionary constraint relative to the remaining 10
spacings. We show the corresponding q-values (top) and fold changes (bottom) of evolutionary constraint scores between the predicted motif complex
and its incorrectly spaced variants. Predictions with q-value below 0.05 are indicated by blue bars in both plots.
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a single DNase-seq data set. Additional data sets could be incor-

porated in the future to predict dimers in additional cell types.

Judging from the set of 25 known cooperative dimers, our pre-

dictions have sensitivity of at least ;76%. The vast majority of the

603 predicted complexes are novel. Overall, our results suggest that

TF dimerization is far more widespread than previously known.

This provides at least a partial explanation to the paradox of

TF–DNA-binding specificity in large genomes. While TFs may in-

dividually possess low sequence selectivity, the complexes they

form with other DNA-binding factors could be highly specific

(Levine and Tjian 2003). Thus, our results suggest that the current

bioinformatics focus on predicting TF–DNA binding based on in-

dividual position weight matrices and chromatin openness data

should be expanded.

We systematically validated our TF cooperativity predictions

by comparing against a large-scale experimental database of pro-

tein–protein interactions, and found highly significant overlap.

This concordance is highly encouraging given the profound dif-

ferences between our computational method and experimental

approaches. Our method interrogates TFs in their native environ-

ment in multiple human cell types, whereas experimental tech-

niques such as two-hybrid assays measure interactions between

chimeric, artificially expressed human proteins in a single non-

human cell type. Another important distinction is that the two-

hybrid assay measures the propensity of proteins to form contacts

independently of DNA, whereas our method specifically detects

formation of TF complexes on genomic DNA. Moreover, the two-

hybrid assay does not accommodate tissue-specificity of TF iso-

forms, post-translational modifications, or the potential effect of

cofactors on cooperative binding.

We also used a novel statistical test to detect local elevation of

the DNase-seq tag density, which validated 91% (549/603) pre-

dictions, and showed that at least some of the remaining 54 pre-

dictions would have also been validated if the corresponding

DNase-seq libraries had been sequenced to greater depth. Another

indication of functional relevance of the proposed complexes

is the preferential evolutionary conservation of motif pairs with

predicted structure. These findings independently support the

accuracy of TF cooperativity predictions.

FOXA1 is well known to act as a pioneer factor in multiple cell

types, including breast and prostate cancer cells (Zaret and Carroll

2011). In other words, FOXA1 can initiate binding even at nucle-

osome-occluded DNA sites, and thereby potentiate subsequent

binding of other factors. One would therefore imagine that FOXA1

should be able to bind all of its motif matches in the human ge-

nome. However, this is clearly not the case; in reality, FOXA1 binds

only a small subset of its candidate sites (Lupien et al. 2008). Thus,

there must be some other mechanism that compensates for the

Figure 5. Rigidity and compactness of transcription factor dimers. (A) For each of the top 100 predictions, we display the motif complex enrichment
P-value as a function of motif spacing (see Methods). Spacings to the left of the red line correspond to overlapping motifs. (B) Very few of the 603 predicted
motif complexes remain significantly enriched when motif spacing is altered, suggesting that cooperative motif complexes are rigidly spaced. (C ) Spacing
distribution of predicted motif dimers (top) and known TF dimers (bottom; Supplemental Table 1). Spacings to the left of the red line correspond to
overlapping motifs. Predicted and known dimers are compact, i.e., tightly spaced.
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limited ability of chromatin openness to confer binding specificity

upon pioneer TFs. Our results suggest that multiple homodimeric

and heterodimeric binding modes could potentially contribute to

the binding specificity of FOXA1. Alternatively, one could hy-

pothesize that dimerization may enhance the ability of this pio-

neer factor to compete with nucleosomes when the cognate

DNA-binding surface is not accessible. Interestingly, other known

pioneer factors, such as GR and GATA (Zaret and Carroll 2011), also

appear among our top 40 predicted interactions, suggesting that

dimerization could potentially represent a general specificity

mechanism for pioneering TFs.

Previous studies have focused almost exclusively on fuzzily

spaced cobinding of TFs, which is in general indicative of functional

or indirect cooperativity. In contrast, biochemical studies suggest

that only a single motif spacing, or at most two to three spacings,

are compatible with direct cooperativity through TF dimerization

(Grove et al. 2009; Cotnoir-White et al. 2011; Slattery et al. 2011).

Moreover, even when TFs are seen to dimerize at a few different

possible spacings, one spacing typically dominates in terms of

binding affinity. For example, although OCT4 and SOX2 can di-

merize at motif pairs separated by precisely three additional base

pairs relative to the canonical OCT4–SOX2 motif spacing, the ca-

nonical spacing clearly provides greater binding affinity (Ng et al.

2012). Not surprisingly, therefore, in vivo binding sites over-

whelmingly favor the canonical spacing (Chen et al. 2008).

Our results indicate that there exists a large class of con-

formationally constrained TF dimers that bind rigidly spaced motif

complexes. The inflexibility of these motif complexes implies that

dimerization on DNA frequently imposes strict constraints on

the relative spatial conformation of the participating TFs. As in

the case of OCT4 and SOX2, a small number of additional motif

spacings may indeed provide alternate dimeric binding modes for

the same factors, but these additional modes are likely to have

lower affinity and also to contribute relatively few genomic bind-

ing sites. Finally, our predicted motif complexes are typically

highly compact, perhaps suggesting that TF dimerization is me-

diated by DNA-binding domains more commonly than by co-

factors or DNA-distal domains.

Methods

Identifying hypersensitive sites in 78 ENCODE cell types
We incorporated DNase I hypersensitivity data sets produced at
the University of Washington as part of the ENCODE Project
(Genome Browser track wgEncodeUwDnase). The 161 initially

Figure 6. Key role of FOXA1 in prostate cancer cells (LNCaP). (Left) Most significant cooperativity predictions involving FOXA1 and underlying
overrepresented motif complexes. The number of instances and P-value are given as in Figure 2. (Right) Predicted 3D structures of respective TF–TF–DNA
complexes. (A) FOXA1–AR heterodimer; (B) diverging FOXA1 homodimer; (C ) converging FOXA1 homodimer; (D) FOXA1–NFI heterodimer. Due to the
lack of crystal structure for NFI in PDB, no 3D structure is predicted in D.
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considered data sets covered 85 distinct cell types. We excluded
some data sets with atypical GC-content spectra, reducing the
number of data sets to 148, and the number of distinct cell types
to 78 (data not shown). We relied on the hg19 read alignments
listed in Supplemental Table 2. To identify hypersensitive regions,
we used the F-Seq peak-calling algorithm (Boyle et al. 2008),
treating each replicate separately.

We discarded hypersensitive regions, whose peak position
lay within a repetitive region (union of RepeatMasker and Tandem
Repeat Finder), and hard-masked repetitive base pairs in the re-
maining hypersensitive regions. We also hard-masked coding re-
gions. To make the data sets obtained from different cell types
comparable, we limited our analysis to the top 50,000 hypersen-
sitive sites in each cell type. We also fixed the size of each hyper-
sensitive region at 400 bp, centered on the F-Seq peak. Hypersen-
sitivity calls from replicates were merged as described in the next
subsection.

Clustering of cell types into 41 cell-type clusters

To account for the intrinsic similarity of many of the cell types
considered, we used a systematic method to cluster them into co-
herent cell-type clusters based on the similarity of their hyper-
sensitivity profiles. We represented the profiles of the 148 data
sets as genome-wide binary vectors, with value 1 at positions
within hypersensitive regions and value 0 elsewhere. We then
calculated the dissimilarity between any two data sets as the
Hamming distance between the respective binary vectors, scaled
in such a way that the maximum dissimilarity across all com-
parisons equals 1.

We used complete-linkage hierarchical clustering to collapse
the 148 data sets from 78 cell types into cell type clusters. Before
clustering, we first joined replicates from the same cell type at the
lowest level of the dendrogram. The resulting dendrogram, along
with the threshold defining the 41 cell type clusters, are presented
in Supplemental Figure 1. We then merged the sets of hypersen-
sitive regions, obtained as described in the previous subsection,
within each cell-type cluster, combining overlapping regions into
a single hypersensitive site.

Cluster-specific hypersensitive regions were defined as geno-
mic regions hypersensitive in a given cell-type cluster, but not in
any other cluster. In case of partial overlap, the nonoverlapping
fragment was considered cluster specific. For brevity, we will refer
to the cluster-specific hypersensitive regions as ‘‘cell-type–specific
hypersensitive regions.’’

Calculating motif occurrence statistics

All 964 vertebrate motifs from TRANSFAC Professional 2011.2
were used as models of TF-binding specificity. Given a pair of
motifs, their motif complex was defined as a motif pair with a spec-
ified mutual orientation and offset. The offset was defined as the
coordinate of the leftmost position of one motif in the coordinate
system of the other motif (with zero-based start), whereas the
spacing was defined as the number of intervening nucleotides be-
tween the edges of the two motifs. We allowed overlapping motif
complexes, which were characterized by negative spacing. We
considered only the motif complexes within up to 50-bp spac-
ing between the two motifs. Let us denote by s the fixed orien-
tation and offset of the motifs, and call it the structure of the
motif complex.

For each combination of cell type, motif pair (M1, M2), and its
structure s, we calculated the significance of motif complex over-
representation as follows. First, matches to individual motifs were
identified within hypersensitive sites at a motif score threshold

that provided at least 80% sensitivity (Rahmann et al. 2003). Pairs
of motif matches that fit the specified structure s were taken as
instances of the motif complex.

Let C12(s) and c12(s) be the number of observed motif
complex occurrences in a given set of cell-type–specific hyper-
sensitive regions (foreground) and in the background set of all
hypersensitive regions, respectively. Also, let N12(s) and n12(s) be
the number of all possible complex occurrences in the fore-
ground and in the background, respectively. By a possible oc-
currence of the motif complex we mean any occurrence such
that the whole complex fits within the corresponding hyper-
sensitive region. Then f12(s) = C12(s)/N12(s) is the probability of
observing the motif complex s in the foreground, and b12(s) =

c12(s)/n12(s) is the probability of observing the motif complex s
in the background.

Let C12 be the total number of observed occurrences in the
foreground of the pair of motifs (M1, M2) with structure s ranging
over spacings up to 50 bp and both orientations. In a similar way,
we define the numbers c12, N12, and n12. Then f12 = C12/N12 is the
probability of observing in the foreground the pair of motifs (M1,
M2) within a reasonable range of structures. Likewise, b12 = c12/n12

is the probability of observing in the background the pair of motifs
(M1, M2) within a reasonable range of structures.

The null hypothesis is that the conditional foreground prob-
ability f12(s)/f12 and the conditional background probability b12(s)/
b12 are the same. Consequently, the P-value of observing in the
foreground at least C12(s) occurrences of the motif complex with
a specified structure s can be calculated as the probability of ob-
serving at least C12(s) successes in N12(s) trials of the Bernoulli
process with probability of success f12 � (b12(s)/b12).

An intuition behind the success probability of the Bernoulli
schema is that it is the background probability b12(s) of observing
a given motif complex with structure s adjusted by the factor
f12 /b12, which reflects the relative motif pair densities in the
foreground and in the background. Note that if we fix the pair
of motifs and the structure s, then the background conditional
probability stays the same and choice of cell type (foreground)
affects the probability of success in the Bernoulli schema by the
factor f12.

Limiting the set of cooperativity predictions

We expected that transcription factors, which bind cooperatively
in a particular cell type, should also be subject to individual over-
representation in this cell type. To account for this expectation, we
considered only pairs of motifs satisfying the condition f12 $ b12,
i.e., pairs of motifs, which are at least as frequent in the foreground
as in the background (within a reasonable range of structures).

Another constraint directly corresponded to steric hindrance
between two TFs. Some approaches, e.g., Whitington et al. (2011),
require that the motifs forming a motif complex must not overlap.
However, many of the available motifs have redundant low-
information positions at their ends, which would hinder the pre-
diction of genuine TF cooperativities. Consequently, previous
studies could not avoid trimming of low-information flanking re-
gions of the motifs. We decided to apply a different approach,
allowing minor motif overlaps, to retain all of the information
contained in the binding affinity models. Our statistics account for
possible over- or underrepresentation of motif complexes con-
sisting of overlapping motifs (Fig. 1B). As explained below, exces-
sive motif overlaps were disallowed as being highly unlikely; motif
complexes dominated by one of the individual motifs were also
disallowed.

To measure the degree of overlap, we introduced the concept
of overlapping information content. For each overlapping motif po-
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sition we define it as the minimum of the two information content
values of the overlapping motifs. For the whole motif complex, we
defined it as the sum of the overlapping information content
values, ranging over all overlapping positions. We called an over-
lap minor if the overlapping information content did not exceed
2 bits. We disallowed major (i.e., not minor) overlaps, because such
colliding configurations are unlikely to correspond to direct TF
cooperativity.

We also disallowed motif complexes, in which one of the
individual motifs dominates the entire complex. To measure the
share of an individual motif in a motif complex, we defined
the information contribution of each motif. For a nonoverlapping
motif position, it is simply equal to the information content of the
individual motif at that position. For an overlapping motif posi-
tion, if the two motifs differ in information content at that posi-
tion, then the information contribution at that position of the
more informative motif is equal to its information content at that
position, and the information contribution at that position of the
other motif is set to 0. In the case of equal information content,
both of the motifs have the information contribution at that po-
sition set to half of their information content at this position.
We defined the information contribution of a motif in the motif
complex as the sum of its information contribution values, rang-
ing over all positions. We considered only motif complexes in
which both of the individual motifs had the information contri-
bution of at least 6 bits.

To avoid artifacts arising from individual motifs that occur
extremely rarely within hypersensitive sites, we considered only
motif complexes that occurred at least 100 times within cell-type–
specific hypersensitive regions (C12(s) $ 100). Moreover, we were
aware that certain motifs are similar to themselves in a different
layout. In particular, overrepresentation of a particular motif
complex evokes possible overrepresentation of shadow motif
complexes consisting of the same motifs, but with altered offset
or orientation. We therefore allowed only one occurrence of each
combination of motif pair and cell type by incorporating only the
motif complex with the smallest P-value. Finally, we considered
only the overrepresented motif complexes with corrected P-value
<0.05. The P-values were Bonferroni-corrected by multiplying by
the total number of hypotheses tested, across all motif pairs, ori-
entations, offsets, and cell types (;1.4 billion).

Clustering of cooperativity predictions

Due to the redundancy of the motif database used, a single TF–TF
cooperative interaction may be reported as multiple, mutually re-
dundant motif complexes (see, for example, Supplemental Fig. 3).
We therefore clustered the 5233 overrepresented motif complexes
as described below. For each motif complex, we calculated its
representative, called dimer motif, by counting nucleotide fre-
quencies at all of its instances, including a 5-bp margin on both
sides.

As suggested by Gupta et al. (2007), we used the squared Eu-
clidean distance (ED2) as the dissimilarity measure of dimer mo-
tifs, assuming the clustering threshold of 2 for ED2. The over-
represented motif complexes were ranked by P-value in ascending
order. We clustered them in a greedy manner, subsequently com-
paring each complex with already established clusters. The com-
parison was done by calculating ED2 between the considered
complex and the most significant motif complex in the considered
cluster. If any ED2 was less than 2, then the considered complex
was merged with its counterpart with the smallest P-value and
discarded from further comparisons; in the other case, a new
cluster was established. In this way we obtained the 603 clusters,
which we refer to as predicted dimers or simply predictions. Each

prediction was assigned the P-value of its most significant motif
complex, which we refer to as the signature motif complex. Conse-
quently, each prediction was characterized by the cell types in
which its signature motif complex was predicted.

In rare cases, it may happen that a longer monomer motif can
be constructed by combining two short, degenerate motifs. To fa-
cilitate manual identification of such artifacts, we reported in-
stances where the dimer motif closely matched (ED2 < 2) a single
motif from the database (see Supplemental Table 4). Note that it
would not be appropriate to automatically discard such dimer
motifs, due to the contamination of motif databases with dimer
motifs (e.g., SOX–OCT).

Clustering and trimming of individual motifs

All of the individual 964 motifs were clustered so as to obtain
a TF-centric view of our predictions. We used complete linkage
hierarchical clustering, based on ED2 between the motifs, to obtain
350 motif clusters. The clustering threshold was set to 2, i.e., all of
the motifs in one motif cluster had their pairwise ED2 not greater
than 2.

Motif trimming in Supplemental Figure 4 was implemented
as in Whitington et al. (2011), by eliminating uninformative base
pairs from the flanks. In other words, we removed all columns with
information content #0.25 bit from both sides of the individual
motif.

Comparison with the atlas of combinatorial transcriptional
regulation

The atlas contains interactions between human TFs derived
from mammalian two-hybrid assays and supplemented with low-
throughput experimental evidence in the literature (Supplemental
Table S2 in Ravasi et al. 2010). The interactions are stored as 5238
pairs of Entrez identifiers (IDs). To perform the comparison, we
mapped the TRANSFAC motif identifiers from our predicted
complexes onto Entrez IDs, using the default mapping provided
by TRANSFAC. As a result, 836 TRANSFAC motifs were mapped to
523 Entrez IDs in a many-to-many manner.

To evaluate the agreement between our predictions and the
atlas we used a hypergeometric test. We set the space of pairs to
form the universe of all 136,503 possible pairs on the set of 523
mappable Entrez IDs. The predicted TRANSFAC motif pairs map to
a subset of 7941 pairs in this universe, constituting the set of trials.
The set of successes is a subset of 1288 Entrez ID pairs out of all
5238 pairs stored in the atlas, in which each component can be
mapped to one of the 836 TRANSFAC motifs. The intersection with
the atlas is given by a set of 279 successful trials, i.e., the Entrez ID
pairs that are mappable from the predicted pairs and are stored in
the atlas.

Sensitivity of 21.7% was estimated by the ratio of the number
of successful trials (279) over successes (1288). It is 3.7 times higher
than a sensitivity of 5.8% expected by pure chance alone, given by
the ratio of trials (7941) and the size of the universe (136,503).

Our predictions in the form of TRANSFAC motif pairs were
grouped into 603 clusters of similar pairs, with each cluster inter-
preted as one prediction of a complex. There are 563 mappable
clusters, i.e., clusters that contain at least one TRANSFAC motif pair
with both components belonging to the set of 836 mapped motifs.
A total of 91 of those clusters are confirmed by the atlas, i.e.,
contain at least one motif pair that maps on a pair of Entrez IDs
that is stored in the atlas. To evaluate the precision of our pre-
dictions with respect to the atlas we computed the fraction of the
mappable clusters that are confirmed by the atlas (91 out of 563),
yielding 16.2% precision.

Jankowski et al.

1316 Genome Research
www.genome.org



Comparison with ChIP-seq-based approach of Whitington et al.
(2011)

We repeated our computational experiment using the motifs
reported by Whitington et al. (2011). In case they used a custom
motif, we applied the closest counterpart found in TRANSFAC,
trimmed or extended, respectively. We adjusted the motif sensi-
tivity threshold in our method from 0.8 to 0.95, so that the
number of individual motif occurrences in the genome was large
enough for the overrepresentation statistics to be powerful.

Calculating DNase I cut density score

We compared the number of DNase I cuts between the instances of
a predicted signature motif complex and the instances of its slight
alterations, which we refer to as incorrectly spaced complexes, con-
sisting of the same two motifs, but with slightly increased spacing
between them, by +1 up to +10 bp. Both sets contained only
the instances within hypersensitive sites specific to cell types for
which the cooperativity prediction was made. Having fixed one
prediction, we calculated the DNase I digestion patterns for both
the predicted complex instances and incorrectly spaced complex
instances, as shown in Figure 3. Our DNase I cut denstiy score was
the number of DNase I cuts in the 6100-bp neighborhood of the
motif complex instance, calculated with a triangular kernel and
normalized within each prediction so that its average value for
incorrectly spaced complexes equals 1. We then used the Mann–
Whitney U-test to assess whether the instances of predicted motif
complex are more enriched in DNase I cuts than incorrectly spaced
complex instances.

Calculating evolutionary conservation score

We followed a similar approach as for the DNase I cut density score,
comparing the predicted and incorrectly spaced complexes. For
each occurrence of the motif complex, we have calculated the
weighted average of phyloP primate base-pairwise cross-species
constraint scores (Pollard et al. 2010), where the weights were
proportional to the information content at the corresponding
nucleotide in the dimer motif. This weighting is justified by the
fact that higher information content positions are likely to be more
constrained. Again, we used the Mann–Whitney U-test to assess
whether the instances of predicted motif complex are more con-
served than incorrectly spaced complex instances.
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