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Abstract: Respiratory monitoring is receiving growing interest in different fields of use, ranging
from healthcare to occupational settings. Only recently, non-contact measuring systems have been
developed to measure the respiratory rate ( fR) over time, even in unconstrained environments.
Promising methods rely on the analysis of video-frames features recorded from cameras. In this
work, a low-cost and unobtrusive measuring system for respiratory pattern monitoring based on the
analysis of RGB images recorded from a consumer-grade camera is proposed. The system allows
(i) the automatized tracking of the chest movements caused by breathing, (ii) the extraction of the
breathing signal from images with methods based on optical flow (FO) and RGB analysis, (iii) the
elimination of breathing-unrelated events from the signal, (iv) the identification of possible apneas
and, (v) the calculation of fR value every second. Unlike most of the work in the literature, the
performances of the system have been tested in an unstructured environment considering user-
camera distance and user posture as influencing factors. A total of 24 healthy volunteers were
enrolled for the validation tests. Better performances were obtained when the users were in sitting
position. FO method outperforms in all conditions. In the fR range 6 to 60 breaths/min (bpm), the FO
allows measuring fR values with bias of −0.03 ± 1.38 bpm and −0.02 ± 1.92 bpm when compared to
a reference wearable system with the user at 2 and 0.5 m from the camera, respectively.

Keywords: breathing; contactless monitoring systems; respiratory monitoring; RGB cameras

1. Introduction

The monitoring of vital signs, such as the respiratory rate, heart rate, body temperature,
and blood pressure, is essential to assess the general health status [1]. Among others,
respiratory rate ( fR) and its potential as a predictor of sickness state have been often
neglected [2,3]. However, respiratory monitoring is receiving growing interest in different
fields of use, ranging from healthcare to occupational settings and sport. In clinical settings,
fR monitoring moves from intensive care to inpatient wards, being an indicator of severe
systemic imbalances [2]. For instance, it has been shown that fR of 25–29 breaths per minute
(bpm) is associated with a mortality rate of 21% [4]. Additionally, value of fR strongly
correlates with early detection of high-risk conditions, such as obstructive sleep apnea
(OSA) which is a sleep breathing disorder characterized by partial or complete obstruction
of the upper airway during sleep. OSA is estimated to affect between 10% and 17% of adult
men and 3% and 9% of adult women and studies suggest that at least 80% of individuals
with OSA are undiagnosed [5,6]. In occupational settings, due to its sensitivity to cognitive
load, stress and other factors, fR is used to monitor workers by improving health and
safety [7,8]. Finally, in the sporting field in order to optimize training and improve the
performance of athletes, especially in precision sports [9]. Methods requiring direct contact
with the subject are typically used to record breathing related events and to calculate the
fR from inhaled and exhaled flow variations, airflow temperature changes, chest wall
circumference changes, cardiac modulation of the breathing [10]. Hallmarks of these
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techniques reduce their acceptability, they require sensors which can be expensive, may
cause skin irritation and discomfort especially in long-term monitoring or during sleep,
and may influence the physiological parameters during monitoring [11]. For these reasons,
there has been an increased interest in developing non-contact methods. They can be used
as remarkable solutions in different application fields, especially in the scenarios where
unobtrusive methods are required (e.g., hospital waiting rooms, tele-monitoring, neonatal
intensive care units). Some examples in clinical settings include Doppler radar [12], depth
sensors [13], laser vibrometry [14], and RGB cameras [13,15,16]. Additionally, different non-
contact techniques including thermal cameras, video cameras, and radar sensors can be
used in the automotive environment, or even for monitoring cognitive load and emotional
stress in computer workers [17].

Among all non-contact methods, those based on optical sensors integrated into com-
mercial video cameras introduce several advantages, such as low cost, the possibility of
being used by a non-expert, and ease of use [16].

There are different studies in which video cameras have been tested to monitor fR that
differ mainly in the method of signal extraction from sequential images, in the posture of the
subject, and in the location of the region of interest (ROI) from which the signal is extracted.
For example, ref. [18] uses variation in intensity of RGB image pixels within a selected ROI
at the pit of the neck to select a respiratory signal, ref. [19] tracks head movements by means
the averaging of the red channel. In addition, ref. [20] tracks the deviation of selected
feature points near the upper torso and head over the time and [21,22] use the optical flow
method (hereinafter, FO). All the above-mentioned methods give good results in acquiring
the respiratory pattern, but they have some limitations. The algorithms presented in [18,19]
are highly dependent on ambient light variations not related to respiration and they require
operator intervention in choosing the ROI. In the method proposed in [20] if there is no
compensation by the tracking algorithm of small head motions, the estimated respiration
will be inaccurate. Moreover, although [21,22] use FO methods, as in our work, there are
some differences. In fact, ref. [21] uses Lucas Kanade’s local FO over the entire image,
unlike our work in which the Horn Schunck dense FO is used within a selected region
of interest at the chest level. Using the FO over the entire image requires a much longer
computational time and also the system is not robust to breathing unrelated movements
as any movement of the subject is detected and computed. Hence, there would then be a
need for additional post-processing of the data to eliminate these unwanted movements.
Ref. [22] uses the phase of the calculated FO on healthy subjects while seating from a lateral
perspective. However, this method necessarily requires the subject to be placed in a lateral
position. It also evaluates motion from the phase of the FO, unlike our study, in which only
the modulus of the FO is considered. In addition, all these methods have only been tested
in a structured environment, with a limited number of subjects.

In literature, there are only a few studies aiming at investigating performances with
different user postures and distance from the video camera [23] and that present a method
for detection and elimination of artifacts in the signal. Moreover, although there are plenty
of studies that focus on detecting respiration through cameras, literature lacks studies
aiming at comparing different techniques for the respiratory signal extraction. Finally,
most of the works neglected the continuous estimation of fR values which are needed for
monitoring purposes. All these points still limit the use of these non-contact systems in
real-life applications.

Within this context, the method that we propose tries to overcome the above men-
tioned limitations through a non-contact and unobtrusive measuring system for respiratory
monitoring based on the analysis of RGB video-frames recorded with a mobile device
for respiratory monitoring. The method includes an automatic selection of the ROI and
a method for the recognition and elimination of movements not related to the breathing
activity. Moreover, compared with the literature in which a narrower range of fR is inves-
tigated, we demonstrated that fR and apnea phase can be assessed by the system over a
wide range of fR (10 to 42 bpm) including quiet breathing (12 bpm ≤ fR ≤ 20 bpm) and its
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alterations, as well as tachypnea ( fR > 20 bpm) and bradypnea ( fR < 12 bpm). We have
investigated two different techniques to retrieve respiratory signals from the video-frames
(the first based on the pixel intensity changes and the second based on FO) at different
distances between the user and the camera (i.e., 0.5, 1.5, 2.0 m) and different user’s postures
(i.e., standing, sitting, supine) in an indoor unstructured environment (i.e., varied clothing
both in terms of pattern and color, variable ambient light, non-homogeneous background,
other people were allowed to pass behind the subject during the test) simulating like those
of daily living. Finally, we performed a signal analysis capable of estimating the fR values
with an update time of 1 s, unlike most studies that only estimate the average fR in the
post-processing analysis.

2. Materials and Methods

A video captured with a CCD camera can be considered as a sequence of RGB frames
(polychrome images). Each frame in RGB space is an image matrix consisting of primary
elements called pixels to which an intensity level in the form of a numerical value expressed
in bits is associated. In commercial RGB cameras, as in this work, 8 bits per channel are
used (24-bit for RGB space). Indeed, images in RGB space are characterized by the property
that each color can be represented using the superposition of three values (i.e., one for each
channel), which encode the intensities of red (R), green (G), and blue (B) contributing to
the specific color. Therefore, each RGB frame can be seen as a two-dimensional (x,y) distri-
bution of intensity I(x, y), where I(x, y) = IR(x, y) + IG(x, y) + IB(x, y). I(x, y) depends on
two main components:

• A component proportional to the amount of direct light incident on the scene, called
the illumination component i(x, y);

• A component proportional to the amount of light reflected by objects in the scene,
called the reflectance r(x, y).

These two components combined give origin to the intensity distribution of the scene,
as in Equation (1).

I(x, y) = i(x, y)r(x, y) (1)

where 0 < I(x, y) < ∞, 0 < i(x, y) < ∞, 0 < r(x, y) < 1 [24].

2.1. Breathing-Related Chest Wall Motion Extraction from Video-Frames

Respiratory activity causes cyclical movements of the chest wall characterized by an
expansion of the rib cage during inhalation, resulting in an upward movement of the thorax
and a relaxation of the same during exhalation, resulting in a downward movement of the
thorax. This cyclic movement generates consecutive changes in reflected light intensity
that can be used to indirectly monitor respiratory activity through a CCD camera. In this
work, two techniques (i.e., pixel intensity changes and FO) have been used to post-process
data to extract the user’s respiratory pattern and, then, the fR values, as described in the
following subsection.

2.2. Proposed Algorithms

Once the video is acquired from the RGB camera (Figure 1(AI)), a region of interest
(ROI) that contains breathing-related information must be identified in each frame. In order
to do this, after the video-frames are extracted (Figure 1(AII)), an automatic algorithm is
applied to detect and select the upper body (UB) in the first frame (Figure 1(AIII)), as the
body area between the face and shoulders. To accomplish this task, Viola–Jones object
detection algorithm is applied [25].
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Figure 1. (A). Flowchart presenting the steps carried out to extract the respiratory pattern from image
sequences. (B). Experimental set-up (0.5-Sit: user-camera distance of 0.5 m, sitting position; 2-Sit: user-
camera distance of 2 m, sitting position; 2-Sta: user-camera distance of 2 m, standing position; 1.5-Sup:
user-camera distance of 1.5 m, supine position). BH3: Bioharness, used as reference instrument.

Starting from the identified UB, of size xUB × yUB, the proposed algorithm selects a
point located in (xC, yC) = ( xUB

2 , 0) which determines the central point of the ROI from
which the respiratory signal will be extracted. From this point, the rectangular ROI is
extracted with dimensions xROI × yROI , as in Equations (2) and (3):

xROI = k [xC − 10%Videowidth, xC + 10%Videowidth] (2)

yROI = k [yC − 5%Videoheight, yC + 5%Videoheight] (3)

where k is a coefficient that is inversely proportional to the distance of the subject from the
camera and used to tackle the size variability of the ROI with the distance from the camera.
Then, the ROIs in all video-frames are extracted (Figure 1(AIV)). All the above-mentioned
steps are needed to apply two post-processing methods used to retrieve the respiratory
pattern: the variation of light intensity and the FO method which are briefly described in
the following two subsections.

2.2.1. Pixel Intensity Changes

By recording a video of the chest wall region with a camera, the red, green, and blue
(RGB) channels collect a mixture of the reflected signal together. So that, at each frame,
three different intensity signals are recorded (i.e., one for each channel), as in Figure 1(AV).

Since the respiratory signal is pseudoperiodic, it is possible to associate the respiratory
pattern with the periodic intensity of the pixels variations over time [18].
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Applying this method, an intensity signal is obtained over time for each pixel in
the RGB channels. Therefore, at each frame f , the intensity components of each channel
I(x, y, c, f ) are obtained, where c is the color channel (i.e., red (R), green (G), and blue (B)).
The proposed algorithm sums the intensity components obtained in the three channels and
then averages them for each line y of the ROI, according to the following equation:

ρ(y, f ) =
1

xROI

xROI

∑
x=1

( ∑
c=R,G,B

I(x, y, c, f )), y ∈ [1, yROI ] (4)

In this way, the intensity component ρ(y, f ) is obtained for each row of the ROI per
each frame f (Figure 1(AV)). To retrieve the respiratory pattern, an additional step is
required to reduce the dimensionality of ρ(y, f ). Among methods that can be used to select
the most informative signals among all the ρ(y, f ), we used the PCA and the 5% method
which have been demonstrated promising in similar applications [26,27]. The PCA selects
the signals that constitute 95% of the variance explained, whereas the 5% method selects
5% of the signals with the highest standard deviation, as in Figure 1(AVI).

2.2.2. Optical Flow

When the FO method is applied to video-frames, a prior transformation from images
in RGB space to grey-scale images is required. Among others, the Lukas–Kanade [28],
the Farneback [29] and the Horn and Shunk (HS) [30] are the most used algorithms to
extract the FO from the frames.

Focusing on HS, the algorithm formulation assumes that pixels conserve their intensity
along their trajectory. According to the assumption of constant brightness, the intensity
of a pixel I(x, y, f ) at the frame f will remain stable for short time and small movements.
For a single frame step d f , the following equation is valid:

I(x, y, f ) = I(x + dx, y + dy, f + d f ) (5)

dx and dy denote the displacements in x and y direction. Assuming that the pixel displace-
ment is sufficiently small, the following equation is obtained:

∂I
∂x

vx +
∂I
∂y

vy +
∂I
∂ f

= 0 (6)

where vx and vy are the pixel velocity components along the x-axes and y-axes of the FO of
I(x, y, f ) that are to be determined. This equation with two unknown variables cannot be
solved [30]. To overcome this issue the HS algorithm computes the displacement between
two consecutive images by tracking the image features on a pixel-by-pixel basis. In this
way, a velocity vector for each pixel in the image is obtained.

In this paper, only the velocity component along the y-axis — vy(y, f ) —was chosen
as it was assumed to be the one most related to the movements of the rib cage caused
by breathing. After extracting the ROI from all video-frames, a grey-scale image trans-
formation is performed and the image contrast is increased by saturating the bottom 1%
and the top 1% of all pixel values using imadjust (a MATLAB function), to improve the
FO performance. Finally, the HS optical flow was applied to all video-frames. Assuming
that within the ROI the direction of the y-velocity vectors agree and that the modulus
value is similar for almost all vectors, all values within the ROI were averaged to obtain a
single value for each frame. This results in a single average velocity vector (vy). Finally,
the velocity vector was integrated in order to obtain rib cage linear displacement related to
the respiratory activity (sy), as in Figure 1(AVII).

3. Experimental Setup and Protocol

In total, 24 healthy volunteers (i.e., 15 males, 9 females, mean age 26 ± 4 years old,
mean height of 170 ± 7 cm, mean body mass 70 ± 13 kg) were enrolled in this study
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to investigate the performance of the proposed measuring system with the proposed
algorithms. Per each volunteer, trials were carried out at different postures (i.e., sitting,
standing, and supine) and user-camera distances (0.5, 1.5, 2.0 m), as shortly summarized in
Table 1 where 0.5-Sit is related to user-camera distance of 0.5 m, sitting position; 2-Sit to
user-camera distance of 2 m, sitting position; 2-Sta to user-camera distance of 2 m, standing
position and 1.5-Sup to user-camera distance of 1.5 m, supine position.

Table 1. Experimental Protocol: distances, postures, durations, and enrolled volunteers in each trial.

Trial Distance Posture Trial Duration Number of Subjects

0.5-Sit 0.5 m Sitting ∼4 min 24
2-Sit 2 m Sitting ∼4 min 24
2-Sta 2 m Standing ∼4 min 24

1.5-Sup 1.5 m Supine ∼10 min 5

All the tests were carried out in compliance with the Ethical Approvals (ST-UCBM
27/18 OSS) and, prior to the tests, all the participants provided their informed consent.
All the trials were carried out following COVID-19 restrictions (i.e., face mask use and
social distancing).

To capture the video, the built-in smartphone RGB camera (iPhone 6s, Apple Inc.,
Cupertino, CA, USA) was used. The camera was configured to acquire 30 frames per second
(fps) with a high definition resolution (i.e., 720p, x = 1280 px, y = 720 px). All experiments
were carried out indoor and with a stable amount of light delivered by neon lights. No
restrictions have been placed on the clothing of the subjects, as shown in Figure 2.

Figure 2. A picture of all the subjects just before the test is shown in the figure in order to show the
variety of clothing worn.

A multi-parameter wearable device, the Zephyr BioModule BioHarness 3 by Medtronic
(hereinafter, BH3), was used to record the reference respiratory signal contextually to the
video recording. This system consists of a thoracic belt and an electronic module and
acquires the breathing pattern of the user by sensing the volumetric changes in the thorax
by the means of a strain gauge [31]. The reference breathing signal was sampled at 25 Hz.
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In the first three trials (see Figure 1B) each participant was asked to stand in front
of the camera (i.e., sitting on a chair or standing) at a distance of 0.5 m and 2 m from the
camera. These distances were chosen because, in line with literature, they are those most
investigated in the occupational and clinical field. Then, the experimenter set the camera
so that the chest area of the subject was framed (see an example in Figure 1(AII)). Each
subject was guided to perform the steps indicated by a graphical user interface running on
a laptop placed on a desk behind the camera and visible to the volunteer. The graphical
interface was developed to standardize the protocol, which included: warm-up breathing
(not considered in the analysis), apnea for∼5 s, one minute of bradypnea ( fR∼10 bpm), 20 s
of tachypnea ( fR∼42 bpm), one minute of eupnea ( fR∼12 bpm), ∼10 s of end-inspiratory
apnea, ∼10 s of end-expiratory apnea, quiet breathing for ∼10 s and a final apnea, as in
Figure 3A. The subject’s breathing pattern was guided using an animation timing the
inhalation and exhalation phases, as well as apnea stages. An example of the BH3 signal
recorded during a standing trial is shown in Figure 3A, while the signals extracted by the
video with the 5%, PCA and FO methods are shown in Figure 3B. In the last trial (see
Figure 1B), 5 volunteers were enrolled (3 males and 2 females, mean age 26 ± 2 years
old, mean height of 165 ± 15 cm, mean body mass 68 ± 13 kg) and called to breathe
spontaneously for ∼600 s after a short initial apnea used to synchronize instruments. An
example of the BH3 signal recorded during a 1.5-Sup trial is shown in Figure 3C, while the
signals extracted by the video with the 5%, PCA and FO methods are shown in Figure 3D.

Apnea Tachipnea ~42 bpm

Eupnea ~18 bpm

End-inspiratory apnea 

Quiet

Breathing
Apnea

Bradipnea ~10 bpm

Apnea

Figure 3. The 4 trends show the protocol that volunteers were asked to follow. In (A,B) the protocol
consists of apnea for ∼5 s, one minute of bradypnea ( fR∼10 bpm), 20 s of tachypnea ( fR∼42 bpm),
one minute of eupnea ( fR∼12 bpm), ∼10 s of end-inspiratory apnea, ∼10 s of end-expiratory apnea,
quiet breathing for ∼10 s and a final apnea. Whereas trends (C,D) show the protocol that volunteers
were asked to follow in the 1.5-sup trial that includes an initial apnea of approximately 5 s and quiet
breathing for approximately 600 s. In detail: (A) Breathing pattern recorded by the BH3 during a
seated trial (0.5-Sit). The different respiratory stages are briefly indicated. (B) The same breathing
pattern extracted from the three methods based on video processing. (C) Example of a breathing
pattern recorded by the BH3 during a supine trial (1.5-Sup). (D) The same breathing pattern extracted
from the three methods based on video processing.
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4. Data Analysis and Results

The collected videos were post-processed in MATLAB environment to extract the
breathing patterns with the proposed algorithms. Per each trial, we retrieved ρ5( f ), ρPCA( f )
by processing the video-frames with the pixel intensity changes method and sy( f ) with the
FO method. Therefore, the ρ5( f ), ρPCA( f ) and sy( f ) were synchronized with the reference
signal (hereafter, Re f ) by using the first and last apneas as common events (see Figure 3A).
A third-order Butterworth low-pass filter with a cut-off frequency of 2 Hz was applied to
all the signals [18]. This choice preserves the constant signal related to apnea and, at the
same time, deletes the high frequencies related to noise, guaranteeing a wide range of
detectable fR values (i.e., up to 120 bpm).

In this paper, we compared the fR extracted from the ρ5( f ), ρPCA( f ) and sy( f ) signals
against those retrieved from the post-processing of Re f signal over-time, at the different
user’ postures and user-camera distances. Moreover, we investigated the performance of
the proposed measuring system in detecting apneas.

4.1. Respiratory Frequency Monitoring over Time

To monitor the fR over time in real-world applications, motion artefacts caused by
breathing-unrelated events must be identified and removed. Additionally, apneas that can
occur during the continuous monitoring especially in clinical scenarios, must be identified.

4.1.1. Motion Artefacts Removal

Before starting monitoring the fR values over time, any artefacts not related to respira-
tory activity from the signal must be removed.

A typical artefact is characterized by a sudden increase in signal amplitude and a
sudden change in breathing pattern rhythm compared to the previous and following time
instants. At this aim, the following tasks were carried out:

1. The derivative of the signals extracted from the video (i.e., ρ5( f ), ρPCA( f ) and sy( f ))
are calculated;

2. The amplitude of the derivative of the signals are compared against a threshold (i.e.,
th) defined as three times the standard deviation of the signal derivative;

3. The signal with derivative outside the interval ±th is considered as an artefact.

As an example, the first subplot in Figure 4 shows a signal extracted using the FO
method in which the portions identified as artefacts are automatically highlighted in red,
according to the threshold method defined above and showed in the second subplot. This is
supported by the third subplot in which the X, Y, and Z axis of the accelerometer inside the
BH3 are reported. The acceleration magnitude shows large variations in correspondence
with the event recognized. In all the trials that present motion artefacts, the events were
correctly identified and removed from the ρ5( f ), ρPCA( f ) and sy( f ) signals (data are
not shown).

4.1.2. Apnea Detection

After the motion artefacts removal, the apnea stages were identified in all the signals.
A typical apnea stage is characterized by a reduced signal variation. To automatically
identify the apneas in all the signals we performed the following steps:

• The derivatives of the signals extracted from the video (i.e., ρ5( f ), ρPCA( f ) and sy( f ))
are calculated;

• The standard deviation of the derivatives are calculated over 30 s windows, with 29 s
overlapping and used as a threshold (i.e., sd);

• Whether the derivative of the signal is less than the previously calculated standard
deviation for at least 10 s (in accordance with guidelines in [32]), the signal at those
points is identified as apnea.
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Figure 4. In the first subplot, an exemplary signal extracted by the FO method from a video; in the
second subplot the derivative of this signal and the th represented as red dashed lines; in the third
subplot the X, Y, and Z axis of the accelerometer inside the BH3 (see Figure 1B) used as reference of
the breathing-unrelated events. In red, the artefacts identified on the signal and derivative.

As an example, the first subplot in Figure 5 shows a signal extracted using the FO
method from which the portions of the signal identified as artefacts have been removed and
then the portions identified as apnea are automatically highlighted in red, according to the
threshold method defined above and showed in the second subplot. In order to evaluate
the performance of the apnea detection method, only the tests in which each subject was
asked to hold breath (end-expiratory and end-inspiratory apneas), see Figure 3, for about
10 s are taken into account. The apneas detected by this method at the portions in which
the subject was asked to hold breath in the protocol were identified as correctly detected
apneas. Finally, signals in which the apnea recognition method identifies as apnea a portion
of the signal in which the subject did not hold breath were considered as false positives.
Table 2 reports the detected, not detected, and false positive apneas considering the signals
recorded by all the volunteers. In all the cases (posture and distances) the FO method better
perform when compared to other methods with a 96% of the apneas correctly detected in
the case of seated volunteers at 0.5 m and 2 m and 75% of cases with the subject in standing
position. Then, 5% and the PCA methods presents the worst performances in all the trials.
For all the methods, the standing position presented the higher undetected apneas (up to
75% when PCA was used) which can be explained by the postural sway of the body that
does not occur in seated conditions [33].

4.1.3. Respiratory Frequency Calculation

After this stage, the first 120 s of each trial were used for the analysis. To compute the
fR values, we applied a 30 s sliding window with 29 s overlapping on each signal to obtain
fR values with an update time of 1 s. In each window the following steps were carried out
per each signal:

• Removing the mean from the signal (i.e., detrending);
• Normalization between 0 and 1, so that even lower amplitude peaks were detectable

within the window;
• Identification of all the local maxima on the signal by using a MATLAB f indpeaks

(min amplitude to identify the peak set on 20%), in accordance with [34];
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• Calculation of the n breathing periods (Tn) obtained as the time elapsed between
the consecutive maxima (n is the number of identified breaths), and of the average
breathing period (Tw);

• Calculation of the window fR value as the 60
Tw

.

Figure 5. In the first subplot, a signal obtained by the FO method from a video without the portions
of the signal identified as artefacts; in the second subplot the derivative of the signal and the sd
represented as red dashed lines. In red, the apneas identified on the derivative.

Table 2. Apneas detection results.

Method Trial Detected Not Detected False Positive #Apnea

FO method
0.5-Sit 96% 4% 26% 48
2-Sit 96% 4% 39% 48
2-Sta 38% 62% 12% 48

5% method
0.5-Sit 75% 25% 25% 48
2-Sit 79% 21% 29% 48
2-Sta 33% 67% 8% 48

PCA method
0.5-Sit 71% 29% 29% 48
2-Sit 75% 25% 38% 48
2-Sta 25% 75% 8% 48

An example in which the extracted second-by-second respiratory rate values for all
subjects with all extraction techniques is shown in Figure 6. The trends of fR extracted with
all methods show a first part in which the signal is settled around 10 bpm, followed by an
increasing respiratory rate of about 42 bpm that finally falls to about 18 bpm according
to the protocol. From the Figure 6 for all subjects, except for subjects 4, 13, 14, 19, there is
almost complete overlap of the 3 methods with the reference. On the other hand, in the
above-mentioned subjects there is a not very good overlap of the 5% method and PCA
method with the reference, while the FO method is almost completely overlapped. These
errors are quantified with the histograms shown in Figure 7 and with the Bland Altman
plots showed in Figure 8.
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Figure 6. Trend of fR expressed in bpm extracted every second with the optical flow method (in
black), 5% method (in green), PCA method (in red) and with the reference (in purple) on all subjects
for the first 90 s of the 2-sit test.

The fR values obtained each second from ρ5( f ), ρPCA( f ) and sy( f ) were compared
to those obtained from Re f . Figure 7 reports the distribution of the differences between
fR values computed from each method (i.e., 5%, PCA, FO) and those calculated by the
reference (i.e., Re f ), by considering all the volunteers in the different trials. In all the
postures, the FO method showed lower errors than the other two methods: the best results
are achieved in 2-Sit trial using the FO method, of fR values presented 95% errors below
±1 bpm when compared to reference values, while in the 5% method and the PCA method
only the 76% and 81% of fR values were in that range, respectively.

To compare the fR values obtained from each method every 1 s against the Re f
values we used the Bland–Altman analysis. We used the fR values retrieved from all the
volunteers to investigate the mean of differences (MOD) and limits of agreements (LOAs)
at the different user-camera distances and postures [35].
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Error < ±1 bpm

FO : 92%

PCA : 69%
5% : 62%

Error < ±1 bpm

FO : 95%

PCA : 81%
5% : 76%

Error < ±1 bpm

FO : 70%

PCA : 44%
5% : 43%

Error < ±1 bpm

FO : 78%

PCA : 65%
5% : 60%

Figure 7. Distributions of the error ( f Method
R − f Re f

R ) per each trial and for each technique (in black
FO, in red PCA and in green 5%). On the y-axis the percentage occurrence frequency. In the box,
the percentage of the measurements with errors below ±1 bpm.
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Figure 8. Bland–Altman analysis using the fR values obtained by the video signal collected for
each subject (shown in different colours) posture and for each technique of extracting movement
from images. The black dashed line represents the mean of difference (MOD); the two upper and
lower lines represent the confidence interval given by the mean ± the 95% of the standard deviation
of the points (LOAs). MOD can be interpreted as an indicator of the accuracy of the system and
its value represents the systematic error of the proposed method to the reference. The smaller the
variation of the mean within the confidence interval, the more likely it is that the two methods can be
considered interchangeable.
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In all the trials, at all the user-camera distances and postures, the FO presented the
best performances (see first column in Figure 8) compared to the other methods. fR values
extracted from video-frames when the user was seated (i.e., 0.5-Sit and 2-Sit trials) showed
the lowest bias (expressed as MOD ± LOAs) with all 3 methods compared to other trials,
with bias of −0.03 ± 1.38 bpm with FO method, 0.59 ± 5.94 bpm with 5% method and
0.21 ± 4.08 bpm with PCA method. Considering all the trials, Bland–Altman analysis
shows lower MOD values when FO method is used (max −0.16 bpm) and greater overlap
with the reference than the other two techniques. Differently from PCA and 5% methods,
FO slightly underestimates the values, showing a negative MOD in all tests. LOAs were
used to investigate the error dispersion. FO method performs better having LOAs of
±1.38 bpm in 2-Sit trial. However, even in the worst case the LOAs are not far off, being
±1.92 bpm, much lower values than 5% method and PCA method which in the worst case
present LOAs of 10.17 bpm and 12.44 bpm, respectively.

5. Discussion

Respiratory monitoring is receiving growing interest in different fields of use, ranging
from healthcare to occupational settings. Especially, fR is used to monitor workers to
improve health and safety in a working environment or also as an indicator of severe
systemic imbalances in clinical settings [2]. Although in the last years several studies
investigated different techniques based on the analysis of videos for retrieving respiratory
parameters from images, literature lacks studies aiming at comparing signal extraction
techniques, and only few studies aimed at assessing the influence on signals related to
subject postures and distance from the video camera [36]. Lastly, even if the breathing-
unrelated events are well known to affect the signals in both wearable and contactless
techniques, rarely video-based techniques includes motion artefact removal algorithms [16].

In this paper, we presented a non-contact measurement system for the respiratory
pattern and fR monitoring based on the analysis of video images collected by optical sensors
integrated into commercial cameras. We have investigated the performance in several
scenarios resembling those of real-world scenarios characterized by possible different user-
camera distances, user postures, presence of motion artefacts, and apneas. We developed
and tested algorithms working on video-frames to: (i) select in an automatic and optimized
way the ROI from which the signal is extracted, allowing, also, long-term monitoring
with a computational burden suitable for a commercial laptop; (ii) automatically eliminate
non-breathing related events; (iii) identify apneas; (iv) estimate fR values with an update
time of 1s. To investigate the performance of the proposed methods, experiments were
carried out under challenging conditions: (i) unstructured environment; (ii) varied clothing
both in terms of pattern and color; (iii) different postures of the subject (sitting, standing,
supine) and different distances from the camera (0.5–2 m). Moreover, volunteers were
called to breathe in a wide range of fR including quiet breathing and its alterations (i.e.,
bradypnea and tachypnea).

Considering all the trials, the FO method allowed detecting 96% of the apneas in the
signals up to 2 m while user seated, while performances drop down to 38% in standing posi-
tion (62% undetected) at 2 m of distance from the camera. These results are in line with [37],
in which machine learning techniques are applied to respiratory signals to recognize apnea.
Regarding the fR monitoring over-time, all the methods presented better performances
when the user was seated, probably due to the absence of the postural sway of the body
that occur in standing position. FO method performed better than others when compared
against values provided by the BH3, showing error below ±1 bpm in the 95% of cases.
Bland–Altman analysis evidenced lower bias when FO method is used in all the cases.
FO method allow monitoring fR with bias of −0.02 ± 1.92 bpm and −0.03 ± 1.38 bpm
in the seated postures which is comparable to those obtained in similar conditions with
wearable devices [38] (MOD ± LOAs = 0.01 ± 2.39 bpm) and better than those obtained
with other contactless techniques based on video [22] (MOD ± LOAs = 0.08 ± 1.48 bpm),
radar [39] (MOD± LOAs =−1.21± 6.99 bpm), and thermal cameras [40] (MOD ± LOAs =
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−0.30 ± 2.69 bpm). Errors found with the user in the supine position (bias up to
−0.01 ± 3.88 bpm) are comparable to those of [41] (MOD ± LOAs = 0.36 ± 2.50 bpm)
in which a combination of near-infrared and thermal imaging techniques are used.

6. Conclusions

The results obtained in this study are promising in the context of monitoring the fR
over-time in different postures and without specific boundary conditions (e.g., specific
garment pattern or specific ambient light conditions) . However, it is necessary to clarify
that the main limitation is that all the fR calculation were carried out with a post-processing
and also that the FO computational complexity has been found to be higher compared
to PCA and 5% methods. These considerations must be considered for further real-time
monitoring applications. Further tests will be helpful to test the proposed system in
real-world scenarios. We are already carrying out data acquisition in office. Moreover,
because of the good performances in the breathing pattern monitoring, additional tests will
be helpful to the study of respiratory asymmetries using multiple ROIs in different parts of
the abdomen and thorax which is quite complicated with wearable systems.
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Abbreviations
The following abbreviations are used in this manuscript:

fR Respiratory rate
bpm breaths/min
OSA Obstructive sleep apnea
ROI Region of interest
px Pixel
xC Location on x axis of the ROI’s central point
yC Location on y axis of the ROI’s central point
FO Optical flow
PCA Principal component analysis
ICA Independent component analysis
UB Upper body
HS Horn and Shunk
BH3 Bioharness
th Threshold
focc Percentage occurrence frequency
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MOD Mean of differences
LOA Limit of agreement
sd Standard deviation
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