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Abstract

We present an algorithm to identify individual neural spikes observed on high-density multi-electrode arrays (MEAs). Our
method can distinguish large numbers of distinct neural units, even when spikes overlap, and accounts for intrinsic
variability of spikes from each unit. As MEAs grow larger, it is important to find spike-identification methods that are
scalable, that is, the computational cost of spike fitting should scale well with the number of units observed. Our algorithm
accomplishes this goal, and is fast, because it exploits the spatial locality of each unit and the basic biophysics of
extracellular signal propagation. Human interaction plays a key role in our method; but effort is minimized and streamlined
via a graphical interface. We illustrate our method on data from guinea pig retinal ganglion cells and document its
performance on simulated data consisting of spikes added to experimentally measured background noise. We present
several tests demonstrating that the algorithm is highly accurate: it exhibits low error rates on fits to synthetic data, low
refractory violation rates, good receptive field coverage, and consistency across users.
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Introduction

The vertebrate retina is an important model system in

neuroscience because it is amenable to detailed study despite

having a complex structural and functional architecture [1].

Population coding and collective behavior in the retinal output

is studied by use of multi-electrode arrays (MEAs) to record

extracellularly from many retinal ganglion cells (RGCs) simulta-

neously [2,3]. Similar recordings can now also be made in other

brain areas [4]. MEAs offer unprecedented possibilities to obtain

both single neuron and single action potential resolution from

large tissue samples. However, recordings obtained in this way are

useful only if most spikes can be assigned, with sufficient accuracy,

to the neurons that generated them. Even if each neuron spikes

with a unique waveform signature, we must still determine all

those ‘‘template’’ waveforms present in a dataset, separating them

from each other and from noise. Moreover, in practice there can

be wide variation in the spike waveforms from a given unit (for

instance in amplitude), complicating the task of determining from

data which units fired and when.

This ‘‘spike sorting problem’’ is therefore a bottleneck in the use

of high density arrays with hundreds or thousands of electrodes.

Methods that were manageable with tetrodes [5] do not generally

scale up to the massive datasets that large arrays generate.

For example, some standard methods cluster data by manually

examining two-dimensional projections in a feature space of a few

tens of dimensions. This approach is infeasible when the fea-

ture space contains thousands of dimensions.

Another challenge with large arrays is that the chance of seeing

a single isolated spike becomes negligible, simply because there

is so much activity. Thus we must find template waveforms

corresponding to the activity of single neural units (as extracellular

recording cannot unambiguously identify distinct single neurons,

we will refer to our recovered putative neurons as ‘‘neural units’’)

without ever seeing a pristine example of one, and we must be

prepared to decompose temporally overlapping spikes in essen-

tially every recorded event. Overlaps in both space and time are

less frequent, but they nevertheless must be resolved if we wish

to unravel the patterns of collective neural activity. Resolution

methods that rely on exhaustively checking all possible combina-

tions suffer a combinatorial explosion for large arrays. Further,

any spike decomposition method must stop before every spike has

been found, because there will be some units whose intrinsic

amplitude is not larger than recording noise. We need a principled

approach to terminating each fit and to deciding later which units’

activities have been reliably captured.

Thus, to be most useful for large arrays, a spike identification

algorithm should ideally both scale well and also be able to decompose

overlapping events. This article outlines a method that accomplishes

these goals (MATLAB code available upon request.) It first clusters

a small subset of a larger dataset, using a partially automated,

human-guided clustering technique. This manual step is efficient,

and scalable, because (i) the clustering is based on an ordering that

arranges event data by similarity along a single dimension, (ii) the

ordered data display band-like features that are visually very

salient for human operators, making cluster cutting unambiguous,
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and (iii) the algorithm is robust to variations and outliers in the

cluster-cutting procedure. The algorithm then fits the full dataset

to the spike templates thus obtained, using a modified Bayesian

approach. In our data (from guinea pig retina) most of the intrin-

sic variability of spikes from a given unit consists of amplitude

variation only, whereas other variability can be summarized as a

universal (spike-independent) noise process. By carefully modeling

these circumstances we greatly reduce our computational burden.

After characterizing the spatiotemporal character of the noise,

our algorithm identifies spikes iteratively in a matching-pursuit

(or ‘‘greedy’’) scheme [6,7]. Fitting terminates when addition of

another spike does not improve the posterior probability of a fit; a

natural overfitting penalty is provided by prior probabilities of

firing and of spike amplitude. No assumptions are made about

spike time cross-correlations; in particular, we do not require a

priori any refractory ‘‘hole’’ in the spike time autocorrelation

functions. Nevertheless, all of the inferred spike trains correspond-

ing to otherwise acceptable spike types do exhibit such a hole,

which serves as a check on our results. Fitting is followed by several

qualitative post-hoc validations of the templates. Where our me-

thod requires human judgment, we structure our techniques and

develop tools to facilitate interaction and proofreading.

Our approach combines successful elements from previous

techniques: the empirical characterization of the noise [8]; separa-

tion of clustering and fitting steps and the iterative subtraction

scheme for handling overlaps [7]; and division of the clustering

task by leader electrode address [9]. Novel features of our

approach include systematic exploitation of the spatial organiza-

tion of the signals, the use of an ordering algorithm to greatly

simplify clustering, the observation that the noise temporal cor-

relation is well represented by a simple function, an explicit model

of spike amplitude variation, and the introduction of a principled

Bayesian likelihood criterion for terminating spike fitting. Each of

these innovations adds a critical element to the success of our spike

sorting method. Although we focused on data taken on vertebrate

retina, the methods should be equally applicable to other kinds of

MEA data, for example in other brain areas [4].

Results

To illustrate our method, we tested our spike sorting algorithm

on 120 minutes of recordings from guinea pig retinal ganglion

cells (RGC), acquired with a 30-electrode, dense MEA covering

about 0:018mm2 of tissue (Fig. 1A). The analysis described in this

paper identified 1,260,475 spikes in the dataset. A typical firing

event took the form Fig. 1B, where each panel shows 3ms of the

electrical potential recorded by each electrode (or ‘‘channel’’). We

identified spiking events as voltages crossing a threshold of {40
mV, taking into account the fact that simultaneous threshold

crossings on neighboring channels represent the same spike event

(see Methods for details). The duration of each spike event was

taken to be 3:2ms centered on the event’s peak.

In addition to identifiable spikes, each electrode had back-

ground activity with a standard deviation of *10mV that we will

collectively refer to as ‘‘noise.’’ Potential sources for this activity

include true (Johnson) noise in the electrode and electronics,

electrical pickup from the environment, as well as a hash of

background activity from weak or distant neurons [10]. A

challenge for spike identification is that in general there is no

way to separate these three classes of ‘‘noise’’ cleanly from each

other, nor from the spikes of interest to us. Nevertheless, we will

propose a technique for identifying spikes that is very accurate for

firing events with intrinsic amplitude at least 4 times the standard

deviation of the noise.

Fig. 1B illustrates that each single firing unit will be ‘‘heard’’ on

multiple electrodes, and that those electrodes form a spatially

localized group. Our method is scalable because it systematically

exploits this simple observation: even on a large electrode array,

most firing units will involve only a handful of electrodes. (Some of

our signals were not local, and stretched over the entire electrode

array in a line (e.g., Fig. 1B). We ignored such axonal signals, which

were also distinguished by their low amplitude and triphasic shape.)

Preliminary visualization of our data
We first attempted a ‘‘geographical clustering’’: from each event

we found the minimum of the potential on each channel and the

channel containing the deepest minimum (‘‘leader channel’’). We

then used the absolute values of the minima as weights in a

weighted average of the locations of the 9 electrodes neighboring

the leader channel. This weighted average gave a particularly

salient two-dimensional feature, the event’s barycenter:

�xx~

X9

i~1
xijminVi(t)jX9

i~1
jminVi(t)j

:

The sums run over the 9 electrodes neighboring the leader, and xi

is the location of the ith neighbor electrode. We then augmented �xx

Figure 1. Recording chamber and typical data. (A) Typical MEA apparatus. A tissue sample was mounted in an inverted microscope, with images
projected onto it via a small video monitor at the camera port (not visible). Clockwise from left, 1: suction; 2: tissue hold-down ring; 3: perfusion inflow,
with temperature control; 4: preamplifier; 5: location of the multi-electrode array. (B) Example of a single-spike event. Each subpanel shows the time
course of electrical potential (mV) on a particular electrode in the 5|6 array. The electrodes are separated by 30mm (similar to RGC spacing). A spike from
one unit is visible in the lower right corner and an axonal spike can be seen running vertically in the second column of electrodes. Data were acquired at
10kHz. After baseline subtraction and high-pass filtering, a spatial whitening filter was applied (see Methods, Step 1).
doi:10.1371/journal.pone.0019884.g001

Multi-Electrode Spike Identification

PLoS ONE | www.plosone.org 2 July 2011 | Volume 6 | Issue 7 | e19884



with a third feature, z, minus the absolute peak potential. These

three features gave a scatterplot that clearly showed many well-

separated clusters (Fig. 2A), without any need to deduce the ‘‘best’’

features by principal component analysis (Fig. 2B).

This extension of the ‘‘triangulation’’ method developed for

tetrode recordings [5] already shows key aspects of the data: (a)

many clusters are highly dispersed in amplitude, and (b) some

cluster pairs appear at nearly the same spatial locations but are

nevertheless well separated by amplitude. The first circumstance

means that we must allow for variable amplitude when fitting

spikes to templates representing the clusters. The second warns us

that a simple least-squares fit to amplitude could confound two

distinct units. For this reason our spike-fitting method employs a

Bayesian prior for each cluster’s amplitude variation, allowing us

to make such discriminations.

Although the simple clustering based on spatial location in

Fig. 2A looks promising, it can be misleading. Indeed, the

restriction of the weighted average to the 9 electrodes around the

leader can artificially separate clusters by biasing the barycenter to

be located near a particular electrode. This problem could be

alleviated by using a larger neighborhood, but on large arrays

there will inevitably be temporal collisions of spikes from distinct

units. The barycentric features in Fig. 2A will register such col-

lisions as a haze of seemingly random spots. Thus, at a minimum

the MEA voltage traces must be segmented by exploiting the

spatial locality of recorded responses. Despite these shortcomings,

Fig. 2A points out why the more sophisticated method developed

in this article can succeed: the ‘‘geographic’’ information encoded

by the MEA is a powerful intrinsic clue to each unit’s identity.

Summary of our method
Our sorting method is outlined in Fig. 2C (details in Methods

and Text S1 Sect. B). From a subset of the raw data, we made a

preliminary classification of spike events in terms of the electrode

on which they achieved their peak voltage. All events sharing a

given leader channel were cropped to the 9 electrodes neighboring

the leader, then ordered with the OPTICS algorithm [11] into a

linear sequence. The OPTICS algorithm places similar events nearby

in the sequence; distance was measured by a normalized Eucli-

dean distance between event voltage traces (see Methods). The

linear sequence of events was displayed to the user along with all

the recorded voltage samples for each event (Fig. 2D), and

Figure 2. Visualization of data; flowchart of our method. (A) 22,234 firing events cluster well in terms of their barycenter (voltage weighted
average spatial location) and absolute peak voltage (see text), despite wide amplitude dispersion in some groups; each combination of color and
marker size corresponds to one spiking unit identified by the clustering method developed in the text. Grey points were unassigned to any cluster. A
total of 107 clusters are marked. (B) Events cluster poorly when projected onto the three principal features uncovered by principal component
analysis (PCA). Coloring as in (A). (C) Schematic of our spike sorting method. Dashed lines involve a small subset of a full dataset. The backwards arrow
describes the introduction of new spike templates found after the first pass of fitting; a total of two passes are performed. (D) The optics algorithm
orders all firing events into a linear sequence based on a distance measure (see text). Events are lined up in this order (x-axis), and represented in
terms of the 960 voltage samples recorded by all the electrodes during a 3.2 ms firing event (y-axis; from top to bottom, 32 consecutive time samples
from one channel, then 32 time samples from the second channel, and so on). The human operator highlights bands of events (typically very clear to
an observer) that appear to constitute a single cluster; one such band is shown. Later automated diagnostics refine and check these assessments.
doi:10.1371/journal.pone.0019884.g002
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manually clustered. Although the ordering was based on events

cropped to 9 channels, the full waveforms were displayed to the

user (Fig. 2D). Because the data are ordered in one dimension, and

because precision is not required in view of later refinement, this

manual step remains rapid. An automated method for cluster

cutting could be implemented, but in view of the inevitable desire

for human proofreading we preferred to simply carry out this step

by hand. From each preliminary cluster, we estimated a template

waveform representing the corresponding neural unit and then fit

the templates to the remaining data. Fitting was accomplished by a

Bayesian algorithm based on a probabilistic model capturing the

dominant sources of variability we observed in our data: back-

ground noise, spike amplitude variation, and overlapping spikes

from distinct units. After finding, for each event, the most probable

template which accounts for the event, we subtracted it and then

iterated. Finally, the fit results were used in a post-hoc validation of

the initial clustering, and we repeated the procedure in a second

pass if necessary. Details of each step are presented in Methods.

Tests of our method
OPTICS-based clustering of a subset of our dataset led to 107

potential templates for events from distinct neural units. Many of

these templates had low amplitudes; such low-amplitude templates

were sometimes mistakenly fit to noise by our algorithm. We

therefore rejected units that were likely to contain substantial noise

fits because they were of amplitude less than or comparable to the

noise (details in Methods and Text S1 Sect. H). This left fifty

potentially reliable units that were accepted in our dataset.

Comparison with geographical clusters. Our optics-based

procedure identified 107 potential clusters of events in a subset of

the data. To check that the procedure gave reasonable results we

plotted each event in the barycentric coordinates of Fig. 2A, and

colored the events according to the assigned cluster label. The

clusters were spatially localized and separated in peak amplitude,

as they should be if they were produced by distinct single neurons.

Gray dots in Fig. 2A were not assigned to any cluster. Some of

these events contained overlaps of spikes that were not resolved by

the initial spatial segmentation of data during the preprocessing

step. The subsequent spike fitting step in our algorithm resolved

most such ambiguities.

Error rates on synthetic data. To validate our algorithm

we tested its performance on synthetic data created by adding

spikes to experimentally measured background noise clips, then

fitting templates to each clip. We took noise clips to be 3:2ms
segments of time during which no spikes were recorded on any

channel; we identified 14,000 such clips. For each clip, we

randomly chose a fixed number (1, 3, or 5) of templates from the

initial set of 107, with uniform probability and without replace-

ment. We then added these templates to the noise clip at random

times, leaving a margin of 0:6ms on either side of the clip to

prevent waveforms from being cut off. (Our typical template

waveforms extended approximately 0:5ms to either side of the

peak.) We gave each spike an amplitude drawn from a Gaussian

distribution with mean equal to its template amplitude and

standard deviation 10% of the template amplitude (this was similar

to the observed distribution).

The template fitting algorithm was then run over this synthetic

dataset and analyzed for false positive and false negative rates

(Fig. 3A). We counted a false negative for a template every time

that template was present in an event but not fit correctly to within

1ms; we counted a false positive every time a template was fit to

the data without actually being present. The error rates increased

with the number of template overlaps; thus, for the fifty templates

with amplitudes that exceed the noise, we separately plotted error

rate histograms for each degree of overlap. Error rates were

robustly low – even within extremely complex events with 5

overlapping spikes (rare in the data), the majority of spike

templates had an error rate of a few percent or less. To gain

perspective on these values, we measured the number of templates

fit to each event in our recorded data: 60% of events contained 1

spike, 94% 3 or fewer spikes, and 98% had 5 spikes or fewer. Most

of the errors were made on lower amplitude templates for which

amplitude variations can lead to confusion with noise.

Refractory violations. When sorting spikes recorded extra-

cellularly, ground truth can be assessed if simultaneous intra-

cellular recordings are available, e.g., [12]. Since we do not have

such recordings, in order to validate our algorithm on real data we

examined the rate of refractory violations – i.e., the fraction of

interspike intervals of duration less that 1:5ms. Refractory

violations can appear in our sorted data if spikes from distinct

neural units are mis-assigned to the same unit, or if noise fluctua-

tions are mistaken for spikes. Of the 107 templates constructed

from the initial clustering 84% had less than 0.5% refractory

violations and all had less than 2.5%, providing evidence that the

templates produced by the initial clustering rarely merge distinct

neural units (Fig. 3C). More significantly, all fifty templates

describing units that rose reliably over the noise level had less than

0.5% refractory violations. Futhermore, 96% of these had less than

0.1% refractory violations (Fig. 3C). Note that the percentage of

refractory violations only provides a lower bound on the number

of misidentified spikes – nevertheless, the low refractory violation

rates we observed provide strong evidence that our algorithm

makes few fitting mistakes on the units otherwise identified as

reliable.

Coverage. While the absence of refractory violations gives

evidence that our algorithm does not merge different neural units

together, it might still split spikes from the same unit into two

distinct clusters if, e.g. there was substantial amplitude variation.

To test for this, for each unit that was above the noise level we

measured the linear receptive field by taking the spike triggered

average (STA) of the flickering checkerboard stimulus (Text S1

Sect. B). We expect that such receptive fields will be connected

regions of the visual field, roughly elliptical in shape, and that no

two units will have identical receptive fields. 31 of the 50 reliably

identified units had enough spikes to give reliable estimates of the

spatial receptive field. Of these, examination of the temporal ker-

nel showed that 19 were OFF cells (responding to light decrement)

and 12 were ON cells (responding to light increment), consistent

with the expected excess of OFF ganglion cells [13–18]. None of

these receptive fields were identical, giving evidence that our

algorithm did not split single units into multiple clusters. Further,

all of the receptive fields were connected, suggesting that none of

our clusters are mixtures of different RGC. In addition, essentially

all of the recorded area was covered by at least one receptive field

(coverage of OFF cells shown in Fig. 3D). The density of RGCs in

guinea pig varies from 250mm{2 to 1500mm{2 [19]. We receive

signals from a region slightly larger than the electrode array,

roughly 0:065mm2. Thus the expected number of RGC is 16–97,

comparable to our total of 31 receptive fields, keeping in mind that

many of the sluggish cell types would not have enough spikes to

yield a good spike triggered average.

Different users. Because our method involves human

intervention, there exists a risk that different users could obtain

divergent results. One possible discrepancy is that different users

could identify distinct sets of templates. This would not pose a

serious problem in and of itself, as long as further analysis did not

demand a complete population. Moreover, the completeness of

the template set is ultimately limited only by the time invested by

Multi-Electrode Spike Identification
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the operator in clustering. However, it would be problematic if the

spike trains fit to the same template by different users differed

significantly. To assess the robustness of our method, we therefore

had three different users (here referred to as A, B, and C) carry out

our spike sorting procedure on the same data set and examined the

correlation of the results. User A found 20 templates with large

enough spike counts to assess cross-correlation, B found 25, and C

found 28. While these numbers were smaller than the 50 we

had identified previously, the difference consisted of units with

extremely low firing rates. We compared the three sets of tem-

plates to identify those which were found by multiple users, by

minimizing the euclidean distance between template pairs. 18

templates agreed between A and B, 18 between A and C, and 23

between B and C. A total of 17 templates were found by all three

users. For each template that was found by at least two users, we

computed the cross-correlation coefficient of the corresponding

spike trains. Across all pairs of users, two-thirds of such templates

had a spike train correlation higher than 0.95 (Fig. 3B).

Complex events. A major challenge for a spike sorting algo-

rithm is dealing with variability in spikes produced by individual

neural units. An even greater challenge arises from spatio-temporal

overlaps between spikes from different neural units. Our low error

rate in analysis of synthetic data containing both of these com-

plexities (Fig. 3) provides evidence that our algorithm is effective at

resolving overlaps and identifying variable spikes from given units.

To test this further, we manually examined many events in the real

data which a human observer could identify as representing

overlaps or neural variability; and our algorithm typically did an

excellent job of dealing with variable-amplitude bursts (Fig. 4B), as

well as events that overlap in space and time (Fig. 4C).

Speed. Currently the main fitting code, written in MATLAB,

requires about 5ms of real computer time per fit spike on a

commercial 2.5 GHz computer, times 2 for the two passes. This is

fast enough for our purposes; considerable further improvement

is possible with existing software (Mex) and hardware (GPU)

techniques.

Materials and Methods

Ethics statement
This study was carried out in accordance with recommenda-

tions from the National Institutes of Health and the guidelines of

 

 

 

 

 

 

 

 

Figure 3. Tests of the method. (A) (Top) The cumulative percentage of templates having false negative probabilities less than the indicated values.
Error rates were measured in fits to synthetic data as the fraction of times a fit was not reported for a template when it was actually present. (Bottom)
As above, but showing false positive probabilities (fraction of times a fit was reported for a template when it was not actually present). Results
reported separately for fits to events with different numbers of overlapping spikes (inset colors). (B) Correlation in spike trains across fits by three
different users (A, B, and C). Each curve corresponds to one pair of users and gives the cumulative fraction of templates having lower correlation than
indicated. See main text for further details. (C) Cumulative fraction of templates having fewer refractory violations than indicated. Refractory
violations are rare (see text). (D) The centers of 19 OFF cell receptive fields recorded from a single piece of tissue. To map a neuron’s receptive field
center, we first find the peak (in space and time) of the spike-triggered average stimulus. Restricting to the peak time, we apply cubic spline
interpolation in space and then draw contour lines at 75% of the peak value.
doi:10.1371/journal.pone.0019884.g003

Multi-Electrode Spike Identification

PLoS ONE | www.plosone.org 5 July 2011 | Volume 6 | Issue 7 | e19884



the American Veterinary Medical Association. The protocol was

approved by the Animal Care and Use Committee of the

University of Pennsylvania (No. 803091). All surgery was per-

formed under ketamine/xylazine and pentobarbital anesthesia,

and all efforts were made to minimize suffering.

Experimental procedure
Our methods were developed and tested on retinal response

data, from albino guinea pig, recorded with a dense 30-electrode

array (30mm spacing, Multi Channel Systems MCS GmbH,

Reutlingen, Germany). After anesthesia with ketamine/xylazine

(100/20 mg/kg) and pentobarbital (100 mg/kg), the eyeball was

enucleated and the animal was killed by pentobarbital overdose in

keeping with the AVMA guidelines on euthanasia. The eyeball

was hemisected and the retina was allowed to dark adapt. A small

piece was cut out, separated from the pigment epithelium,

mounted (ganglion cells up) onto a piece of filter paper, and

placed ganglion cells down onto the MEA. A 15|15 flickering

checkerboard consisting of binary noise, updated at 30 Hz, was

projected onto the tissue (Text S1 Sect. C). We alternated between

uncorrelated and exponentially correlated (space constant 50mm;

time constant 33 ms) stimuli.

Our procedure for identifying spikes in the recorded data had

four steps, each detailed below: (1) Preprocessing, where spatial

locality was exploited to segment the data, (2) Clustering and

template building, where a subset of the data was clustered to

separate the responses of likely neural units, template waveforms

for each neural unit were built, and their variability characterized,

(3) Spike fitting, where every firing event was separated into a

superposition of responses from different neural units, and (4)

Validation of templates, where each template and the spikes

identified with it were tested for reliability.

STEP 1: Data preparation and segmentation
The first step in our procedure (Fig. 2C) was to prepare the data

for clustering of events from different neural units, by separating

firing events from noise, and segmenting spatio-temporally distinct

regions of spiking activity on the electrode array.

Data from the array were sampled at 10 KHz, high-pass filtered

below 200 Hz with a finite impulse response filter to remove low

frequency baseline fluctuations, and then packaged into 3:2ms
clips: (a) ‘‘noise clips’’ in which the potential never fell below

{30mV, and (b) ‘‘spike events’’ surrounding moments at which

the potential crossed {40mV. The duration of the clip was chosen

to include the full extent of most spike events with a small margin

on either side. The threshold was set such that there were no

discernible spikes among the subthreshold voltage deflections,

although this low-amplitude noise likely contained contributions

Figure 4. Template fitting to complex events. (A) Example of a single-spike event. Each subpanel shows the time course of electrical potential (in
mV, black curves), on a particular electrode in the 5|6 array. After baseline subtraction and high-pass filtering, a spatial whitening filter was applied (see
Methods). Red curves show the result of our fitting algorithm, in this case a single template waveform representing an individual neural unit. (B) Detail of a
more complex event and its fit, in which a single unit fires a burst of 9 spikes of varying amplitudes (upper left channel), while a different unit fires 5 other
spikes (upper right channel). Simultaneous data from four neighboring electrodes are shown. (C) Example of an overlap event and its fit, which now is a
linear superposition of 7 templates. (D) Detail of (C), showing signals on four of the electrodes. This time individual fit spikes are displayed. The red and
green traces show fit templates that, although similar, differ significantly in their overall strength, and in the relative strengths of their features. The black
trace shows a fit to a low-amplitude template that was later classified as unusable, and hence was discarded, by the procedure in Methods, Step 4.
doi:10.1371/journal.pone.0019884.g004
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from spikes of distant neurons (see Text S1 Sect. G2). Clips with

potentials between {30mV and {40mV were neither used to

characterize noise (since they might contain small spikes) nor used

to identify spikes (since they were very noisy). The threshold for

spikes was set to *4 times the standard deviation of the potential

in the noise clips. Each spike event thus consisted of N~3:2ms|
10kHz|5|6~960 numbers, the potentials on a 32|5|6 grid

of space-time pixels (‘‘stixels’’). Spike events sometimes overlapped

each other, for example if a burst of spikes lasted longer than

3:2ms. Cluster identification and spike template building (Step 2)

used four 30-second segments sampled from different times, but

subsequent spike fitting and sorting (Step 3) used all the data.

Electrodes can share signals because of instrumental cross-talk

and because the activity of neurons spreads passively to nearby

electrodes. We modeled both effects by a linear filter that spatially

blurs signals. To find this filter empirically, we noted that it

also applies to the noise. Accordingly, we measured the spatial

covariance of noise clips, finding that it was spatially isotropic and

had a roughly exponential falloff, with a correlation length of

*30mm. We applied the square root of the inverse of this

covariance matrix to all data, and used the resulting ‘‘spatially

whitened’’ data for all analysis. In some datasets this transforma-

tion sharpened the individual spikes spatially, improving our

ability to distinguish them in the clustering stage. In other datasets

the transformation had little effect. Our data also exhibited

temporal correlations, but these have a different physical origin

from the essentially instantaneous passive spatial spread. We found

that temporal whitening prior to clustering [8] worsened our signal/

noise ratio and impeded cluster determination. Thus we incor-

porated temporal correlations later, during the spike fitting.

Segmentation. Each spike event is a superposition of spikes

from an unknown number of distinct neural units with stereotyped

waveforms that we sought to identify. We first spatially segmented

the data to isolate waveforms from individual units and their

immediate neighbors. To this end, we identified all stixels at which

the potential was more negative than the threshold of {40mV and

divided this set into connected components (two stixels were

considered connected if they were nearest neighbors in either time

or space). Within each connected patch we identified the absolute

peak electrode and time, then extracted a 3:2ms region centered

temporally on the peak time and cropped spatially to a neigh-

borhood of nine channels surrounding (and including) the leader

electrode. Thus each spike event was segmented into one or more

cropped events; each of which was then classified according to its

leader electrode. A similar segmentation method has recently been

applied to the spike identification problem by J. Schulman

(unpublished); see http://caton.googlecode.com. In subsequent

clustering, only those events having the same leader electrode were

directly compared to each other [9].

Some cropped events might be composites of two spike types

corresponding to neighboring, but distinct, neural units. However,

this step at least decomposes composite events whose components

are well separated in space or in time, and hence reduces the

combinatorial burden inherent in large arrays; later steps handle

composites missed at this stage. The method also ensures that, if

spikes from two well-separated units frequently co-occur, the two

units will nevertheless be correctly handled as separate.

STEP 2: Cluster identification and template building
The second step in our procedure (Fig. 2C) was to cluster

spiking events in a subset of the data (four 30-second segments)

into groups that had similar waveforms and thus probably came

from the same neural unit. For each cluster, we produced a tem-

plate waveform describing the typical spike, and determined the

distribution of amplitude rescalings that best matched spikes to this

template.

Cluster identification. In order to group events into clusters

based on the similarity of their waveforms, some previous ap-

proaches have sought a low-dimensional set of discriminable

waveform ‘‘features,’’ and have assumed that variability between

events in the same cluster arises only from additive noise. In

practice, systematic variation in the shape of spikes from single

units is often observed that is not well described by additive noise.

Furthermore, identifying the correct set of salient waveform

features that discriminate between units is challenging ([20]; see

Fig. 2B). Thus, seeking a technique that did not require feature

extraction, we adapted the optics algorithm [11]. Briefly, optics

computes distances between all pairs of waveforms, then orders the

waveforms such that similar ones are placed close together in a

single linear sequence. optics makes no assumption that clusters

have a Gaussian distribution in feature space, nor does it set any

threshold density in that space to trigger cluster identification. The

linear ordering allows for easy visualization and cutting of clusters.

We applied this algorithm to cropped and segmented spike

events (obtained in Step 1) which were upsampled by a factor of 5

(using matlab’s cubic spline interpolation) and then temporally

aligned to place the absolute peak of the waveform at a common

position before downsampling again. The interpolation was neces-

sary to compensate for apparent variations in spike waveforms due

to discrete sampling [21]. To reduce the fuzziness of the clusters,

we masked spike events by setting voltage samples to zero if

they were less negative than {15mV . As a distance metric

between V and V0, the masked potentials of spike events, we chose

d(V,V0)~
XN

i~1
½(Vi{V ’i)

2=(k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jVijzjV ’ij

p
)�

� �1=2

where i in-

dexes the potentials at each channel and timepoint, and k is the

total number of nonzero potentials after masking of either V or V0.
Division by k normalized for the effective dimensionality (given

by the number of dimensions containing nonzero entries). We

observed that higher voltage traces tended to have a higher

variance; the factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jVijzjV ’ij

p
partially compensated for this,

leading to more homogeneous clusters.

We constructed a graphical user interface (gui) that allowed

a human operator to visualize each spike event in the optics

sequence as a vertical column of pixels color-coded by voltage (see

Fig. 2D). Transitions between distinct spike types were usually

obvious to the operator, who could quickly find and select bands

corresponding to each spike type. (For the data in this paper, the

operator found over 100 such clusters in about 30 minutes.) The

software then wrote the corresponding cropped events to a set of

data files. The ease of separation likely occurred because clusters

could already be fairly well delineated with just the ‘‘geographical’’

features in Fig. 2A.

Up to this point, the events being clustered were still segregated

into batches according to their leader channel x0, y0. Thus it was

possible for a single unit to be multiply identified: If it stimulated

two neighboring electrodes nearly equally, the unit could generate

events in both of the corresponding batches. We tested for

duplicates by manually examining pairs of clusters whose medians

had a large cross-correlation and merged the clusters if necessary.

There was also a possibility that the initial clustering would assign

multiple units to one cluster. In these cases, visual examination of

the superposed waveforms of the cluster often showed it to be a

composite of multiple units. This was resolved by doing a principal

components analysis on the waveforms in that cluster: if the cluster

was composite, at least one of the first few principal component

weights had a multimodal histogram. The cluster was split by

thresholding at the valleys of the histogram; we then tested
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whether any of the split components ought to be merged with an

existing cluster. We developed a graphical user interface to assist

the operator in performing these merging and splitting steps.

Generally it was clear to the human operator when a band in

the gui output was clean enough and wide enough (contained

enough events) to generate a good cluster; thus there was no need

to specify a priori the desired number of clusters, an advantage over

many automated clustering procedures. Marginally significant

clusters were either eliminated during template building (see

below), or else generated fits that were themselves discarded

during spike fitting (Step 3) and evaluation of template reliability

(Step 4). Any significant clusters missed at this stage, for example

because of the small fraction of the data used in this step, were

found and reincorporated later during spike fitting (Step 3).

Template building. Next we created a consensus waveform

(‘‘template’’) summarizing each cluster of cropped, upsampled

events, and characterized meaningful deviations from that

consensus. We created a draft template by finding the pointwise

median over all events in a cluster, then aligned each event to the

draft template by maximizing their cross-correlation over time

shifts, which we found to be more accurate than aligning to each

event’s peak time. Finally, we found the pointwise median (to

suppress the effects of outliers) of the aligned events; this waveform

was our template (Fig. 5B).

A key step was to realize that, in our data, the most significant

sources of variation of individual spikes from the template were (a)

additive noise, and (b) overall multiplicative rescaling of the spike’s

amplitude (Fig. 5C). To quantify (b), we found the rescaling factor

that optimized the overlap of each spike with its template, then

stored the mean and variance of those factors in a lookup table for

later use as a prior probability for amplitude variation. We also

logged the number of events associated to each template, con-

verted to an approximate firing rate, and saved those rates, again

for later use as a prior.

STEP 3: Spike fitting
The third step in our procedure was to fit the spike templates

constructed in Step 2 to each firing event in the data in order to

determine which neural units were responsible for the activity. To

this end, we constructed a simple generative model of firing events,

and included distributions of firing rate and of amplitude variation

for each template. The firing probabilities and amplitude dis-

tributions were inferred from the previously clustered data, and

therefore served as priors in the template fitting procedure

described below. The fitting procedure iteratively identified and

subtracted the most likely templates in each firing event.

The cluster templates were produced using an upsampled

50kHz sample rate, but for fitting to data we downsampled back

to the actual 10kHz, in each of 5 ‘‘reading frames’’; that is, we

created five versions of each template corresponding to subsample

shifts. Let Fm;x,y(t) be the potential of template m, on the electrode

with address x,y, at time t, with time measured in units of the

sampling time dt~0:1ms, and the template peak at the central

point t~16 within the 3:2ms template frame. We use the vector

notation Fmi ti
for the template mi shifted to time ti, i.e. its x,y,t

component is Fmi ,x,y(t{ti).
Generative model. The goal of spike fitting is to identify, for

each spike event, all the units fmig which contribute to the event

and their firing times ftig irrespective of their amplitudes fAig.
Thus we assumed a probabilistic generative model of the data

[8,21–23] and computed the posterior probability of f(mi,ti)g given

the observed data. We assumed that a spike event V could be

explained by a linear combination of templates Fmi ti
with variable

amplitudes Ai and correlated, zero-mean Gaussian noise dV:

V~
XK

i~1

AiFmi ti
zdV: ð1Þ

Here K is the (a priori unknown) number of units contributing to

the event. Given this model, to obtain the posterior probability that

a firing event consists of a particular set of templates, we need to

specify the prior probability of m, t, and A. We chose a Gaussian

prior for the amplitude A, a Poisson prior for m, and a uniform prior

for t. Although A is a strictly positive quantity, we modeled its

distribution with a Gaussian for analytical tractability. In practice,

the distribution of A was tightly concentrated around its mean of

approximately 1 and the Gaussian approximation had negligible

weight at negative values (Fig. 6D).

Our generative model assumes that spike waveforms from a

given neural unit are stereotyped, apart from their amplitude. We

did observe considerable variation in spike amplitude (Fig. 2A), in

part due to bursting [10,12], and thus included it in the model as a

distribution of amplitude rescaling factors. Allowing for the

possibility of slight variations in spike width (Text S1 Sect. F)

also slightly improved our results. But there was little additional

Figure 5. Template building. (A) Detail of 40 of the aligned events used to compute a template, upsampled and shifted into alignment as
described in the text. Some outlier traces reflect events in which this unit fired together with some other unit; the unwanted peaks occur at random
times relative to the one of interest, and thus do not affect the template. (B) Blue, detail of a template waveform, showing the potential on 12
neighboring electrodes. Time in ms runs horizontally; the vertical axis is potential in mV. Red, for comparison, the pointwise mean of the 430
waveforms used to find this template (nearly indistinguishable from the blue curve). (C) Detail of (A), showing only the leader channel. In addition,
each trace has been rescaled by a constant to emphasize their similarity apart from variation in overall amplitude.
doi:10.1371/journal.pone.0019884.g005
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variability to be modelled (Fig. 5C). Our model also assumes that

signals from different units combine linearly, as does the noise.

This is reasonable, because the biophysics of extracellular re-

cording is governed by the equations of electrodynamics, Ohm’s

law, and other linear relations. A third assumption is that noise

and the variability of spike amplitude are each well described by

Gaussian distributions. Assuming Gaussianity (well-confirmed in

some settings [8], but not others [24]) allows for a fast, partially

analytic approach to fitting. We validate this assumption quan-

titatively below.

Our generative model has a Poisson prior probability for firing

by each neural unit, i.e. a prior that is as unstructured as possible

while being consistent with the mean firing rate. The prior pro-

bability could be made somewhat more accurate by including

refractory periods, the likelihood of bursting, and correlations

between neural units. But this would significantly increase the

complexity of the model, and inferring the distribution would

require much more data [25].

Finally, we assumed that all statistical distributions that enter

into the model are stationary and independent of the stimulus.

While our retinal preparation does not suffer electrode drift (as

might implanted electrodes), there are occasionally shifts in spike

amplitudes and firing rates over the course of a lengthy experi-

ment. Although in principle our fixed priors could lead to biased

estimates, these biases are small when spike identification is robust,

i.e. when the likelihood function dominates the prior in the

posterior probability of a neural unit [26].

Noise characterization. In the context of our generative

model, in order to assess the probability that the residual after

subtracting a putative spike is indeed noise, we first need to measure

the distribution of noise. After applying the spatial whitening filter

(described in Step 1), our noise clips are decorrelated in space, but

not in time (Fig. 6A). Assuming that the noise has a correlated

Gaussian distribution, we need the inverse of the noise covariance

matrix, C{1. One approach to finding C{1 is to invert the empirical

covariance matrix C of a large set of noise clips. Besides being

intractable for larger arrays, this approach has the disadvantage that

a numerically stable evaluation requires a very large noise sample.

For these reasons we instead took a parametric approach. After

evaluating the covariance C(x,y,t; x’,y’,t’) we noted that it was

Figure 6. After fitting spikes, only noise remains. (A) Noise covariance after spatial whitening. Subpanels: spacetime covariance
C(x,y,t; x�,y�,tzDt) between the central channel and its neighbors as a function of Dt, for various fixed t (colored curves). Central panel (dotted line):
the function (57mV2) exp({Dt=(0:18ms). (The various t lines and the dotted line are too similar to discriminate visually.) Horizontal axes: Dt in ms;
Vertical axes: C in mV2. (B) Blue curve, Semilog plot of the one point marginal probability density function of decorrelated noise samples. Red curve,
same quantity, evaluated on residuals after spikes have been removed from spike events. Dotted curve, The Gaussian chosen to represent this
distribution. (C) Green, detail of the same template waveform shown in Fig. 5. Red, pointwise mean of the residuals after the fit spike is subtracted
from 4,906 one-spike events of this type is nearly flat. This validates our assumption that spikes vary only in overall amplitude, and that noise is
independent of spiking. Blue, pointwise standard deviation of the residuals, again evidence that only noise remains after fitting and subtracting
spikes. (D, top) Histogram of fit values of the scale factor A for a template with peak amplitude {168mV (well above noise) obtained without a prior
on A, superposed with a Gaussian of the same mean and variance. (D, bottom) Similar histogram for a low amplitude template. A secondary bump
appears, due to noise-fits, but is well separated from the main peak; a cutoff is shown as a dashed green line. The superposed Gaussian has mean and
variance computed from the part of the empirical distribution lying above the cutoff.
doi:10.1371/journal.pone.0019884.g006
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approximately diagonal and translation-invariant in space (i.e.

proportional to dx,x’dy,y’ and independent of x and y). It was also

approximately stationary, i.e. invariant under time shifts t?tzDt,
t’?t’zDt, and thus only depended on t{t’. Finally, we observed

that the time dependence of C was roughly an exponential,

&ge{jt{t’j=t (Fig. 6A). This gave:

C{1(x,y,t; x’,y’,t’)~

g{1|dx,x’dy,y’

(1zj2)=(1{j2), if t~t’

{j=(1{j2), if t~t’+dt

0, otherwise:

8>><
>>:

ð2Þ

Here dt~0:1ms is the sample time, and dx,x’ is the Kronecker

symbol. g and j~e{dt=t are obtained from the noise covariance.

The dataset used in Results yields noise strength g&57mV2 and

j&0:58.

By construction, our noise model reproduces the 2-point

correlations in the noise clips. However, real noise may not be

Gaussian distributed. One check on this is to construct the

transformed quantities U~C{1=2V empirically, find their full

distribution as V ranges over noise clips (the ‘‘one-point marginal’’

distribution), and compare to a normal distribution. Fig. 6B shows

this comparison, lumping together every element of U. The

empirical noise deviates from a Gaussian only in the far tails that

contain very little weight.

Fitting algorithm for single spikes. Given the above

characterization of the noise distribution, and our Gaussian

prior for spike amplitude variation, the generative model Eqn. 1

defined the posterior probability P(fmi,ti,AigjV) for templates

fmig to be present at times ftig with amplitude scale factors fAig,
given the recorded potentials V. We ideally would have mar-

ginalized P(fmi,ti,AigjV) over the nuisance parameters fAig and

then maximized with respect to f(mi,ti)g to identify the most

probable set of units and spike times. In practice, this maxi-

mization is computationally expensive to perform on many

templates simultaneously. Instead, we used a greedy approxi-

mation which fit one template at a time.

We first assumed that the event contained exactly one spike and

identified the spike’s type m and time of occurrence t. Bayes’

formula gives for the posterior probability:

P(m,t,AjV)dtdA!P(Vjm,t,A)P(m,t,A)dtdA, ð3Þ

up to a constant independent of m, t, and A. Here P(m,t,A) is the

prior probability of the template m appearing at time t with an

amplitude A:

P(m,t,A)dtdA~rmdt(2psm
2){1=2 exp {(A{cm)2=2s2

m

� �
dA, ð4Þ

where cm is the mean and s2
m the variance of the scale factor for

cluster m; rm is the estimated overall rate of firing for this cluster.

The generative model gave the probability of the observed po-

tential V given m,t,A (the likelihood) as P(Vjm,t,A)~Pnoise

(V{AFm,t), where Pnoise is a Gaussian distribution with zero

mean and covariance C (Eqn. 2). Combining the likelihood and

prior, then integrating out A, gave the formula we ultimately used

in our fitting algorithm:

P(m,tjV)

P(no spikejV)
~

rmdtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1zs2

mFt
m,tC

{1Fm,t

q exp
1

2s2
m

(cmzs2
mVtC{1Fm,t)

2

1zs2
mFt

m,tC
{1Fm,t

{
c2

m

2s2
m

 !
:

ð5Þ

We have expressed Eqn. 5 as a ratio with the probability that no

templates contributed to the event. Finally, we varied m and t to

find the template and time which maximized Eqn. 5. This gave the

first fit template, m�, its firing time, t�, and the probability ratio of

the fit.

We improved scalability by a slight approximation. Starting

from a spike event, we first identified the time and electrode

address of its absolute peak and restricted the matrix products in

expression Eqn. 5 to only sum over a spatiotemporal neighbor-

hood surrounding this peak. The size of the neighborhood was

chosen to match the typical spatial extent and temporal duration

of the templates.

Multiple spikes. In principle, we could have extended the

single template procedure described above to compare the

probabilities of all possible combinations of two or more spikes.

Such an exhaustive approach, however, would quickly have

become impractical. We instead noted that, even if an event

contains multiple spikes, the single-spike fit described above still

identified that template whose removal would lead to the largest

increase in the probability that the remaining waveform is noise.

Thus we adopted an iterative (matching-pursuit or ‘‘greedy’’)

approach: starting with a spike event, we found the absolute peak,

fit it by the method described above, subtracted the fit, and then

repeated the process [7].

The single-spike procedure found the most probable spike type

m�; we then computed the scale factor A and spike time t’ that

would allow the fit spike to be subtracted as fully as possible. We

thus held m fixed to m� and minimized the ordinary norm

EV{AFm� ,t’E
2 over A and t’. The scaled and shifted template

obtained in this way was subtracted before repeating the single-

spike fitting procedure. The parameter t’ was only used for tem-

plate subtraction. The spike time which was actually reported by

the algorithm was not t’, but t� described above. In practice, t’ was

always very close to t�.
To determine when to stop fitting spikes, we adopted a

likelihood ratio test. At each step of the fitting loop, we summed

Eqn. 5 over t, obtaining the probability ratio that an additional

spike of type m is present relative to the probability that no

additional spike was present. We can then say that fitting an

additional spike is justified if the ratio exceeds unity for some m�.
The fitting loop terminates when the significance test fails. Note

that the factor rmdt (the prior probability of a spike from unit m) in

Eqn. 5 is typically much smaller than one. In order for the fitting

algorithm to accept a candidate spike, the remaining terms in Eqn.

5, which relate to goodness-of-fit, must be large enough to

overcome this small factor. Furthermore, the amplitude prior is

typically concentrated tightly around its mean. The marginaliza-

tion over amplitudes thus suppresses templates that would have to

stretch by a large factor in order to fit the data. Both of these

effects counteract overfitting. Fig. 4C,D shows an example of the

successful decomposition of a multiple-spike event using our

method.

Second pass. The spike fitting algorithm might exit pre-

maturely if a spike is present that does not appear in the list of

templates initially extracted from the small subset of data. In this

case, the fit will terminate, even though other identifiable spikes of
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lower amplitude may remain. To check this, if the residual

exceeds V�trust~{44mV after termination, the code declares an

‘‘incomplete fit’’ and writes the residual to a file; the small set of

resulting waveforms were then reintroduced into our clustering

code and used for a second round of fitting. In this way we can be

assured of finding even rare spike types, without having to perform

clustering on the complete dataset. Using this method, only 0:02%
of fits in the second pass were classified as incomplete. It can also

happen that the small data sample used for clustering gives a poor

estimate of some firing rates and amplitude distributions that enter

our priors for spike fitting. Thus, before the second pass of fitting

the priors are updated based on the outcome of the first pass.

STEP 4: Evaluation of template reliability
After spike identification, we performed a final evaluation to test

whether templates and their sorted spike trains were trustworthy.

The primary criteria were: (1) residuals after spike removal should

resemble noise, (2) the histogram of amplitude scale factors should

be unimodal, (3) the inter-spike interval (ISI) distributions should

display ‘‘refractory holes’’; and the cross-correlation functions

should not. Additional criteria are described in Text S1 Sect. H.

Reliable templates were taken to be those that passed all these

tests. Most unreliable templates failed multiple tests.

Residuals. For single-spike events, the residual signal after

subtracting the fit should resemble pure noise; in particular it

should be stationary in time and translation-invariant in space.

Fig. 6C shows that these expectations were met, validating our

assumptions. For example, if the unit in Fig. 6C had significant

variations other than amplitude rescaling, or if there had been an

amplitude-dependent noise process, then we would expect sig-

nificant non-stationarity in the residual curves [21]. To test that,

after termination, the residual of a spike event consists only of

noise, we computed the one-point marginal distribution of wave-

forms after all known spikes had been removed. Fig. 6B shows that

this distribution closely resembled that of noise clips, indicating

that our code indeed found the significant spikes. Of particular

note, the standard deviation of the residuals matched that of the

noise: For each template, we found the standard deviation of the

residuals of events to which only that template was fit. This value

ranged from 6:92mV to 8:63mV, while the noise standard deviation

was 7:57mV.

Amplitude. For large amplitude templates, the distribution of

amplitude scale factors (A) obtained during spike fitting was

typically close to Gaussian (Fig. 6D). On the other hand, for low

amplitude templates, accidental noise fits can sometimes lead to a

histogram of A values with a secondary, low-amplitude peak well

separated from the expected peak near A&1 (Fig. 6D). Examining

the A histograms allowed us to quickly set an individual thresh-

old for each reliable template. Fit spikes with A value below this

threshold were discarded. If two peaks were discernible but over-

lapped significantly, the entire cluster was deemed unreliable and

its spikes were not used in further analysis. In addition, our trigger

rejected any spike event that did not cross {40mV, thus any

cluster whose A histogram extended closer to zero than this was

probably missing some true spikes, and was not used.

ISI distribution and cross-correlation. Interspike interval

distributions for single units are expected to have a refractory hole;

our analysis of these distributions was described in Results. Two

distinct neural units need not respect any mutual refractory period.

Their spike-time cross-correlation function is therefore not ex-

pected to display any hole. We looked for such unexpected be-

havior and, when found, reexamined the corresponding templates.

If the templates appeared to be duplicates, we merged the

corresponding spike trains [7,9]. Another diagnostic for duplicate

templates is a coincident receptive field.

Discussion

A review of early work on spike identification, prior to the

widespread use of MEAs, can be found in [27]. Like some earlier

work, our method separates spike identification into distinct steps

of clustering and fitting. The clustering step uses all the waveform

features, and makes no assumption about the cluster structure

(e.g., that it is a mixture of Gaussian distributions). The fitting step

acknowledges that each neural unit’s signals are subject to

intrinsic, multiplicative variation as well as additive noise, and

uses a Bayesian approach to infer the identity of the most likely

firing unit.

Our approach is intentionally not fully automatic, since human

proof-reading of the results of automated clustering is generally

essential. However, we have been careful to use human judgement

only where it is indispensable. Further, both the human and

machine steps are organized so as to scale well with array area (or

number of units monitored). For example, cluster cutting was

greatly simplified by representing spikes in an ordered one-

dimensional array. This feature, along with systematic exploitation

of the spatio-temporal locality of spikes (Fig. 2A), and the use of a

simple but powerful generative model, make our method scalable

to large arrays. Furthermore, we observed that our more

ambiguous templates tended to be located on the boundary of

the array due to recording of units located some distance from the

electrodes. These ‘‘boundary effects’’ should become less impor-

tant for larger arrays; we thus anticipate that the methods de-

scribed in this paper will yield more accurate spike sorting for

large, dense arrays.

Our method can be extended in many ways. For example, it

would be straightforward to update the priors continually as fitting

proceeds, allowing non-stationarity and stimulus dependence to be

handled more gracefully. In some applications it may be preferable

to report spike identification probabilistically, rather than just

listing the most-likely spike events; our formulas already provide

this information. The method can also be extended to non-planar

arrangements of electrodes and neural tissues, for, e.g., cortical

applications. Finally, the generative model in the present paper

does not take into account correlations within and between spike

trains, or the receptive field structure and stimulus dependence of

responses. Performance could be further improved on complex

overlapping spike events via a bootstrapping procedure. We could

first use the simple independent, Poisson generative model of this

article to produce an accurate preliminary assignment of spikes to

units. From this assignment we could construct a more detailed

model of correlated activity with pairwise interactions (e.g. [25]

or the stimulus-dependent models [28,29]). This more com-

plex generative model could then be used to further refine spike

assignments for applications requiring a very high degree of

accuracy.

Supporting Information

Text S1 Supplementary appendix describing additional meth-

odological details.
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