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Abstract
Information	is	increasingly	being	viewed	as	a	resource	used	by	organisms	to	increase	
their	fitness.	Indeed,	it	has	been	formally	shown	that	there	is	a	sensible	way	to	assign	
a	reproductive	value	to	information	and	it	is	non-	negative.	However,	all	of	this	work	
assumed	that	information	collection	is	cost-	free.	Here,	we	account	for	such	a	cost	and	
provide	conditions	for	when	the	reproductive	value	of	information	will	be	negative.	In	
these	instances,	counterintuitively,	it	is	in	the	interest	of	the	organism	to	remain	igno-
rant.	We	 link	 our	 results	 to	 empirical	 studies	where	 Bayesian	 behavior	 appears	 to	
break	down	in	complex	environments	and	provide	an	alternative	explanation	of	low-
ered	arousal	thresholds	in	the	evolution	of	sleep.

K E Y W O R D S

Bayes’	theorem,	ignorance,	information,	sleep,	statistical	decision	theory

1  | INTRODUCTION

In	 all	 areas	 of	 biology,	 observations	 or	 cues	 can	 elicit	 a	 change	 in	
behavior	or	phenotype.	For	example,	the	duration	of	daylight	hours	
affects	 the	 flowering	 time	 of	 plants	 (Amasino,	 2010),	 chemotactic	
gradients	provide	a	way	for	bacteria	to	locate	favorable	environments	
(Adler,	1966),	and	the	sighting	of	a	predator	may	cause	an	animal	to	
flee.	In	each	case,	the	observation	aids	in	the	choice	of	an	action	that	
will	benefit	the	organism.	In	this	way,	if	there	is	no	cost	in	collecting	
information,	then	organisms	should	always	collect	it.	Indeed,	borrow-
ing	 from	economic	 theory,	 but	 replacing	 utilities	with	 reproductive	
values,	it	has	been	shown	that	the	reproductive	value	of	information	
is	always	non-	negative	(McNamara	&	Dall,	2010;	Pike,	McNamara,	&	
Houston,	2016).	This	remarkable	result	suggests	that	organisms	can	
never	 decrease	 their	 fitness	 by	 being	more	 informed.	This	 has	 far-	
reaching	 implications	 in	areas	of	biology	as	diverse	as	public	goods	
games,	 foraging,	 collective	behavior,	 and	sleep.	However,	 in	 reality,	
information	comes	at	a	cost	 (Laughlin,	de	Ruyter	van	Steveninck,	&	
Anderson	1988).	 In	 this	 study,	we	 investigate	 the	consequences	of	
formally	 including	 such	 costs	 in	 the	 current	 theoretical	 framework.	
While	information	may	be	inherently	valuable	in	decision-	making,	we	
challenge	 the	view	 that	 it	 always	 should	 be	 or	 indeed	 is	 collected.	
Indeed,	 we	 suggest	 that	 to	 understand	 behavior	 more	 fully	 any	

valuations	of	 information	should	not	be	separated	from	the	associ-
ated	costs	of	 collection.	Natural	 selection	acts	on	 the	process	 as	 a	
whole	and	so	should	be	considered	as	such.

In	 the	 context	 of	 organismal	 biology,	 information	 use	 has	 been	
approached	 from	two	very	distinct	angles.	The	 first	employs	 the	 in-
formation	 theory	 pioneered	 by	 Shannon	 and	 Weaver	 (1949).	 The	
alternative,	which	we	 take,	makes	 use	 of	 statistical	 decision	 theory	
(Dall,	 Giraldeau,	Olsson,	McNamara,	 &	 Stephens,	 2005;	McNamara,	
Green,	 &	 Olsson,	 2006;	McNamara	 &	 Houston,	 1980).	 The	 former	
focuses	on	uncertainty	 reduction,	whereas	 the	 latter	 considers	how	
information	updating,	via	Bayes	rule,	explicitly	affects	fitnesses.	Only	
recently	was	 the	connection	between	 these	 two	approaches	shown	
(Donaldson-	Matasci,	Bergstrom,	&	Lachmann,	2010).	 Strikingly,	mu-
tual	 information	 (an	 information-	theoretic	measure	which	quantifies	
the	uncertainty	of	an	outcome	after	an	observation)	provides	an	upper	
bound	on	the	value	of	information	(a	decision-	theoretic	measure	ex-
pressed	 explicitly	 in	 terms	 of	 fitnesses)	 (Donaldson-	Matasci	 et	al.,	
2010).	However,	this	is	only	the	case	when	the	fitness	measure	used	
is	long-	term	lineage	growth	rate.	Here,	we	use	individual	reproductive	
values.	 In	this	way,	the	value	of	 information	is	defined	by	taking	the	
difference	 in	expected	optimal	 reproductive	values	before	and	after	
collecting	information.	The	literature	on	information	use	in	biology	is	
vast	so	we	do	not	try	to	cover	it	here.	However,	for	useful	reviews,	see	
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(Dall	et	al.,	2005;	Schmidt,	Dall,	&	Van	Gils,	2010;	Seppänen,	Forsman,	
Mönkkönen,	&	Thomson,	2007;	Valone,	2007).

We	start	by	adopting	the	same	framework	as	in	McNamara	&	Dall	
(2010).	Following	this,	we	derive	conditions,	in	the	absence	of	a	cost,	
for	when	the	reproductive	value	of	 information	is	precisely	equal	to	
zero.	In	this	case,	an	organism	that	collects	information	will	be	no	bet-
ter	off	than	one	that	does	not.	Next,	we	account	for	a	cost	of	collect-
ing	information.	We	do	this	by	discounting	the	previous	reproductive	
values	associated	with	certain	actions	and	beliefs	prior	to	information	
collection.	This	way,	the	cost	is	due	solely	to	the	collection	of	infor-
mation	itself.	In	the	proceeding	section,	we	show	that	the	same	con-
ditions	that	we	derived	previously	now	lead	to	the	reproductive	value	
of	 information	being	negative.	 In	this	 instance,	an	organism	that	re-
mains	ignorant	will	have	a	higher	fitness	than	one	that	does	not.	This	
has	 implications	 for	many	empirical	studies	whereby,	 in	 increasingly	
complex	environments,	organisms	were	found	to	stop	behaving	in	a	
Bayesian	manner	(Valone,	2006).	It	may	be	that	the	cost	of	collection	
in	these	complex	environments	outweighs	any	benefits.	Additionally,	
we	consider	the	ramifications	for	evolutionary	problems	such	as	the	
evolution	of	sleep.	In	particular,	we	suggest	that	the	lowered	arousal	
thresholds	associated	with	sleep,	often	explained	as	the	by-	product	
of	other	vital	functions,	may	instead	be	accounted	for	by	our	results	
(Lima	&	Rattenborg,	2007).	We	finish	by	summarizing	our	findings	and	
suggesting	 future	 directions	 of	work	 relating	 ignorance	 at	 the	 level	
of	the	individual	to	behavior	at	the	level	of	the	group	(Couzin	et	al.,	
2011).

2  | FRAMEWORK

Following	 (McNamara	 &	 Dall,	 2010),	 we	 start	 by	 assuming	 there	
are n	 possible	 true	 states	 of	 nature	 θn,	 collected	 in	 the	 vector	
Θ	=	(θ1,	…,	θn),	about	which	a	given	organism	is	unsure.	This	organ-
ism	believes,	with	probability	pi,	that	θi	is	the	true	state.	In	this	way,	
the vector P =	(p1,	 …,	 pn)	 summarizes	 the	 organism’s	 (imperfect)	
knowledge	of	nature.

Further,	we	assume	that	this	organism	must	take	a	certain	action,	
given	 its	 beliefs,	which	will	 affect	 its	 fitness.	 In	 particular,	 a	 certain	
action u	will	have	reproductive	value	Vi(u)	given	that	the	true	state	of	
nature is θi.	With	this	setup,	we	find	the	expected	reproductive	value	
of	action	u	to	be	given	by	

Then	for	any	vector	P,	we	define	the	optimal	action	u* so that 

for	any	action	u.
We	 now	 suppose	 that	 this	 organism	 can	 gather	 information,	

thereby	updating	its	knowledge.	We	assume	it	does	this	by	sampling	
a	 random	variable	X,	which	depends	on	Θ.	We	denote	 the	proba-
bility	 the	observed	value	of	X is x given θi	by	 f(x|θi).	With	 this,	we	
can	interpret	pi	to	be	a	prior	probability	and	use	the	observation	to	

form	its	posterior	using	Bayes	rule,	which	we	denote	by	qi(x).	Doing	
so gives 

With	this	extra	information,	the	organism’s	knowledge	is	now	sum-
marized	by	Q(X)	=	(q1,	…,	qn).

With	this	setup,	we	define	the	expected	reproductive	value	(taken	
over	 observations	X)	 of	 information	 I	 such	 that	 (McNamara	 &	Dall,	
2010):	

The	 first	 term	 of	 this	 quantity	 is	 the	 reproductive	 value	 after	
collecting	 information,	 optimized	 over	 actions,	 and	 averaged	 over	
observations.	The	second	term	is	the	optimal	reproductive	value	if	in-
formation	 is	not	collected.	 In	 this	way,	 the	difference	quantifies	 the	
benefit	of	collecting	information.

3  | EXPECTED VALUE OF INFORMATION IS 
NON- NEGATIVE

While	inequality	(2)	is	expressed	in	terms	of	P,	 it	 is	also	true	for	the	
random	vector	Q(X).	In	particular,	

Taking	the	expected	value	with	respect	to	X,	we	then	have	that	

The	left-	hand	side	of	inequality	(6)	can	be	rewritten	as	

However,	as	the	expectation	is	taken	over	observations	x,	we	have	

where f(x)	is	the	probability	that	the	observed	value	of	X is x.	Using	the	
law	of	total	probability,	f(x)	can	in	fact	be	written	as	

so	that,	coupled	with	(3),	(10)	can	be	reexpressed	as	

 as f(x|θj)	is	a	probability	distribution.

(1)V(u,P)=

n∑

i=1

piVi(u).

(2)V(u,P)≤V(u∗,P),

(3)qi(x)=
pif(x�θi)∑n

j=1
pjf(x�θj)

.

(4)I=E[V(ũ(X),Q(X))]−V
(
u∗,P

)
.

(5)V(u,Q(X))≤V(ũ(Q(X)),Q(X)).

(6)E[V(u,Q(X))]≤E[V(ũ(Q(X)),Q(X))].

E[V(u,Q(X))]= E

� n∑
i=1

qi(X)Vi(u)
�
, (7)

=

n∑
i=1

E[qi(X)Vi(u)], (8)

=

n∑
i=1

E[qi(X)]Vi(u). (9)

(10)E[qi(X)] =
∑

x

qi(x)f(x),

(11)f(x)=

n∑

j=1

pjf(x|θj),

E[qi(X)]= pi
∑
x

f(x�θj), (12)

= pi, (13)
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Now,	using	(13)	in	(9),	we	find	that	

by	(1).	This	statement	is	true	for	any	action	u	so	that	it	is	in	partic-
ular	true	of	the	action	u*(P)	that	optimizes	V(u,	P).

Finally,	using	(15)	in	inequality	(6)	and	rearranging	we	find	that	

Otherwise	put	the	expected	reproductive	value	of	information	I is 
non-	negative.

4  | WHEN IS THE EXPECTED VALUE OF 
INFORMATION EQUAL TO ZERO?

So	far,	we	have	shown	(and	also	in	(McNamara	&	Dall,	2010))	that	the	
expected	value	of	information	is	non-	negative.	However,	if	it	is	equal	
to	zero,	then	an	organism	that	collects	information	will	be	no	better	
off	than	an	organism	that	does.

To	investigate	this,	we	start	by	bounding	inequality	(6)	from	above.	
Similar	to	(7)	and	(8)	but	for	the	right-	hand	side	of	(6),	we	have	

However,	this	time	as	the	action	u(X)	taken	depends	on	the	obser-
vation	we	must	take	the	expectation	directly.	In	particular,	we	have	

We	now	suppose	that	there	exists	some	x̂ such that 

Using	(3),	this	then	becomes	

as f(x|θi)	is	a	probability	distribution.	Hence,	if	such	an			does	exist,	

we have showed that

However,	from	the	very	definition	of	u*	it	must	be	that	

so	that	in	fact

and so

For	such	an	x̂	to	exist,	we	need,	from	(20),	that	

for	each	i.	Using	(3),	this	is	equivalent	to	requiring

which	is	in	turn	equivalent	to

This	statement	will	clearly	be	true	in	three	cases.	Either

for	each	x≠ x̂	and	for	each	i or

for	each	x≠ x̂	and	for	each	i	or,	finally,	a	mixture	of	these	two	pre-
vious	extreme	cases.	In	particular,	we	can	have	instances	where	there	
is	a	particular	x≠ x̂ so that

for	each	i or vice versa so that

for	each	i.
Condition	(31)	 asserts	 that	 all	 other	 possible	 actions	will	 have	 a	

reproductive	value	of	zero.	Though	unlikely,	this	may	be	realized	if	pre-
sented	with	an	extreme	situation	(such	as	certain	death	in	the	face	of	
predation)	when	only	one	action	will	lead	to	survival.

Alternatively,	via	(11)	condition	(32)	implies	

The	interpretation	here	is	that	only	the	observation	 x̂	will	be	ob-
served.	In	this	way,	this	condition	says	something	about	the	environ-
ment	in	which	an	organism	finds	itself.	If	the	organism	finds	itself	in	a	

E[V(u,Q(X))]=
n∑
i=1

piVi(u), (14)

= V(u,P), (15)

(16)0 ≤ E[V(ũ(Q(X)),Q(X))] − V(u∗,P).

E[V(ũ(Q(X)),Q(X))] = E

� n∑
i=1

qi(X)Vi(ũ(X)
�
, (17)

=

n∑
i=1

E[qi(X)Vi(ũ(X))]. (18)

(19)E[V(ũ(Q(X)),Q(X))]=

n∑

i=1

∑

x

qi(x)Vi(ũ(x))f(x).

(20)
n∑
i=1

∑
x

qi(x)Vi(ũ(x))f(x)≤
n∑
i=1

∑
x

qi(x)Vi(ũ(x̂))f(x).

n∑
i=1

∑
x

qi(x)Vi(ũ(x))f(x)≤
n∑
i=1

piVi(ũ(x̂))
∑
x

f(x�θi), (21)

=V(ũ(x̂),P), (22)

x̂

(23)V(u∗,P)≤E[V(ũ(Q(X)),Q(X))]≤V(ũ(x̂),P).

(24)V(ũ(x̂),P)≤V(u∗,P),

(25)E[V(ũ(Q(X)),Q(X))]=V(u∗,P),

(26)I=0.

(27)
∑

x

qi(x)Vi(ũ(x))f(x)≤
∑

x

qi(x)Vi(ũ(x̂))f(x),

∑
x

f(x�θi)Vi(ũ(x))≤ Vi(ũ(x̂))
∑
x

f(x�θi), (28)

= Vi(ũ(x̂)), (29)

(30)f(x̂|θi)Vi(ũ(x̂))+
∑

x≠x̂

f(x|θi)Vi(ũ(x))≤Vi(ũ(x̂)).

(31)Vi(ũ(x))=0,

(32)f(x|θi)=0,

(33)Vi(ũ(x))≠0, f(x|θi)=0,

(34)Vi(ũ(x)) = 0, f(x|θi)≠0,

(35)f(x̂)=1.
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period	of	relative	constancy	(such	as	certain	safety	due	to	a	temporary	
lack	of	predators),	this	condition	will	be	fulfilled.

The	blended	conditions	 (33)	 and	 (34)	 represent	 the	more	 realis-
tic	situations	where	there	is	still	flexibility	in	actions	with	nonzero	re-
productive	value	but	the	observation	to	which	it	corresponds	will	not	
be	 observed	or	where	 an	 observation	will	 have	 nonzero	 probability	
of	being	observed,	but	the	associated	reproductive	value	is	zero,	re-
spectively.	Otherwise	put,	an	organism	may	be	adapted	and	able	 to	
respond	 to	a	certain	cue;	however,	 currently	 is	 in	a	 situation	where	
that	cue	will	not	be	observed.	Alternatively,	the	organism	may	observe	
a	certain	cue	but	is	unable	to	respond	adequately.

5  | ACCOUNTING FOR A COST OF 
INFORMATION COLLECTION

We	now	assume	that	the	collection	of	information	comes	at	a	cost	c. 
The	reproductive	value	associated	with	any	given	action	u	taken	after	
gathering	information	will	then	be	discounted	by	this	cost.	Hence,	if	
an	organism	collects	 information,	the	reproductive	value	of	action	u 
given state θi	will	be

As	before,	we	have	that

for	any	u.	Replacing	Vi(u)	with	
̄Vi(u)	in	(9),	the	left-	hand	side	of	this	

inequality	can	be	written	as

which	is,	in	particular,	true	for	u* so that we have

Similarly,	 replacing	 occurrences	 of	 Vi(·)	 with	
̄Vi	 (·)	 in	 the	 entire	

	preceding	section,	it	follows	that

so	that,	if	there	is	a	cost	to	collecting	information,	we	find	that

Hence

This	result,	as	before,	relies	on	one	of	the	four	conditions	(31-34)	
being	true.	In	this	case,	an	organism	that	collects	information	will	be	
worse	off	than	an	organism	that	does	not.

6  | ALTERNATIVE MEASURES FOR 
VALUING INFORMATION

With	 some	 important	 recent	 exceptions,	 it	 is	 not	 generally	 be-
lieved	 that	 organisms	 are	 behaving	 in	 a	 strictly	 Bayesian	 manner	
(Biernaskie,	Walker,	&	Gegear,	2009;	Louapre,	Van	Baaren,	Pierre,	&	
Van	Alphen,	2011;	Valone,	2006).	Instead,	it	is	suspected	that	they	
follow	Rules	 of	 Thumb	 that	 approximate	 optimal	 Bayesian	 strate-
gies	 (McNamara	&	Houston,	1980;	McNamara	et	al.,	2006).	These	
rules	are	based	on	either	the	experience	of	an	organism’s	ancestors	
(and	so	is	genetically	encoded),	the	experience	of	the	organism	itself	
or	a	combination	of	both	(Giraldeau,	1997;	McNamara	et	al.,	2006;	
Valone,	 2006).	When	 these	 rules	 are	 based	 on	 the	 experience	 of	
the	organism,	they	will	be	informed	by	typical	observations.	In	some	
circumstances,	 the	 expected	 value	 (such	 as	with	 the	 analysis	 per-
formed	above)	will	be	a	good	indication	of	typical	sampled	values.

However,	in	other	cases	the	expected	value	is	in	fact	a	very	poor	
measure	of	typical	values.	To	be	more	concrete,	consider	G(X)	defined	
such that

with	probability	density	function	g(x).	Note	that	this	random	vari-
able	has	the	property	that	E [G(X)]	=	I.

If	 g(x)	 is	 a	 unimodal	 symmetric	 distribution,	 then	 I	will	 be	 a	 de-
cent	indication	of	typical	values.	However,	if	g(x)	is,	say,	multimodal	or	
skewed,	then	 I	will	be	a	poor	measure.	Moreover,	 if	g(x)	 is	positively	
skewed,	then	typical	values	of	G	may	be	negative.	 In	this	case,	even 
without a cost associated with the act of information collection,	 it	will	
not	be	beneficial	for	an	organism	operating	under	a	rule	of	thumb	to	
collect	information.

Whether	or	not	g(x)	is	skewed	will	depend	on	f(x),	the	distribution	
describing	X.	However,	the	random	variable	X	describes	the	environ-
ment	the	organism	is	in.	For	this	reason,	it	is	highly	plausible	that	X and 
so g(x)	will	change	as	a	function	of	time.	For	example,	 it	may	be	that	
predators	are	more	prevalent	at	a	certain	time	over	the	course	of	one	
day.	In	this	case,	the	probability	of	observing	a	predator	will	also	change	
over	that	period.	So	too,	then,	will	g(x).	 In	short,	though	we	have	ad-
opted	existing	frameworks	whereby	the	mean	is	used	as	a	typical	value,	
we	point	out	that	the	mean	is	not	always	the	best	measure	of	centrality.

7  | CASE STUDY: SLEEP

The	 behavioral	 definition	 of	 sleep	 (in	 contrast	 to	 the	 physiological	
definition)	 involves	 both	 lowered	 activity	 levels	 and	 lowered	 arousal	
thresholds	(Cirelli	&	Tononi,	2008;	Siegel,	2009).	Without	this	second	

(36)̄Vi(u)=Vi(u)−c.

(37)E[ ̄V(u,Q(X))] ≤ E[ ̄V(ũ(Q(X)),Q(X))],

(38)E[ ̄V(u,Q(X))]=V(u,P)−c,

(39)V(u∗,P)−c≤E[ ̄V(ũ(Q(X)),Q(X))].

(40)E[ ̄V(ũ(Q(X)),Q(X))] ≤ V(u∗,P)−c,

(41)E[ ̄V(ũ(Q(X)),Q(X))]=V(u∗,P)−c.

(42)I=−c.

(43)G(X)=V(ũ(Q(X)),Q(X))−V(u∗,P).
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property,	 behavioral	 sleep	 cannot	 be	 distinguished	 from	 simple	 rest	
(Cirelli	 &	 Tononi,	 2008).	While	 the	 adaptive	 value	 of	 inactivity	 (e.g.,	
minimization	of	movement	when	it	is	dangerous)	has	been	widely	ap-
preciated	for	quite	some	time	(Brown,	2000),	a	state	of	“vulnerable	dis-
connect”	proves	more	difficult	to	explain.	In	this	way,	sleep	remains	an	
evolutionary	conundrum.	We	address	this	problem	using	the	results	we	
have	just	developed.

To	this	end,	assume	there	are	two	states	of	nature	θ0,	when	it	 is	
best	to	be	inactive,	and	θ1,	when	the	converse	is	true.	Further,	assume	
that	an	organism	believes	with	probabilities	p and 1–p that the true 
state is θ0 and θ1,	respectively.	Finally,	let	u = 0	represent	inactivity	and	
u = 1	the	opposite.	Our	assumptions	then	read:	

 and 

Using	(1),	we	have	that	

 

An	organism	should	be	inactive	if	

	which,	upon	rearranging,	is	equivalent	to	

Hence,	given	a	certain	belief	p	it	is	clear	when	to	be	active	or	inac-
tive.	We	reiterate,	however,	that	this	tells	us	nothing	about	when	sleep	
is	adaptive.	To	be	able	 to	discuss	 this,	we	additionally	need	 to	know	
when	(if	at	all)	it	may	be	adaptive	for	an	organism	to	disconnect	from	
its	environment.	We	model	this	by	the	act	of	collecting	or	not	collecting	
information.	From	(42),	it	is	clear	that	an	organism	will	be	better	off	if	
it	stops	collecting	information	if	any	of	conditions	(31-34)	are	fulfilled.	
We	 focus	attention	on	condition	(33).	 If	 an	organism	 finds	 itself	 in	 a	
period	of	 relative	 constancy	 and	 therefore	 certainty	 (with	 respect	 to	
the	pressures	that	determine	whether	it	is	best	to	be	active	or	inactive,	
such	as	the	presence	of	predators),	then	in	addition	to	being	inactive	it	
will	be	beneficial	to	not	collect	information.	In	other	words,	sleep	will	
be	adaptive.

8  | DISCUSSION

The	notion	of	putting	a	value	on	information	has	existed	in	economic	
theory	 for	 quite	 some	 time	 (Gould,	 1974).	 Despite	 this,	 analogous	
work	 in	 the	 context	 of	 animal	 behavior	 has	 taken	 a	 little	 longer	 to	
catch	up.	Recently,	however,	 it	was	 formally	 shown	 that	 the	 repro-
ductive	value	of	information	is	always	non-	negative	when	there	is	no	

cost	in	its	collection	(McNamara	&	Dall,	2010).	From	this,	it	has	been	
concluded	that	organisms	should	always	collect	information.	This	con-
clusion	has	since	not	been	investigated	much	further	in	the	literature.	
While	costs	associated	with	sampling	have	been	considered	in	some	
evolutionary	 games	 (see	 (McNamara,	 Stephens,	 Dall,	 &	 Houston,	
2009),	where	the	costs	are	crucial	to	maintain	a	mix	of	strategies),	the	
focus	has	not	been	on	whether	or	not	information	should	be	collected	
in	the	first	place.

Here,	 using	 the	 same	 framework,	 we	 derived	 particular	 con-
ditions	 for	when	the	value	of	 information	will	be	equal	 to	zero.	 In	
such	 a	 case,	 an	 organism	 that	 collects	 information	will	 in	 fact	 be	
no	better	off	 than	one	 that	does	not.	Following	 this,	we	explicitly	
accounted	 for	 a	 cost	of	 collecting	 information.	 In	 reality,	 this	may	
come	in	the	form	of	energy,	time	or	resources	that	could	otherwise	
be	spent	on	other	vital	biological	 functions	 (Laughlin	et	al.,	1988).	
In	 this	 instance,	we	 found	 that	 under	 the	 same	 conditions	 as	 be-
fore,	 the	 value	 of	 information	 (which	 should	more	 realistically	 be	
discounted	by	costs)	will	now	be	negative.	Thus,	there	will	be	times	
when	the	collection	of	 information	will	have	a	negative	 impact	on	
an	organism’s	fitness.

These	 conditions	 can	 be	 broadly	 organized	 into	 three	 groups.	
First,	 if	 an	organism	 finds	 itself	 (potentially	 temporarily)	 in	 a	 situ-
ation	whereby	only	one	action	will	 lead	to	a	nonzero	reproductive	
value,	 then	the	value	of	 information	will	be	negative.	Second,	 if	 it	
is	 such	 that	 only	 one	observation	will	 be	observed	 (again,	 poten-
tially	temporarily),	then	an	organism	will	not	benefit	from	collecting	
information.	Both	of	 these	cases,	 in	 the	absence	of	a	 cost	of	 col-
lecting	information,	are	emphasized	informally	in	(Pike	et	al.,	2016).	
The	third,	a	mixture	of	the	previous	two	conditions,	 is	not.	 In	this	
case,	an	organism	can	still	be	flexible	 in	 its	actions,	and	there	can	
still	 be	variance	 in	observations,	 and	yet	 the	value	of	 information	
will	be	less	than	zero.	To	be	more	concrete,	this	third	condition	will	
be	fulfilled	if	an	organism	may	observe	a	certain	cue	but	is	unable	
to	respond	adequately	or	 if	 it	 is	adapted	and	able	to	respond	to	a	
certain	cue	however	currently	is	in	a	situation	where	it	will	not	be	
observed.	In	either	case,	an	organism	will	do	better	if	they	remain	
relatively	ignorant.

Though	 the	 results	 presented	 here	 are	 quite	 broad	 they,	 and	 in	
particular	the	last	condition,	have	strong	implications	for	the	evolution	
of	sleep	and	sleep-	like	states.	Broadly	speaking,	sleep	can	be	defined	
physiologically	 (characterized	 by	 certain	 brain	 activities)	 or	 behavior-
ally	 (characterized	by	 inactivity	and	arousal	 thresholds).	Some	organ-
isms,	like	dolphins,	sleep	according	to	one	definition	but	not	the	other	
(Siegel,	2009).	It	is,	however,	the	behavioral	definition,	and	in	particular	
the	lowered	arousal	thresholds,	that	presents	the	evolutionary	puzzle.	
While	 the	adaptive	value	of	 inactivity	has	been	 recognized	 for	 some	
time	(lack	of	movement	when	it	is	dangerous	or	pointless	to	do	so,	etc.),	
this	 alone	does	 not	 demonstrate	 any	 adaptive	value	 of	 sleep.	 If	 it	 is	
only	the	inactivity	aspect	of	sleep	that	is	adaptive,	why	not	simply	rest?	
For	this	reason,	lowered	arousal	thresholds	also	need	to	be	considered.	
This	 vulnerable	 disconnect	 from	 an	 organism’s	 environment,	 which	
distinguishes	 sleep	 from	 rest,	 is	most	often	explained	by	assuming	a	
priori	 that	 sleep	serves	some	vital	 function	 for	which	 this	behavioral	

(44)V0(0)>V0(1),

(45)V1(0)<V1(1).

(46)V(0,p)=pV0(0)+ (1−p)V1(0),

(47)V(1,p)=pV0(1)+ (1−p)V1(1).

(48)V(0,p)>V(1,p),

(49)p>
V1(1)−V1(0)

V0(0)−V0(1)+V1(1)−V1(0)
.
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shutdown	is	necessary	(Lima	&	Rattenborg,	2007).	Here,	however,	we	
have	shown	that	such	an	assumption	is	not	necessary.	If	there	is	a	cost	
to	collecting	information,	then	there	will	be	times	when	it	should	not	
be	collected.	We	are	not,	of	course,	suggesting	that	vital	functions	of	
sleep	do	not	exist.	However,	our	result	opens	up	the	possibility	that	the	
vital	functions	evolved	after	behavioral	shutdowns	and	not	the	other	
way	around.

In	an	empirical	 review	of	animal	Bayesian	updating,	 it	was	 found	
that	in	simple	environments	all	but	one	species	performed	consistently	
with	 Bayesian	 predictions	 (Valone,	 2006).	 In	 complex	 environments,	
this	was	found	to	not	be	true.	The	explanation	put	forward	was	that	in	
these	complex	environments	it	is	more	difficult,	or	takes	longer,	for	the	
organism	in	question	to	successfully	learn	prior	distributions.	An	alter-
native	and	complementary	explanation,	suggested	by	our	results,	is	that	
the	cost	of	collecting	 information	may	be	 too	high	 in	 these	environ-
ments.	In	other	words,	they	are	making	a	Bayesian	decision	to	remain	
ignorant.	 It	would	 be	 exceedingly	 interesting	 to	 test	 this	 hypothesis	
experimentally.

More	 generally,	we	 have	 shown	 that	 periods	 of	 ignorance	 can	
lead	 to	 fitness	 benefits	 at	 the	 level	 of	 the	 individual.	 For	 future	
theoretical	work,	 it	would	 be	 fruitful	 to	 understand	 how	 this	may	
translate	to	behavior	at	the	level	of	the	group.	Recently,	it	has	been	
shown	how	uninformed	individuals	can	help	democratic	consensus	
be	reached	in	the	face	of	internal	conflicts	(Couzin	et	al.,	2011).	This	
particular	study,	however,	makes	no	reference	to	individual	fitnesses	
but	 is,	 in	essence,	mechanistic.	 It	would	be	particularly	 interesting	
to	 see	 if,	 taking	 an	 evolutionary	 approach,	 similar	 conclusions	 can	
be	found.

ACKNOWLEDGMENT

We	 thank	 John	 M.	 McNamara	 and	 Thomas	W.	 Scott	 for	 valuable	
	comments	and	discussion.

CONFLICT OF INTEREST

None	declared.

AUTHORS’ CONTRIBUTIONS

JMF	carried	out	the	research.	JMF	and	MBB	wrote	the	manuscript.

ORCID

Jared M. Field  http://orcid.org/0000-0001-7048-1901

Michael B. Bonsall  http://orcid.org/0000-0003-0250-0423  

REFERENCES

Adler,	 J.	 (1966).	 Chemotaxis	 in	 bacteria.	 Science,	 153(3737),	 708–716.	
https://doi.org/10.1126/science.153.3737.708

Amasino,	R.	(2010).	Seasonal	and	developmental	timing	of	flowering.	The Plant 
Journal,	61(6),	1001–1013.	https://doi.org/10.1111/tpj.2010.61.issue-6

Biernaskie,	J.	M.,	Walker,	S.	C.,	&	Gegear,	R.	J.	 (2009).	Bumblebees	 learn	
to	forage	like	Bayesians.	American Naturalist,	174(3),	413–423.	https://
doi.org/10.1086/603629

Brown,	 J.	 (2000).	 Foraging	 ecology	 of	 animals	 in	 response	 to	 heteroge-
neous	environments.	In	Hutchings,	M.	J.,	John,	E.	A.	&	Stewart,	A.	J.	A.	
(Eds.),	The ecological consequences of environmental heterogeneity	 (pp.	
181–214).	Oxford,	UK:	Blackwell.

Cirelli,	C.,	&	Tononi,	G.	(2008).	Is	sleep	essential.	PLoS Biology,	6(8),	e216.	
https://doi.org/10.1371/journal.pbio.0060216

Couzin,	I.	D.,	Ioannou,	C.	C.,	Demirel,	G.,	Gross,	T.,	Torney,	C.	J.,	Hartnett,	A.,	
…	Leonard,	N.	E.	 (2011).	Uninformed	individuals	promote	democratic	
consensus	 in	animal	groups.	Science,	334(6062),	1578–1580.	https://
doi.org/10.1126/science.1210280

Dall,	S.	R.,	Giraldeau,	L.	A.,	Olsson,	O.,	McNamara,	J.	M.,	&	Stephens,	D.	
W.	(2005).	Information	and	its	use	by	animals	in	evolutionary	ecology.	
Trends in Ecology & Evolution,	20(4),	187–193.	https://doi.org/10.1016/j.
tree.2005.01.010

Donaldson-Matasci,	 M.	 C.,	 Bergstrom,	 C.	 T.,	 &	 Lachmann,	 M.	 (2010).	
The	fitness	value	of	 information.	Oikos,	119(2),	219–230.	https://doi.
org/10.1111/oik.2010.119.issue-2

Giraldeau,	L.	A.	 (1997).	The	ecology	of	 information	use.	 	 In	J.	R.	Krebs	&	
N.	B.	Davis	(Eds.),	Behavioural	ecology:	an	evolutionary	approach	(pp	
42-68),	Oxford,	UK;	Blackwell.

Gould,	 J.	 P.	 (1974).	 Risk,	 stochastic	 preference,	 and	 the	 value	 of	 in-
formation.	 Journal of Economic Theory,	 8(1),	 64–84.	 https://doi.
org/10.1016/0022-0531(74)90006-4

Laughlin,	S.	B.,	de	Ruyter	van	Steveninck,	R.	R.,	&	Anderson,	J.	C.	(1988).	
The	metabolic	 cost	 of	 neural	 information.	Nature Neuroscience,	1(1),	
36–41.	https://doi.org/10.1038/236

Lima,	S.	L.,	&	Rattenborg,	N.	C.	(2007).	A	behavioural	shutdown	can	make	sleep-
ing	safer:	a	strategic	perspective	on	the	function	of	sleep.	Animal Behavior,	
74(2),	189–197.	https://doi.org/10.1016/j.anbehav.2006.12.007

Louapre,	P.,	Van	Baaren,	J.,	Pierre,	J.	S.,	&	Van	Alphen,	J.	(2011).	Information	
gleaned	 and	 former	 patch	 quality	 determine	 foraging	 behavior	 of	
parasitic	 wasps.	 Behavioral Ecology,	 22,	 1064–1069.	 https://doi.
org/10.1093/beheco/arr090

McNamara,	J.	M.,	&	Dall,	S.	R.	(2010).	Information	is	a	fitness	enhancing	re-
source. Oikos,	119(2),	231–236.	https://doi.org/10.1111/oik.2010.119.
issue-2

McNamara,	J.	M.,	Green,	R.	F.,	&	Olsson,	O.	(2006).	Bayes	theorem	and	its	
applications	 in	animal	behaviour.	Oikos,	112(2),	243–251.	https://doi.
org/10.1111/oik.2006.112.issue-2

McNamara,	J.,	&	Houston,	A.	(1980).	The	application	of	statistical	decision	
theory	to	animal	behaviour.	Journal of Theoretical Biology,	85(4),	673–
690.	https://doi.org/10.1016/0022-5193(80)90265-9

McNamara,	 J.	 M.,	 Stephens,	 P.	 A.,	 Dall,	 S.	 R.,	 &	 Houston,	 A.	 I.	 (2009).	
Evolution	 of	 trust	 and	 trustworthiness:	 social	 awareness	 favours	
personality	 differences.	 Proceedings of the Royal Society of London B: 
Biological Sciences,	 276(1657),	 605–613.	 https://doi.org/10.1098/
rspb.2008.1182

Pike,	R.	K.,	McNamara,	J.	M.,	&	Houston,	A.	 I.	 (2016).	A	general	 expres-
sion	for	the	reproductive	value	of	information.	Behavioral Ecology,	27,	
1296–1303.	https://doi.org/10.1093/beheco/arw044

Schmidt,	K.	A.,	Dall,	 S.	R.,	&	Van	Gils,	J.	A.	 (2010).	The	ecology	of	 infor-
mation:	 an	 overview	 on	 the	 ecological	 significance	 of	 making	 in-
formed	 decisions.	 Oikos,	 119(2),	 304–316.	 https://doi.org/10.1111/
oik.2010.119.issue-2

Seppänen,	J.	T.,	Forsman,	J.	T.,	Mönkkönen,	M.,	&	Thomson,	R.	L.	 (2007).	
Social	 information	 use	 is	 a	 process	 across	 time,	 space,	 and	 ecol-
ogy,	 reaching	 heterospecifics.	 Ecology 88(7):1622–1633.	 https://doi.
org/10.1890/06-1757.1

Shannon,	C.	E.,	&	Weaver,	W.	(1949).	The mathematical theory of communi-
cation.	Champaign,	IL:	University	of	Illinois	Press.

Siegel,	 J.	M.	 (2009).	 Sleep	 viewed	 as	 a	 state	 of	 adaptive	 inactivity.	Nature 
Reviews Neuroscience,	10(10),	747–753.	https://doi.org/10.1038/nrn2697

http://orcid.org/0000-0001-7048-1901
http://orcid.org/0000-0001-7048-1901
http://orcid.org/0000-0003-0250-0423
http://orcid.org/0000-0003-0250-0423
https://doi.org/10.1126/science.153.3737.708
https://doi.org/10.1111/tpj.2010.61.issue-6
https://doi.org/10.1086/603629
https://doi.org/10.1086/603629
https://doi.org/10.1371/journal.pbio.0060216
https://doi.org/10.1126/science.1210280
https://doi.org/10.1126/science.1210280
https://doi.org/10.1016/j.tree.2005.01.010
https://doi.org/10.1016/j.tree.2005.01.010
https://doi.org/10.1111/oik.2010.119.issue-2
https://doi.org/10.1111/oik.2010.119.issue-2
https://doi.org/10.1016/0022-0531(74)90006-4
https://doi.org/10.1016/0022-0531(74)90006-4
https://doi.org/10.1038/236
https://doi.org/10.1016/j.anbehav.2006.12.007
https://doi.org/10.1093/beheco/arr090
https://doi.org/10.1093/beheco/arr090
https://doi.org/10.1111/oik.2010.119.issue-2
https://doi.org/10.1111/oik.2010.119.issue-2
https://doi.org/10.1111/oik.2006.112.issue-2
https://doi.org/10.1111/oik.2006.112.issue-2
https://doi.org/10.1016/0022-5193(80)90265-9
https://doi.org/10.1098/rspb.2008.1182
https://doi.org/10.1098/rspb.2008.1182
https://doi.org/10.1093/beheco/arw044
https://doi.org/10.1111/oik.2010.119.issue-2
https://doi.org/10.1111/oik.2010.119.issue-2
https://doi.org/10.1890/06-1757.1
https://doi.org/10.1890/06-1757.1
https://doi.org/10.1038/nrn2697


     |  77FIELD anD BOnSaLL

Valone,	T.	J.	(2006).	Are	animals	capable	of	Bayesian	updating?	An	empirical	
review. Oikos,	112(2),	252–259.	https://doi.org/10.1111/oik.2006.112.
issue-2

Valone,	T.	J.	(2007).	From	eavesdropping	on	performance	to	copying	the	be-
havior	of	others:	a	review	of	public	information	use.	Behavioral Ecology and 
Sociobiology,	62(1),	1–14.	https://doi.org/10.1007/s00265-007-0439-6

How to cite this article:	Field	JM,	Bonsall	MB.	Ignorance	can	be	
evolutionarily	beneficial.	Ecol Evol. 2018;8:71–77.  
https://doi.org/10.1002/ece3.3627

https://doi.org/10.1111/oik.2006.112.issue-2
https://doi.org/10.1111/oik.2006.112.issue-2
https://doi.org/10.1007/s00265-007-0439-6
https://doi.org/10.1002/ece3.3627

