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Abstract
Information is increasingly being viewed as a resource used by organisms to increase 
their fitness. Indeed, it has been formally shown that there is a sensible way to assign 
a reproductive value to information and it is non-negative. However, all of this work 
assumed that information collection is cost-free. Here, we account for such a cost and 
provide conditions for when the reproductive value of information will be negative. In 
these instances, counterintuitively, it is in the interest of the organism to remain igno-
rant. We link our results to empirical studies where Bayesian behavior appears to 
break down in complex environments and provide an alternative explanation of low-
ered arousal thresholds in the evolution of sleep.
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1  | INTRODUCTION

In all areas of biology, observations or cues can elicit a change in 
behavior or phenotype. For example, the duration of daylight hours 
affects the flowering time of plants (Amasino, 2010), chemotactic 
gradients provide a way for bacteria to locate favorable environments 
(Adler, 1966), and the sighting of a predator may cause an animal to 
flee. In each case, the observation aids in the choice of an action that 
will benefit the organism. In this way, if there is no cost in collecting 
information, then organisms should always collect it. Indeed, borrow-
ing from economic theory, but replacing utilities with reproductive 
values, it has been shown that the reproductive value of information 
is always non-negative (McNamara & Dall, 2010; Pike, McNamara, & 
Houston, 2016). This remarkable result suggests that organisms can 
never decrease their fitness by being more informed. This has far-
reaching implications in areas of biology as diverse as public goods 
games, foraging, collective behavior, and sleep. However, in reality, 
information comes at a cost (Laughlin, de Ruyter van Steveninck, & 
Anderson 1988). In this study, we investigate the consequences of 
formally including such costs in the current theoretical framework. 
While information may be inherently valuable in decision-making, we 
challenge the view that it always should be or indeed is collected. 
Indeed, we suggest that to understand behavior more fully any 

valuations of information should not be separated from the associ-
ated costs of collection. Natural selection acts on the process as a 
whole and so should be considered as such.

In the context of organismal biology, information use has been 
approached from two very distinct angles. The first employs the in-
formation theory pioneered by Shannon and Weaver (1949). The 
alternative, which we take, makes use of statistical decision theory 
(Dall, Giraldeau, Olsson, McNamara, & Stephens, 2005; McNamara, 
Green, & Olsson, 2006; McNamara & Houston, 1980). The former 
focuses on uncertainty reduction, whereas the latter considers how 
information updating, via Bayes rule, explicitly affects fitnesses. Only 
recently was the connection between these two approaches shown 
(Donaldson-Matasci, Bergstrom, & Lachmann, 2010). Strikingly, mu-
tual information (an information-theoretic measure which quantifies 
the uncertainty of an outcome after an observation) provides an upper 
bound on the value of information (a decision-theoretic measure ex-
pressed explicitly in terms of fitnesses) (Donaldson-Matasci et al., 
2010). However, this is only the case when the fitness measure used 
is long-term lineage growth rate. Here, we use individual reproductive 
values. In this way, the value of information is defined by taking the 
difference in expected optimal reproductive values before and after 
collecting information. The literature on information use in biology is 
vast so we do not try to cover it here. However, for useful reviews, see 
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(Dall et al., 2005; Schmidt, Dall, & Van Gils, 2010; Seppänen, Forsman, 
Mönkkönen, & Thomson, 2007; Valone, 2007).

We start by adopting the same framework as in McNamara & Dall 
(2010). Following this, we derive conditions, in the absence of a cost, 
for when the reproductive value of information is precisely equal to 
zero. In this case, an organism that collects information will be no bet-
ter off than one that does not. Next, we account for a cost of collect-
ing information. We do this by discounting the previous reproductive 
values associated with certain actions and beliefs prior to information 
collection. This way, the cost is due solely to the collection of infor-
mation itself. In the proceeding section, we show that the same con-
ditions that we derived previously now lead to the reproductive value 
of information being negative. In this instance, an organism that re-
mains ignorant will have a higher fitness than one that does not. This 
has implications for many empirical studies whereby, in increasingly 
complex environments, organisms were found to stop behaving in a 
Bayesian manner (Valone, 2006). It may be that the cost of collection 
in these complex environments outweighs any benefits. Additionally, 
we consider the ramifications for evolutionary problems such as the 
evolution of sleep. In particular, we suggest that the lowered arousal 
thresholds associated with sleep, often explained as the by-product 
of other vital functions, may instead be accounted for by our results 
(Lima & Rattenborg, 2007). We finish by summarizing our findings and 
suggesting future directions of work relating ignorance at the level 
of the individual to behavior at the level of the group (Couzin et al., 
2011).

2  | FRAMEWORK

Following (McNamara & Dall, 2010), we start by assuming there 
are n possible true states of nature θn, collected in the vector 
Θ = (θ1, …, θn), about which a given organism is unsure. This organ-
ism believes, with probability pi, that θi is the true state. In this way, 
the vector P = (p1, …, pn) summarizes the organism’s (imperfect) 
knowledge of nature.

Further, we assume that this organism must take a certain action, 
given its beliefs, which will affect its fitness. In particular, a certain 
action u will have reproductive value Vi(u) given that the true state of 
nature is θi. With this setup, we find the expected reproductive value 
of action u to be given by 

Then for any vector P, we define the optimal action u* so that 

for any action u.
We now suppose that this organism can gather information, 

thereby updating its knowledge. We assume it does this by sampling 
a random variable X, which depends on Θ. We denote the proba-
bility the observed value of X is x given θi by f(x|θi). With this, we 
can interpret pi to be a prior probability and use the observation to 

form its posterior using Bayes rule, which we denote by qi(x). Doing 
so gives 

With this extra information, the organism’s knowledge is now sum-
marized by Q(X) = (q1, …, qn).

With this setup, we define the expected reproductive value (taken 
over observations X) of information I such that (McNamara & Dall, 
2010): 

The first term of this quantity is the reproductive value after 
collecting information, optimized over actions, and averaged over 
observations. The second term is the optimal reproductive value if in-
formation is not collected. In this way, the difference quantifies the 
benefit of collecting information.

3  | EXPECTED VALUE OF INFORMATION IS 
NON-NEGATIVE

While inequality (2) is expressed in terms of P, it is also true for the 
random vector Q(X). In particular, 

Taking the expected value with respect to X, we then have that 

The left-hand side of inequality (6) can be rewritten as 

However, as the expectation is taken over observations x, we have 

where f(x) is the probability that the observed value of X is x. Using the 
law of total probability, f(x) can in fact be written as 

so that, coupled with (3), (10) can be reexpressed as 

 as f(x|θj) is a probability distribution.

(1)V(u,P)=

n∑

i=1

piVi(u).

(2)V(u,P)≤V(u∗,P),

(3)qi(x)=
pif(x�θi)∑n

j=1
pjf(x�θj)

.

(4)I=E[V(ũ(X),Q(X))]−V
(
u∗,P

)
.

(5)V(u,Q(X))≤V(ũ(Q(X)),Q(X)).

(6)E[V(u,Q(X))]≤E[V(ũ(Q(X)),Q(X))].

E[V(u,Q(X))]= E

� n∑
i=1

qi(X)Vi(u)
�
, (7)

=

n∑
i=1

E[qi(X)Vi(u)], (8)

=

n∑
i=1

E[qi(X)]Vi(u). (9)

(10)E[qi(X)] =
∑

x

qi(x)f(x),

(11)f(x)=

n∑

j=1

pjf(x|θj),

E[qi(X)]= pi
∑
x

f(x�θj), (12)

= pi, (13)
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Now, using (13) in (9), we find that 

by (1). This statement is true for any action u so that it is in partic-
ular true of the action u*(P) that optimizes V(u, P).

Finally, using (15) in inequality (6) and rearranging we find that 

Otherwise put the expected reproductive value of information I is 
non-negative.

4  | WHEN IS THE EXPECTED VALUE OF 
INFORMATION EQUAL TO ZERO?

So far, we have shown (and also in (McNamara & Dall, 2010)) that the 
expected value of information is non-negative. However, if it is equal 
to zero, then an organism that collects information will be no better 
off than an organism that does.

To investigate this, we start by bounding inequality (6) from above. 
Similar to (7) and (8) but for the right-hand side of (6), we have 

However, this time as the action u(X) taken depends on the obser-
vation we must take the expectation directly. In particular, we have 

We now suppose that there exists some x̂ such that 

Using (3), this then becomes 

as f(x|θi) is a probability distribution. Hence, if such an   does exist, 

we have showed that

However, from the very definition of u* it must be that 

so that in fact

and so

For such an x̂ to exist, we need, from (20), that 

for each i. Using (3), this is equivalent to requiring

which is in turn equivalent to

This statement will clearly be true in three cases. Either

for each x≠ x̂ and for each i or

for each x≠ x̂ and for each i or, finally, a mixture of these two pre-
vious extreme cases. In particular, we can have instances where there 
is a particular x≠ x̂ so that

for each i or vice versa so that

for each i.
Condition (31) asserts that all other possible actions will have a 

reproductive value of zero. Though unlikely, this may be realized if pre-
sented with an extreme situation (such as certain death in the face of 
predation) when only one action will lead to survival.

Alternatively, via (11) condition (32) implies 

The interpretation here is that only the observation x̂ will be ob-
served. In this way, this condition says something about the environ-
ment in which an organism finds itself. If the organism finds itself in a 

E[V(u,Q(X))]=
n∑
i=1

piVi(u), (14)

= V(u,P), (15)

(16)0 ≤ E[V(ũ(Q(X)),Q(X))] − V(u∗,P).

E[V(ũ(Q(X)),Q(X))] = E

� n∑
i=1

qi(X)Vi(ũ(X)
�
, (17)

=

n∑
i=1

E[qi(X)Vi(ũ(X))]. (18)

(19)E[V(ũ(Q(X)),Q(X))]=

n∑

i=1

∑

x

qi(x)Vi(ũ(x))f(x).

(20)
n∑
i=1

∑
x

qi(x)Vi(ũ(x))f(x)≤
n∑
i=1

∑
x

qi(x)Vi(ũ(x̂))f(x).

n∑
i=1

∑
x

qi(x)Vi(ũ(x))f(x)≤
n∑
i=1

piVi(ũ(x̂))
∑
x

f(x�θi), (21)

=V(ũ(x̂),P), (22)

x̂

(23)V(u∗,P)≤E[V(ũ(Q(X)),Q(X))]≤V(ũ(x̂),P).

(24)V(ũ(x̂),P)≤V(u∗,P),

(25)E[V(ũ(Q(X)),Q(X))]=V(u∗,P),

(26)I=0.

(27)
∑

x

qi(x)Vi(ũ(x))f(x)≤
∑

x

qi(x)Vi(ũ(x̂))f(x),

∑
x

f(x�θi)Vi(ũ(x))≤ Vi(ũ(x̂))
∑
x

f(x�θi), (28)

= Vi(ũ(x̂)), (29)

(30)f(x̂|θi)Vi(ũ(x̂))+
∑

x≠x̂

f(x|θi)Vi(ũ(x))≤Vi(ũ(x̂)).

(31)Vi(ũ(x))=0,

(32)f(x|θi)=0,

(33)Vi(ũ(x))≠0, f(x|θi)=0,

(34)Vi(ũ(x)) = 0, f(x|θi)≠0,

(35)f(x̂)=1.
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period of relative constancy (such as certain safety due to a temporary 
lack of predators), this condition will be fulfilled.

The blended conditions (33) and (34) represent the more realis-
tic situations where there is still flexibility in actions with nonzero re-
productive value but the observation to which it corresponds will not 
be observed or where an observation will have nonzero probability 
of being observed, but the associated reproductive value is zero, re-
spectively. Otherwise put, an organism may be adapted and able to 
respond to a certain cue; however, currently is in a situation where 
that cue will not be observed. Alternatively, the organism may observe 
a certain cue but is unable to respond adequately.

5  | ACCOUNTING FOR A COST OF 
INFORMATION COLLECTION

We now assume that the collection of information comes at a cost c. 
The reproductive value associated with any given action u taken after 
gathering information will then be discounted by this cost. Hence, if 
an organism collects information, the reproductive value of action u 
given state θi will be

As before, we have that

for any u. Replacing Vi(u) with 
̄Vi(u) in (9), the left-hand side of this 

inequality can be written as

which is, in particular, true for u* so that we have

Similarly, replacing occurrences of Vi(·) with 
̄Vi (·) in the entire 

preceding section, it follows that

so that, if there is a cost to collecting information, we find that

Hence

This result, as before, relies on one of the four conditions (31-34) 
being true. In this case, an organism that collects information will be 
worse off than an organism that does not.

6  | ALTERNATIVE MEASURES FOR 
VALUING INFORMATION

With some important recent exceptions, it is not generally be-
lieved that organisms are behaving in a strictly Bayesian manner 
(Biernaskie, Walker, & Gegear, 2009; Louapre, Van Baaren, Pierre, & 
Van Alphen, 2011; Valone, 2006). Instead, it is suspected that they 
follow Rules of Thumb that approximate optimal Bayesian strate-
gies (McNamara & Houston, 1980; McNamara et al., 2006). These 
rules are based on either the experience of an organism’s ancestors 
(and so is genetically encoded), the experience of the organism itself 
or a combination of both (Giraldeau, 1997; McNamara et al., 2006; 
Valone, 2006). When these rules are based on the experience of 
the organism, they will be informed by typical observations. In some 
circumstances, the expected value (such as with the analysis per-
formed above) will be a good indication of typical sampled values.

However, in other cases the expected value is in fact a very poor 
measure of typical values. To be more concrete, consider G(X) defined 
such that

with probability density function g(x). Note that this random vari-
able has the property that E [G(X)] = I.

If g(x) is a unimodal symmetric distribution, then I will be a de-
cent indication of typical values. However, if g(x) is, say, multimodal or 
skewed, then I will be a poor measure. Moreover, if g(x) is positively 
skewed, then typical values of G may be negative. In this case, even 
without a cost associated with the act of information collection, it will 
not be beneficial for an organism operating under a rule of thumb to 
collect information.

Whether or not g(x) is skewed will depend on f(x), the distribution 
describing X. However, the random variable X describes the environ-
ment the organism is in. For this reason, it is highly plausible that X and 
so g(x) will change as a function of time. For example, it may be that 
predators are more prevalent at a certain time over the course of one 
day. In this case, the probability of observing a predator will also change 
over that period. So too, then, will g(x). In short, though we have ad-
opted existing frameworks whereby the mean is used as a typical value, 
we point out that the mean is not always the best measure of centrality.

7  | CASE STUDY: SLEEP

The behavioral definition of sleep (in contrast to the physiological 
definition) involves both lowered activity levels and lowered arousal 
thresholds (Cirelli & Tononi, 2008; Siegel, 2009). Without this second 

(36)̄Vi(u)=Vi(u)−c.

(37)E[ ̄V(u,Q(X))] ≤ E[ ̄V(ũ(Q(X)),Q(X))],

(38)E[ ̄V(u,Q(X))]=V(u,P)−c,

(39)V(u∗,P)−c≤E[ ̄V(ũ(Q(X)),Q(X))].

(40)E[ ̄V(ũ(Q(X)),Q(X))] ≤ V(u∗,P)−c,

(41)E[ ̄V(ũ(Q(X)),Q(X))]=V(u∗,P)−c.

(42)I=−c.

(43)G(X)=V(ũ(Q(X)),Q(X))−V(u∗,P).



     |  75FIELD and BONSALL

property, behavioral sleep cannot be distinguished from simple rest 
(Cirelli & Tononi, 2008). While the adaptive value of inactivity (e.g., 
minimization of movement when it is dangerous) has been widely ap-
preciated for quite some time (Brown, 2000), a state of “vulnerable dis-
connect” proves more difficult to explain. In this way, sleep remains an 
evolutionary conundrum. We address this problem using the results we 
have just developed.

To this end, assume there are two states of nature θ0, when it is 
best to be inactive, and θ1, when the converse is true. Further, assume 
that an organism believes with probabilities p and 1–p that the true 
state is θ0 and θ1, respectively. Finally, let u = 0 represent inactivity and 
u = 1 the opposite. Our assumptions then read: 

 and 

Using (1), we have that 

 

An organism should be inactive if 

 which, upon rearranging, is equivalent to 

Hence, given a certain belief p it is clear when to be active or inac-
tive. We reiterate, however, that this tells us nothing about when sleep 
is adaptive. To be able to discuss this, we additionally need to know 
when (if at all) it may be adaptive for an organism to disconnect from 
its environment. We model this by the act of collecting or not collecting 
information. From (42), it is clear that an organism will be better off if 
it stops collecting information if any of conditions (31-34) are fulfilled. 
We focus attention on condition (33). If an organism finds itself in a 
period of relative constancy and therefore certainty (with respect to 
the pressures that determine whether it is best to be active or inactive, 
such as the presence of predators), then in addition to being inactive it 
will be beneficial to not collect information. In other words, sleep will 
be adaptive.

8  | DISCUSSION

The notion of putting a value on information has existed in economic 
theory for quite some time (Gould, 1974). Despite this, analogous 
work in the context of animal behavior has taken a little longer to 
catch up. Recently, however, it was formally shown that the repro-
ductive value of information is always non-negative when there is no 

cost in its collection (McNamara & Dall, 2010). From this, it has been 
concluded that organisms should always collect information. This con-
clusion has since not been investigated much further in the literature. 
While costs associated with sampling have been considered in some 
evolutionary games (see (McNamara, Stephens, Dall, & Houston, 
2009), where the costs are crucial to maintain a mix of strategies), the 
focus has not been on whether or not information should be collected 
in the first place.

Here, using the same framework, we derived particular con-
ditions for when the value of information will be equal to zero. In 
such a case, an organism that collects information will in fact be 
no better off than one that does not. Following this, we explicitly 
accounted for a cost of collecting information. In reality, this may 
come in the form of energy, time or resources that could otherwise 
be spent on other vital biological functions (Laughlin et al., 1988). 
In this instance, we found that under the same conditions as be-
fore, the value of information (which should more realistically be 
discounted by costs) will now be negative. Thus, there will be times 
when the collection of information will have a negative impact on 
an organism’s fitness.

These conditions can be broadly organized into three groups. 
First, if an organism finds itself (potentially temporarily) in a situ-
ation whereby only one action will lead to a nonzero reproductive 
value, then the value of information will be negative. Second, if it 
is such that only one observation will be observed (again, poten-
tially temporarily), then an organism will not benefit from collecting 
information. Both of these cases, in the absence of a cost of col-
lecting information, are emphasized informally in (Pike et al., 2016). 
The third, a mixture of the previous two conditions, is not. In this 
case, an organism can still be flexible in its actions, and there can 
still be variance in observations, and yet the value of information 
will be less than zero. To be more concrete, this third condition will 
be fulfilled if an organism may observe a certain cue but is unable 
to respond adequately or if it is adapted and able to respond to a 
certain cue however currently is in a situation where it will not be 
observed. In either case, an organism will do better if they remain 
relatively ignorant.

Though the results presented here are quite broad they, and in 
particular the last condition, have strong implications for the evolution 
of sleep and sleep-like states. Broadly speaking, sleep can be defined 
physiologically (characterized by certain brain activities) or behavior-
ally (characterized by inactivity and arousal thresholds). Some organ-
isms, like dolphins, sleep according to one definition but not the other 
(Siegel, 2009). It is, however, the behavioral definition, and in particular 
the lowered arousal thresholds, that presents the evolutionary puzzle. 
While the adaptive value of inactivity has been recognized for some 
time (lack of movement when it is dangerous or pointless to do so, etc.), 
this alone does not demonstrate any adaptive value of sleep. If it is 
only the inactivity aspect of sleep that is adaptive, why not simply rest? 
For this reason, lowered arousal thresholds also need to be considered. 
This vulnerable disconnect from an organism’s environment, which 
distinguishes sleep from rest, is most often explained by assuming a 
priori that sleep serves some vital function for which this behavioral 

(44)V0(0)>V0(1),

(45)V1(0)<V1(1).

(46)V(0,p)=pV0(0)+ (1−p)V1(0),

(47)V(1,p)=pV0(1)+ (1−p)V1(1).

(48)V(0,p)>V(1,p),

(49)p>
V1(1)−V1(0)

V0(0)−V0(1)+V1(1)−V1(0)
.
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shutdown is necessary (Lima & Rattenborg, 2007). Here, however, we 
have shown that such an assumption is not necessary. If there is a cost 
to collecting information, then there will be times when it should not 
be collected. We are not, of course, suggesting that vital functions of 
sleep do not exist. However, our result opens up the possibility that the 
vital functions evolved after behavioral shutdowns and not the other 
way around.

In an empirical review of animal Bayesian updating, it was found 
that in simple environments all but one species performed consistently 
with Bayesian predictions (Valone, 2006). In complex environments, 
this was found to not be true. The explanation put forward was that in 
these complex environments it is more difficult, or takes longer, for the 
organism in question to successfully learn prior distributions. An alter-
native and complementary explanation, suggested by our results, is that 
the cost of collecting information may be too high in these environ-
ments. In other words, they are making a Bayesian decision to remain 
ignorant. It would be exceedingly interesting to test this hypothesis 
experimentally.

More generally, we have shown that periods of ignorance can 
lead to fitness benefits at the level of the individual. For future 
theoretical work, it would be fruitful to understand how this may 
translate to behavior at the level of the group. Recently, it has been 
shown how uninformed individuals can help democratic consensus 
be reached in the face of internal conflicts (Couzin et al., 2011). This 
particular study, however, makes no reference to individual fitnesses 
but is, in essence, mechanistic. It would be particularly interesting 
to see if, taking an evolutionary approach, similar conclusions can 
be found.
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