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A robust platform for chemical genomics 
in bacterial systems

ABSTRACT While genetic perturbation has been the conventional route to probing bacterial 
systems, small molecules are showing great promise as probes for cellular complexity. In-
deed, systematic investigations of chemical-genetic interactions can provide new insights 
into cell networks and are often starting points for understanding the mechanism of action of 
novel chemical probes. We have developed a robust and sensitive platform for chemical-ge-
nomic investigations in bacteria. The approach monitors colony volume kinetically using 
transmissive scanning measurements, enabling acquisition of growth rates and conventional 
endpoint measurements. We found that chemical-genomic profiles were highly sensitive 
to concentration, necessitating careful selection of compound concentrations. Roughly 
20,000,000 data points were collected for 15 different antibiotics. While 1052 chemical-ge-
netic interactions were identified using the conventional endpoint biomass approach, adding 
interactions in growth rate resulted in 1564 interactions, a 50–200% increase depending on 
the drug, with many genes uncharacterized or poorly annotated. The chemical-genetic inter-
action maps generated from these data reveal common genes likely involved in multidrug 
resistance. Additionally, the maps identified deletion backgrounds exhibiting class-specific 
potentiation, revealing conceivable targets for combination approaches to drug discovery. 
This open platform is highly amenable to kinetic screening of any arrayable strain collection, 
be it prokaryotic or eukaryotic.

INTRODUCTION
Since the introduction of microwell plates, biomedical research labo-
ratories have been growing bacteria in high throughput. Over the 
past decade, this technology has advanced tremendously, and array-
ing robots can now pin entire genomic libraries onto a single agar 
plate. In bacteria, high-throughput conjugation between genomic li-
braries, such as the celebrated Escherichia coli K-12 in-frame deletion 
(Keio) collection (Baba et al., 2006), and mutations in genes of inter-

est yield elaborate genetic interaction profiles. These profiled “fin-
gerprints” are a list of genomic interactions for the particular gene of 
interest, with synthetic sick or synthetic lethal interactions suggesting 
functional relationships between genes. Genetic interactions such as 
these lead to new gene clusters or can be compiled into interaction 
networks. This has led to significant advances in our understanding of 
biological systems (Typas et al., 2008; Brochado and Typas, 2013) 
and the functional relationships between genes and processes in 
E. coli. For nonessential processes, probing them in this manner 
works extremely well, but the method necessarily excludes essential 
genes that resist deletion. In contrast, antibiotics are elegant probes 
of these essential bacterial functions that can be exploited by explor-
ing chemical-genomic interactions. This ultimately results in a mecha-
nistic fingerprint for the chemical of interest (Liu et al., 2010; Nichols 
et al., 2011) and is of tremendous utility when hunting for the ever-
elusive mechanism of action in chemical screening.

Complications arise in chemical genomics, however, due to the 
inoculum effect with small molecules. This dictates that increasing 
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a bacterial colony. When colonies are cut out of the high-density 
array, vortexed in buffer, and plated across a traditional dilution se-
ries, the colony light absorbance (as measured via integrated den-
sity in ImageJ; fully described in Materials and Methods and Supple-
mental Figure S1) has a linear relationship with the number of 
colony-forming units (CFUs; Supplemental Figure S2). As such, this 
validates the solid medium biomass quantification method used in 
our workflow. This is especially important in downstream growth-
rate calculations, as full-colony integrated densities track with cell 
number.

The general chemical-genomics workflow is shown in Figure 1a. 
Individual steps in the pipeline will be discussed at length below. 
Briefly, we first chose a diverse panel of antibiotic probes targeting a 
wide range of essential cell processes (Figure 1b). DNA replication, 
protein translation, folate biosynthesis, and cell wall biogenesis are 
all impacted by the drugs chosen. At sub-MICs, these effectively 
serve as knockdowns of those essential processes. We perform a 
potency assay on these drugs in liquid medium to identify the MIC. 
With the liquid MIC as a reference point, 12 concentrations are 
incorporated into solid media plugs (Supplemental Figure S3) to 
identify each solid medium MIC. The plug method of solid MIC 
determination uses the exact same inoculum and pressure settings 
as a high-density chemical-genomics experiment. Given how vari-
able the solid medium MICs can be in relation to their liquid MIC 
counterparts, this is an immensely important step in the workflow. 
Next solid media slabs are prepared with 1/4 and 1/8 MICs of each 
drug and inoculated using copies of the E. coli Keio deletion collec-
tion (Baba et al., 2006) grown on 1536-density plates. Inoculated 
plates are placed on the aforementioned transmissive scanners and 
then imaged repeatedly over an 18-h period. An image analysis 
script is used to quantify colony biomass at each time point, and the 
resulting data are compiled into growth curves. Growth curves are 
normalized (Figure 2) and analyzed for endpoint biomass and maxi-
mum growth rate, and enhancement profiles are generated. Nor-
malization is fully discussed in the Materials and Methods, and uses 
a two-pass function based on the interquartile medians of both rows 
and columns within a high-density colony array. This counters spatial 
edge and incubator effects. Downstream testing is, however, still 
necessary to assess nutrient competition effects potentially arising 
from empty positions in the plates (Baryshnikova et al., 2010). We 
examined the normalized colony sizes adjacent to empty positions 
in our plates and saw no significant size differences in comparison 
with randomly selected colonies after a one-way analysis of variance 
(F = 0.0754, p = 0.7838). Chemical enhancement in deletion back-
grounds is defined using a multiplicative rule (Dixon et al., 2009), 
with enhancement occurring when the chemical-genetic interaction 
value is less than the product of each chemical and gene knockout 
individually (Figure 3). This multiplicative method of detecting sensi-
tization is shown in Figure 3 and is further described in Materials and 
Methods. Strains enhancing chemical effects are combined into a 
network map for downstream analysis. This platform performs well 
for 1536- and 6144-density plates and also removes gradient spatial 
effects arising from plate positions within an incubator during 
normalization.

Chemical concentration considerations
In solid medium, MIC values are typically higher than in liquid me-
dium. The extent of this can be quite variable, however, with some 
water-soluble cationic compounds displaying solid MICs orders of 
magnitude higher than respective MICs in liquid medium (unpub-
lished data). Our method of solid MIC determination allows us to 
find precise MICs on solid medium, using a set of universal inoculum 

bacterial inoculum will generally increase the minimum inhibitory 
concentrations (MICs) of bioactive chemicals and is especially true in 
solid agar media. The latter are the growth media of choice for ar-
raying genomic collections in high density and typically with tre-
mendously high inocula. This makes generating mechanistic finger-
prints challenging, as relatively precise concentrations of drug are 
required to elicit a response from a genomic library such as the Keio 
collection. Means to address this challenge include screening at 
several chemical concentrations and probing genomic libraries ki-
netically. The latter was pioneered on solid agar medium in the re-
cent work by Takeuchi et al. (2014). Bacterial growth rate is a rela-
tively inoculum-independent parameter, with true exponential 
growth occurring early in the bacterial growth cycle, making this 
approach more sensitive than conventional endpoint biomass mea-
surement. Further, conventional endpoint reads sum all growth 
phases. Measuring colony biomass across growth curves, as de-
scribed herein, provides the opportunity to study both growth rates 
and overall colony size.

High-throughput chemical-genetic crosses are done on solid 
agar plates, in which colony sizes are strongly influenced by spatial 
location in high-density arrays. This ultimately requires normaliza-
tion of raw data such that results are comparable across treatments. 
Past studies have taken a multistep approach, beginning with com-
pletely removing larger colonies from the perimeter and then scal-
ing remaining colony sizes to a common value above or below the 
cutoff threshold. Each colony is then normalized to its value across 
all treatments (Typas et al., 2008). Normalization techniques for 
standard high-throughput screening (Mangat et al., 2014) are useful 
in experiments run in liquid medium but do not work well for within-
plate spatial variations in high-density solid media arrays. Other 
methods, such as the B-score (Brideau et al., 2003), can be used to 
normalize screening data, but the iterative nature of the method 
raises questions regarding overpolishing and consequences such as 
false negatives. Indeed, the biological effectiveness of certain 
chemical probes may not be correlated with the strongest pheno-
typic response (Zlitni et al., 2013; Stokes et al., 2014).

Here we present a high-throughput chemical-genomics platform 
for the E. coli gene deletion (Keio) collection that enables the iden-
tification of genetic enhancers (and suppressors) of the growth in-
hibitory phenotypes of bioactive chemicals. We utilize a simple, 
two-pass normalization that is not iterative and counters most spa-
tial effects on high-density agar plates. High sensitivity is achieved 
by monitoring biomass accumulation throughout the growth cycle 
and by combining traditional endpoint measurements with calcu-
lated growth rates for every chemical-genetic cross. Elaborate 
chemical-genetic interaction maps can be generated, using interac-
tions calculated from each of the acquired screening phenotypes. 
Further, highly populated nodes with edges spanning each antibi-
otic class suggest deep involvement in bacterial resistance strate-
gies, whereas highly populated nodes within a single class suggest 
new screening targets for potent antimicrobial combinations. Of 
course, not all chemical-genetic interactions are lethal in nature. The 
simultaneous acquisition of multiple phenotypes enhances our abil-
ity to suggest relationships between chemicals and genetic muta-
tions, even if the resulting crosses do not result in cell death or 
stasis.

RESULTS
Experimental validation and workflow
The scanning method used to analyze colonies on solid medium is 
transmissive, passing light through the colony and detecting it on 
the other side. This allows us to measure the absorbance of light by 
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chemical-genetic interaction than endpoint biomass (Figure 5), with 
growth rate yielding 50–200% more interactions with antibiotics 
than endpoint biomass. This increased sensitivity does, however, 
broaden the data distribution slightly; the mean interquartile range 
of endpoint treatments calculated in this manner is 0.21 (±0.13), 
while for growth rate it is 0.24 (±0.08). Interestingly, the SD of the hit 
interactions was quite low (averaging 0.023 for endpoint and 0.031 
for growth rate), while the SD of data centered about the median 
was higher (averaging 0.077 for endpoint and 0.090 for growth 
rate). Our interactions replicated well and serve as a basis for down-
stream network assembly and analysis.

Consistent with past antibiotic stress profiling of the Keio collec-
tion (Nichols et al., 2011), genes involved in energy generation, drug 
efflux, and ribosome function were enriched in all treatments (Sup-
plemental Data S1). The nuo operon (encoding NADH:ubiquinone 
oxoreductase I) is required for aerobic and anaerobic respiration, 
and deletions in any of these genes result in very small colonies, as 
does deletion of genes in the ubi operon. Deletion of the gene en-
coding the outer membrane porin TolC, involved in active efflux, also 
leads to sensitization to most antibiotics. Similarly, perturbation of 
the outer membrane with deletions in lipopolysaccharide (LPS) bio-
synthetic genes also leads to drug sensitivity, in particular to erythro-
mycin, DNA replication inhibitors, and rifampicin. The marC knock-
out was a slow-growing strain under most drug stresses and strongly 
enhanced protein translation inhibitors, despite forming overall col-
ony sizes that were often similar to the untreated controls. Other 
strains with the slow-growth phenotype under our drug stresses in-
clude those deletions from the cys and cyd operons and the AcrAB-
TolC efflux system. Many relatively uncharacterized genes are also 
present in almost all drug treatments; more than 30% of the most 
frequently arising hits when screening for a slow-growth phenotype 
are genes with unknown or poorly characterized functions. Interest-
ingly, treatment with d-cycloserine, fosfomycin, and, to a lesser 
extent, rifampicin resulted in a large number of nonreproducible 

conditions. As in chemical-genomics experiments, the colony vol-
umes can be measured and full MIC curves generated from the 
images (Supplemental Figure S3). This is a crucial step in chemical 
genomics, as varying chemical concentrations elicit different ge-
netic responses when crossed with the E. coli Keio collection. Many 
strain sensitivities are highly dose dependent, with some enhance-
ment phenotypes only present at lower concentrations (Figure 4). 
For example, when stressed with 0.5 μg/ml of chloramphenicol, 36 
strains become sensitized in E. coli that are not sick at 2 or 4 μg/ml 
concentrations. This includes genes encoding ascorbic acid cata-
bolic enzymes from the ula operon, involved in l-ribulose 5-phos-
phate and d-xylulose 5-phosphate biosynthesis. At higher concen-
trations, ribosome-related knockouts are the prevailing strains 
sensitized to chloramphenicol. Notably, this includes knockouts 
encoding a ribosome rescue factor ArfA, 23S pseudouridine syn-
thase RluD, and an integration host factor subunit IhfB. For drugs 
acting on the bacterial ribosome, however, it can be challenging to 
find sensitized strains due to the slow-growing nature of ribosome-
related knockouts, even without drug in the medium. This is the 
case for strains such as ΔrimM. We observed that going higher than 
1/4 MIC in concentration resulted in colonies that were very small, 
with fewer pixels to count in the downstream image analysis soft-
ware. Further, this often resulted in inconsistent results. As such, 1/4 
MICs seem to be high enough to illustrate enhancement and sup-
pression profiles, without going so high as to complicate down-
stream imaging.

Chemical-genetic interactions
Endpoint biomass reads are the traditional manner of evaluating 
synthetic lethal interactions between genes (Tong et al., 2001; Typas 
et al., 2008; Nichols et al., 2011). Acquiring full growth curves (Sup-
plemental Videos 1–3) enables us to collect these conventional 
measures of chemical-genetic interaction while also garnering 
growth rates. Maximum growth rate is a more sensitive measure of 

FIGURE 1: Chemical-genomics platform. (a) The workflow for the chemical-genomics platform. Bioactive chemicals (in 
this case antibiotics) are first tested for liquid and solid potency. Next they are supplemented into the agar medium of 
choice, onto which the genomic library is arrayed. Plates are imaged kinetically, and quantified in ImageJ. Finally, data 
are normalized, analyzed, and used to build a chemical-genomic network map. The spectrum of antibiotics chosen is 
outlined in b, illustrating the various cell processes targeted by the drugs chosen. Drugs targeting cell wall biogenesis, 
folate biosynthesis, protein translation, and DNA replication are all represented in our chosen panel of antibiotics. The 
chosen drugs probe a range of essential cell processes to validate our chemical-genomics platform.
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brane–anchored protein associated with peptidoglycan and is part 
of the TolC-Pal envelope complex. In addition, deletion of lpoB, 
encoding the outer membrane lipoprotein LpoB, also enhanced 
drugs targeting the bacterial cell wall. The LpoB protein forms a 
complex with PBP-1B and is required for peptidoglycan cross-link-
ing (Typas et al., 2010). Interestingly, d-cycloserine and fosfomycin 
were enhanced by mutations in rffE, rffG, and rffM. These encode 

suppressors that were observed late in the 18-h growth measure-
ment. Over several days, this is a common occurrence in most treat-
ments, but in the cases of these drugs it was observed to happen 
within 18 h.

When probed with antibiotics targeting the bacterial cell wall 
(Supplemental Figure S4), Δpal and ΔlpoB mutants were sensitized 
in endpoint biomass (Supplemental Data S2). Pal is an outer mem-

FIGURE 2:  Data normalization for edge effects. (a) Index plot depicting raw integrated density (colony volume) data 
for a 1536-well plate inoculated with 1536 Keio collection clones. The plate is organized according to column across the 
index plot, resulting in a familiar horseshoe appearance, due to spatial effects within the plate. These are especially clear 
in b, a three-dimensional plot of the raw data in a 1536-well plate. When plotted as a histogram (c), the data are heavily 
skewed, which makes statistical interpretation challenging. Our data normalization function turns the data shown in a 
into the index plot shown in d. The function divides individual colonies by the interquartile medians across rows and 
columns, removing the edge effects (e). Data are also then symmetrical about 1 (f), which is ideal for plate-to-plate 
comparisons, and downstream statistical analyses. The full R code is provided in the Supplementary Data, and the 
function is further explained in the Materials and Methods.
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proteins in enterobacterial common antigen (ECA) synthesis, which 
forms a relatively minor constituent of the K-12 surface polysaccha-
ride matrix containing between one and four trisaccharide repeats 
(Meier-Dieter et al., 1992). With respect to growth rate, ΔrodZ strains 
exhibit a defective growth-rate phenotype. RodZ is a cytoskeletal 
protein that is required to maintain a rod-shaped morphology and 
interacts with division protein MreB. In addition, deletions in rseA, 
encoding the anti-sigma factor for σE, also grow slowly in the pres-
ence of cell wall drugs. This is interesting, given that these drugs 
compromise cell wall structural integrity and σE has a key role in the 
osmotic stress response (Bianchi and Baneyx, 1999). When treated 
with d-cycloserine or fosfomycin, which target peptidoglycan pre-
cursor biosynthetic processes, ΔenvC mutants grow exceptionally 
slowly. EnvC is a sensory histidine kinase, regulating outer mem-
brane porin expression in response to osmotic stress. Deletion of 
the outer membrane lipid transporter (Mla) is also an enhancer of 
d-cycloserine or fosfomycin treatment, with ΔmlaA and ΔmlaC dele-
tions negatively impacted by these drugs.

Consistent with the role of the outer membrane as a permeability 
barrier, protein translation inhibitors targeting the 50S subunit of the 
ribosome were largely enhanced in endpoint biomass evaluations 
by mutations in genes common to LPS biosynthetic processes such 
as rfaE, waaF, waaG, waaI, waaP, and lpcA (Supplemental Figure S5 
and Supplemental Data S3). Mutations in components of the Mla 
outer membrane phospholipid transporter also sensitized the re-
spective strains to erythromycin and chloramphenicol. There were 
few unique endpoint biomass interactions shared across drugs tar-
geting the 30S ribosomal subunit. Shared between spectinomycin 
and streptomycin were interactions with gpp, rplI, and yafQ. Gpp 
is a pyrophosphatase that catalyzes the conversion of guanosine 

FIGURE 3: Multiplicative approach to identifying chemical-genetic 
interactions. We show here an example of how the multiplicative 
approach (Dixon et al., 2009) can be used to identify lethal or sick 
interactions in a chemical genomics pipeline. The integrated density 
values shown are in relation to the untreated wild-type E. coli K-12 
BW25113 (Keio parent) strain. Drug-treated wild-type colonies (in this 
example, treated with 0.5 μg/ml chloramphenicol) show the effect of 
the drug on its own. Next the individual deletion background (ΔasnB 
in this case) is measured from a chemically untreated Keio collection 
plate. The multiplicative rule states that the expected size of this 
colony, assuming no interaction takes place, is the product of the 
single deletion and the chemical treatment of the wild type. The 
chemically treated deletion background is then compared with the 
expected value to determine whether there is a chemical-genetic 
interaction.

FIGURE 4: Chemical-genomic interactions are concentration dependent. This heat map illustrates the Keio collection 
probed by a concentration gradient of chloramphenicol. The data are symmetrical, ∼1, and show the enhancement (red) 
or suppression (green) of chloramphenicol by each deletion background. They demonstrate that, across multiple 
concentrations, suppression and enhancement profiles of drugs can be dose dependent. As the drug concentration 
is increased, more strains are sensitive to its effects. Interestingly, however, some strains are only sensitive to lower 
concentrations. Using a range of chloramphenicol concentrations as an example, we see, curiously, several reproducible 
metabolic genes sensitive to 0.5 μg/ml (1/32 MIC) concentrations of the drug. These disappear in higher concentrations 
of chloramphenicol, with some ribosome-related deletions becoming more apparent as the dose increases. The figure 
highlights the value of determining an accurate solid MIC in a chemical-genomics pipeline.
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Chemical-genetic interaction mapping
Chemical-genetic interaction maps were first generated from end-
point biomass accumulation compiled for each antibiotic treatment 
(Figure 6). This network highlights the functional relationships be-
tween nonessential genes and antibiotics and, as previously noted, 
helps to identify genes unique to the various drug classes assayed. 
While this is useful in itself, combining these data with kinetically 
acquired rates is especially powerful. The result of this union is seen 
in Figure 7. Because these are the small or slow-growing colonies on 
drug-treated media, many genes are shared between both pheno-
types. The growth rate–enriched map in Figure 7 was further clus-
tered based on the Markov cluster (MCL) algorithm (Van Dongen, 
2008) implemented in BioLayout3D, and the resulting computed 
clusters were analyzed for common cell processes using their GO 
terms (Supplemental Figure S7). Interestingly, drug classes did not 
completely separate using the MCL clustering method, and a wide 
variety of GO terms were listed in each cluster (summarized in Sup-
plemental Figure S7). Nevertheless, for endpoint biomass analyses, 
there were 1052 interactions across all drugs tested, and this 
number of interactions nearly increased to 1564 interactions when 
combining endpoint biomass and growth-rate phenotypes. Given 
the vast number of orphan genes in E. coli, this aids in describing 
relationships between these poorly annotated genes and essential 
processes, particularly in the context of antimicrobial action and 
resistance.

DISCUSSION
The presented chemical-genomics platform is sensitive, with 
growth-rate acquisitions increasing the information obtained experi-
mentally. While endpoint biomass reads on their own can identify 
sick endpoint biomass interactions, not all chemical-genetic interac-
tions result in a lethal or sick phenotype when grown to stationary 

5′-triphosphate 3′-diphosphate (pppGpp) to the guanosome 5′-di-
phosphate (ppGpp) nucleotide. RplI is the 50S ribosomal subunit 
protein L9, and YafQ is a toxin of the DinJ-YafQ toxin/antitoxin com-
plex, which interacts with the 50S ribosomal subunit and cleaves 
mRNA. When assaying the growth rates under protein translation 
inhibitor stress, there were also relatively few hits common among 
the various drugs tested. Instead, various combinations of LPS core 
biosynthetic genes (lpcA, rfaE, waaBDGIPQZ), 30S or 50S ribosomal 
subunit proteins (rpsTU, rplIKY), and efflux machinery were observed 
across the various drugs.

Stressing cells with the topoisomerase inhibitors nalidixic acid, 
norfloxacin, and ciprofloxacin results in unique enhancement pro-
files as well (Supplemental Figure S6 and Supplemental Data S4). 
Highly sensitive to this class of antibiotics in endpoint biomass are 
ΔxseA, ΔxseB, and ΔrecC. XseA and XseB are large and small sub-
units of E. coli exonuclease VII, respectively (Vales et al., 1982, 
1983), and are known to be required for nalidixic acid resistance 
(Chase and Richardson, 1977). Furthermore, RecC is a component 
of exonuclease V, showing a clear trend in deletion strains sensitized 
to (fluoro)quinolones. Interestingly, for each individual quinolone, 
several Keio strains involved in peptidoglycan recycling and cell di-
vision also potentiate the respective drugs. This is of particular inter-
est, given the tendency of DNA replication inhibitors to cause fila-
mentous cell growth in E. coli. Among these strains are pbpG, lpcA, 
mpaA, nlpD, emtA, oppD, and rodZ. DNA replication inhibitors 
caused slow growth in ΔnlpI and ΔpaaA strains across drug treat-
ments. Slow growth in ΔnlpI mutants lacking cell division lipoprotein 
NlpI (Ohara et al., 1999) was an interesting observation, given the 
tendency of DNA replication inhibitors to cause an elongated mor-
phological phenotype. Slow-growing ΔpaaA strains in the presence 
of quinolones were much more enigmatic, as PaaA is involved in 
phenylacetate catabolism in E. coli.

FIGURE 5: Analysis of growth rate finds more genetic enhancers of antibiotic action than endpoint biomass 
measurement. The figure shows a general example of conventional endpoint biomass values plotted against growth 
rate, with both measures compared with their expected values based on the multiplicative rule. Shown here are Keio 
collection deletion strains growing on 1/4 MIC inhibitory concentrations of the DNA replication drug ciprofloxacin. This 
plot separates strains with smaller colony sizes and slow growth rates, seen in the lower-left quadrant of the plot, from 
strains with average colony size but with slower growth. Screening for growth rate is much more sensitive than 
screening for endpoint biomass alone, yielding many more interactions. This gives a much more thorough glimpse into 
chemical-genetic interactions for a compound of interest that are not necessarily lethal or static in nature.
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phase. Screening for growth rate can cap-
ture these otherwise elusive interactions by 
identifying slow-growing strains. This is a 
more sensitive measure but is also more 
strongly influenced by any variability in 
chemical concentration. Indeed, this reality 
stresses the need for precise control of 
chemical concentrations, especially when 
the delicate relationship between chemical 
MIC and initial inoculum can alter the chem-
ical-genetic fingerprint. This may account 
for some of the differences observed be-
tween our data and screens from other 
groups (Tamae et al., 2008; Liu et al., 2010; 
Nichols et al., 2011). For example, the inoc-
ulation methods used by Tamae et al. (2008) 
utilize a liquid-to-solid method, resulting in 
a very different inoculum than our study. 
Further, both groups use a different means 
of calculating sensitivity scores, resulting in 
data that are challenging to cross-evaluate. 
Variations in genetic interaction data across 
screening labs has been previously reported 
and are expected (Michaut and Bader, 
2012). This holds especially true in chemical 
genomics, in which bioactive chemicals can 
influence a multitude of cell functions. 
Nonetheless, this suggests that a set of 
standard conditions is immensely impor-
tant. Beginning with library maintenance, 
labs tend to have idiosyncratic approaches 
to strain upkeep, inoculation, and image 
and data analysis. To help reduce variability, 
we chose to maintain a 1/4 MIC dose of an-
tibiotic based on a solid MIC determination 
that mimics the conditions of the chemical-
genomics experimental method. Optimiz-
ing in this manner maintains consistency in 
the face of the high and variable inoculum 
on solid medium colony arrays.

The Keio collection contains roughly 
3800 nonessential deletion strains, with a 
small subpopulation of strains that grow 
slowly or poorly even without drug treat-
ment. This was reported in the recent work 
by Takeuchi et al. (2014), who pioneered the 
initial time-lapsed scanning procedure, and 
the large-scale chemical-genomics work by 
Nichols et al. (2011). This includes deletions 
in the nuo operon, which encode subunits 
or peptide chains in the NADH:ubiquinone 
oxidoreductase enzyme. These genes, 
along with members of the ubiquinone bio-
synthetic pathway (ubi operon) and ATP 

FIGURE 6: Escherichia coli chemical-genomic interaction map based on endpoint biomass. 
Interactions are shown, for the panel of antibiotics chosen at 1/4 MICs, with the E. coli Keio 
deletion collection. Interactions describe sick or lethal enhancement of each antibiotic probe 
and are based on the 2.5σ cutoff described in the Materials and Methods. The network was 
prepared using BioLayout3D, with major nodes for antibiotic classes annotated in the legend. 
Genes common across chemicals are easily identified in this manner (such as ubiG, rpoS, and 
nuoB), as are drug-sensitive strains within each particular drug class. The network is displayed 
as an edge-weighted force-directed Fruchterman-Reingold layout and can be further mined in 
BioLayout3D.

FIGURE 7: Chemical-genetic interaction map that combines drug sensitivities in biomass 
accumulation with sensitivities in growth rate for the Keio collection against our panel of 
antibiotics. Nodes representing conventional endpoint biomass sensitivities are shown in gray, 
nodes representing slow-growing strains are shown in green, and interactions in both are shown 
in red. Interactions for both phenotypes are defined in the Materials and Methods. Interestingly, 

there are ∼50% more unique interactions in 
the combined map than in the endpoint map 
shown in Figure 6. The network is displayed 
in the same manner as in Figure 6, as an 
edge-weighted force-directed Fruchterman-
Reingold layout.
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known to be actively pumped out in E. coli (Nikaido, 1996; Nishino 
and Yamaguchi, 2001). Conversely, Nikaido et al. (1998) observed in 
Salmonella typhimurium that cell wall drugs are typically poor sub-
strates for the AcrAB-TolC system, unless they possess hydrophobic 
side chains.

DNA replication inhibitors exhibited strong endpoint biomass 
phenotypes upon deletion of endonculease endA or exonuclease 
VII subunits xseA and xseB. The EndA protein resides in the peri-
plasm, and it is unclear why deletions in its gene would sensitize 
E. coli to subinhibitory concentrations of quinolones. Deletions in 
xseA and xseB are known to be sensitive to nalidixic acid (Chase and 
Richardson, 1977) and ciprofloxacin (Tamae et al., 2008). With re-
spect to permeability, ciprofloxacin and norfloxacin were minimally 
affected by deletions in genes responsible for LPS core sugars, while 
deleting rfaE resulted in a strong enhancement of nalidixic acid. This 
is attributed to the hydrophobic nature of nalidixic acid (logP = 
1.01), whereas ciprofloxacin and norfloxacin (logP = −0.81 and 
−0.92, respectively) are more soluble (Hirai et al., 1986). Across the 
various DNA replication drugs tested, deletions in genes related to 
cell division or envelope integrity were common. This was previ-
ously reported (Piddock and Walters, 1992) and attributed to an 
overactive SfiA division inhibitor during SOS response while in the 
presence of quinolones. It is therefore understandable why a 
growth-rate defect exists in ΔnlpI strains under DNA damage from 
replication drugs. Conversely, why ΔpaaA mutants are enhancers of 
slow growth in the presence of DNA replication inhibitors is more 
puzzling. PaaA is the monooxygenase subunit of the ring 1,2-phen-
ylacetyl-CoA epoxidase, involved in phenylacetate catabolism 
(Grishin et al., 2011) and used to metabolize environmental aro-
matic compounds.

In general, growth rate offers a means of identifying more subtle 
chemical-genetic interactions, but it is important to note that along 
with this increased sensitivity comes a broader data distribution. In-
teractions with deletion mutants affecting growth rate are especially 
interesting in the context of known slow-growth phenotypes, such 
as interference with ribosome biogenesis, or with aspects of me-
tabolism; an interaction, but not necessarily resulting in a lethal phe-
notype under screening conditions. Also, the kinetic approach to 
colony screening does reduce throughput, but the platform can be 
adjusted to acquire the desired data type. Contrasting our platform 
to pooling and deep-sequencing approaches to chemical genom-
ics, such as in the case of Lee et al. (2014), our approach is less 
prone to complex and inevitable competition effects (Hibbing et al., 
2010). Further, suppression mutants in our screen are very evident 
and relatively nondestructive to the overall data, while this would be 
challenging to identify in a pooling approach using the same collec-
tion. A high-density colony approach is not without its drawbacks, 
but it does offer a unique means of identifying both lethal and non-
lethal interactions between bioactive chemicals and genomic librar-
ies. The choice of growth medium will further impact the interac-
tions, especially in the case of minimal salt or cell culture media 
(such as Roswell Park Memorial Institute [RPMI] medium), with the 
latter identifying connections that may be more specific in vivo. In-
deed, this emphasizes the plasticity of the platform, which is highly 
customizable to most growth media and strain collections.

The lethal and slow-growth phenotypes described above were 
classified as interactions in chemical-genetic network maps. Highly 
populated (nonchemical) nodes in the maps identify genes with 
deep involvement in E. coli antimicrobial resistance strategies. Many 
of these lethal interactions are already well characterized, such as 
the AcrAB-TolC efflux system (Nikaido, 1996; Okusu et al., 1996) 
and other generic efflux pumps. Combined with network edges 

synthase complex (atp operon), frequently arise as hits in chemical-
genetic and gene–gene interaction screening (unpublished data). 
Frequent enhancement in these genes across drug treatments sug-
gests that target-based screens to inhibit their respective proteins 
may be a screening strategy for antimicrobial potentiators (Liu et al., 
2010; Ejim et al., 2011). Their use in generating unique response 
profiles for bioactive chemicals, however, is limited, given their fre-
quency of occurrence. Where an untapped wealth of information 
lies is in the large number of uncharacterized or poorly annotated 
genes that arise as hits when screening for enhancers of slow 
growth. Indeed, against a broad spectrum of antibiotics, we see sys-
temic relationships between hundreds of uncharacterized genes 
and essential cell processes targeted by antibiotics.

Data generated by screening our panel of antibiotics represent 
responses to stressing a broad range of essential processes in 
E. coli (Figure 1b). Cell wall–targeting drugs are enhanced by muta-
tions encoding proteins interacting with peptidoglycan, such as 
ΔlpoB and Δpal. Cells devoid of LpoB are known to be sensitive to 
β-lactams (Paradis-Bleau et al., 2010), while pal deletions are known 
to cause periplasmic leakage and sensitivity to drugs (Cascales 
et al., 2000). These mutations cause structural integrity disruptions 
in the cell wall and, as such, are unable to withstand even sub-MICs 
of cell wall–targeting antibiotics. Similarly, ΔrodZ strains lose their 
typical rod shape, becoming spherical under microscopy. This has 
an effect on growth rate when exposed to cell wall drugs, but since 
the peptidoglycan cross-links are not compromised outside of cur-
vature stresses, there is no significant phenotype in endpoint bio-
mass. Additionally, ΔenvC knockouts cause cells to become elon-
gated, again with the end effect of slower growth when stressed 
with cell wall–targeting drugs but not significantly impacting end-
point biomass. Variations in the outer membrane sensitize E. coli to 
this antibiotic class as well, with several members of the rff operon 
involved in ECA biosynthesis appearing necessary for cell wall drug 
resistance. Even in the inner leaflet of the outer membrane, phos-
pholipid composition also appears to play a role antimicrobial 
resistance.

Delving deeper into protein translation drugs, both endpoint 
biomass and growth-rate hits were predominantly related to cell en-
velope permeability. For endpoint, LPS core biosynthetic genes 
rfaE, waaFGIP, and lpcA all significantly potentiated most transla-
tion inhibitors. Each of these deletions was slow growing as well, 
with waaBDQZ also arising as a hit for growth rate. This follows the 
paradigm of LPS involvement in the outer membrane as a main per-
meability barrier in Gram-negatives (Nikaido, 2003; Delcour, 2009). 
Streptomycin and spectinomycin activity was enhanced by ΔrplI mu-
tants, which are strains deficient in 50S ribosomal protein L9 that 
accumulate immature small subunits (Naganathan et al., 2015). 
These drugs were also potentiated by ΔyafQ mutants, which en-
code the toxin of the DinJ-YafQ toxin–antitoxin system. Deletions in 
yafQ result in biofilm production that impacts antibiotic resistances, 
with ΔyafQ becoming susceptible to the aminoglycoside tobramy-
cin and resisting the tetracycline doxycycline (Harrison et al., 2009). 
This is a pattern similar to that seen with the aminoglycoside strep-
tomycin (and aminocyclitol spectinomycin) and tetracycline. Inter-
estingly, deletions related to ribosome structure were predomi-
nately observed as growth-rate phenotypes. Impaired translation 
tends to correlate with slow growth with some exceptions (Ruusala 
et al., 1984), and under translation stress, slow growth rates were 
anticipated. With respect to efflux, the AcrAB-TolC pump was espe-
cially well represented in protein translation and DNA replication–in-
hibitor antibiotics. Of the drugs tested, chloramphenicol, erythro-
mycin, tetracycline, rifampicin, nalidixic acid, and norfloxacin are 
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focusing 2.5 mm off the bed of the scanner using the arguments 
built in for the Epson Perfection V750 scanner. This was driven with 
an interface written in the R statistical programming language (Ihaka 
and Gentleman, 1996). In addition, the power to the scanners was 
remotely controlled using a Web Power Switch 7 (Digital Loggers, 
Santa Clara, CA), with Python bindings integrated via the rPython 
library. The power to the scanners was remotely cut after each scan 
to reduce the heat on the scanning beds, which can reach at least 
50°C due to the scanner lamp staying on for 15 min after each scan 
(Supplemental Figure S8). We found that this heat dries out agar 
medium substantially and increases edge effects on Singer plates.

All images were quantified using an in-house script written in 
ImageJ (Schneider et al., 2012). The full pipeline is described in 
Supplemental Figure S1. Briefly, images were converted to 8-bit 
grayscale and background subtracted, and a threshold mask was 
generated. The margin coordinates of these black colonies were 
then reapplied to the grayscale image. This allows us to get the ex-
act margins of each colony in the original image, without looking for 
a colony using a predefined grid. By doing so, we allow for varia-
tions in plate orientation, and Singer pinning offsets. Gray-value 
pixel densities were generated from each plate; a single 1536-den-
sity image can be quantified in <10 s using this method. The out-
puts also describe morphological characteristics of each colony, 
such as radius, marginal undulations, and circularity. The outputs 
from ImageJ do not have a microwell-plate grid-coordinate system, 
so we built a grid system in R, using the centers of each colony to 
predict the best fit for a 1536-density grid of 32 rows and 48 col-
umns, in a manner similar to Wagih and Parts (2014). This extensive 
reconstruction and gene annotation pipeline is also described in 
detail in Supplemental Figure S1.

Analyses of screening data
Data outputs from ImageJ were compiled in R. The mu coefficient 
from the Gompertz growth-rate model (Zwietering et al., 1990) was 
used as a measure of growth rate, as shown by Takeuchi et al. (2014). 
We have slightly modified the Takeuchi method, using the entire 
colony biomass rather than the inner biomass. This was done after 
observing the growth kinetics of individual colonies (Supplemental 
Videos 1–3), where, after compensating for the massive initial (t = 0) 
biomass, the colonies grow outward preferentially. Calculations 
were done in batch, using an eight-core cluster with the libraries 
parallel, foreach, and doParallel, with the Gompertz model fit using 
the grofit library (Kahm and Hasenbrink, 2010). All data from differ-
ent antibiotics were compiled and then normalized using an in-
house normalization function (Figure 2). The normalization utilizes a 
two-pass system that normalizes rows, then columns, to the inter-
quartile median of the row or column respectively, set at 1 by defini-
tion. Full normalization code is provided in the Supplemental Mate-
rial; it is highly customizable for kinetic or endpoint reads of plates 
containing 1536 or 6144 colonies. Normalizing in this way is intui-
tive, rapid, and does not take an iterative approach; it can even be 
run in a two-step Microsoft Excel formula.

A multiplicative approach was used to identify strains sensitive, 
or resistant, to the various probes in this study. The approach is visu-
alized in Figure 3, and plots such as the one seen in Figure 5 are 
based on the deviation of drug-treated deletion strains from their 
expected value based on the multiplicative rule. Chemical-genetic 
interaction profiles that are produced in this manner are typically 
symmetrical ∼1 (Figure 2, d and f), and the hit cutoff was 2.5σ (from 
the median), excluding statistical outliers. Hits for large data sets 
were compiled in R, exported to BioLayout3D 3.3 (Theocharidis 
et al., 2009), and displayed in an edge-weighted force-directed 

arising from growth rate, however, new connections are seen with 
previously uncharacterized genes and between processes such as 
cell division and DNA replication. Bacterial division processes have 
been proposed as targets for new antimicrobials in the past (Lock 
and Harry, 2008), and here we further show the value of nonessential 
division processes in antimicrobial potentiation. The platform we 
present here is highly amendable and can accommodate many 
types of genomics libraries as they are created, such as plasmid-
based overexpression (Kitagawa et al., 2005) or CRISPR-based 
(Peters et al., 2015) knockdown libraries.

MATERIALS AND METHODS
Bacterial culture conditions and MIC determinations
The Keio collection (Baba et al., 2006) was grown from frozen stocks 
onto Luria–Bertani (LB) agar medium in 96-density. Colonies were 
grown overnight at 37°C, then upscaled to 384-density using a 
Singer Rotor (Singer Instruments, Somerset, UK), and again grown 
overnight. From the 384-density plates, plates were upscaled to 
1536-density, grown overnight, and duplicated in LB medium to 
make master plates. Master plates were maintained at this density at 
4°C for 2–3 wk. Keio plates older than this were recultured using the 
above steps before screening, to limit the emergence of suppressor 
strains and/or passaging effects. All plates used in this study con-
tained 25 ml of agar medium and were dried on a completely level 
surface.

Solid media MICs of drug were determined in a unique manner. 
First, the liquid MIC was established, which is used as the basis for 
finding the solid MIC. An initial bed of 25 ml of 2% agarose was then 
poured into an empty Singer PlusPlate and allowed to dry. A size 16 
test tube was used to cut circular holes out of the agarose, and each 
individual hole was filled with LB agar containing different concen-
trations of drug until perfectly level with the agarose (∼440 μl). The 
concentrations spanned from 2× the liquid MIC at the lower end all 
the way up to 256× the liquid MIC. These plugs were allowed to dry, 
and the agarose template was removed with a sterile razor, leaving 
pads of medium containing a concentration gradient of drug (Sup-
plemental Figure S3). Preparing plugs in this manner generates cir-
cles of agar that are then the same height as a conventional 25 ml 
agar pad, with no concave or convex edge curvature. Escherichia 
coli K-12 BW25113 was pinned in 1536-density from a master plate 
of the same density onto the agar plugs, using the same Singer 
Rotor settings throughout this entire study, and was grown for 18 h 
at 37°C. This ensures that the inoculum for the MIC determination 
will be equivalent to the inoculum during the chemical-genetic in-
teraction screening.

Chemical-genetic screens were performed by pinning the Keio 
collection in 1536-density onto antibiotic-supplemented LB agar in 
duplicate for each respective drug in the experiment. Ranges of 
concentrations were used for each chemical, typically ranging from 
1/16 to 1/4 MIC. It was found that the “sweet spot” for screening 
concentration was ∼1/4 MIC. This concentration contained the most 
hits without enriching for pumps and was the concentration used to 
prepare the network maps. The same inoculation settings for these 
experiments were used when determining the solid media MICs. 
Negative controls were run with each Keio collection master plate to 
reduce batch effects.

Time-lapse imaging of agar plates
The method of Takeuchi et al. (2014) was used to analyze plates in 
time-lapse, with several modifications (Supplemental Figure S8). 
Scanning was performed using Scanner Access Now Easy drivers for 
Linux; scanimage commands were run as parallel system processes, 
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Fruchterman-Reingold layout. Class files were generated for node 
color based on antibiotic classification and whether genes were in-
teractions in endpoint biomass, growth rate, or both. For individual 
drug class analyses, networks were created in Cytoscape 3.2.0 
(Shannon et al., 2003) with a spring-embedded force-directed lay-
out. All gene annotations and descriptions were determined using 
Pathway Tools (version 18.5) software with the E. coli K-12 database 
(Keseler et al., 2013). The database is for E. coli K-12 MG1655 rather 
than the Keio collection parent strain BW25113, but the gene on-
tology is not expected to differ.
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