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Abstract: Various viruses alter nuclear pore complex (NPC) integrity to access the nuclear content
favoring their replication. Alteration of the nuclear pore complex has been observed not only in
viruses that replicate in the nucleus but also in viruses with a cytoplasmic replicative cycle. In this
last case, the alteration of the NPC can reduce the transport of transcription factors involved in the
immune response or mRNA maturation, or inhibit the transport of mRNA from the nucleus to the
cytoplasm, favoring the translation of viral mRNAs or allowing access to nuclear factors necessary for
viral replication. In most cases, the alteration of the NPC is mediated by viral proteins, being the viral
proteases, one of the most critical groups of viral proteins that regulate these nucleus–cytoplasmic
transport changes. This review focuses on the description and discussion of the role of viral proteases
in the modification of nucleus–cytoplasmic transport in viruses with cytoplasmic replicative cycles
and its repercussions in viral replication.

Keywords: viral proteases; nuclear pore complex; flavivirus; enterovirus; nucleus

1. Introduction. The NPC as a Target for Viral Proteases: Controlling the
Nucleus–Cytoplasmic Transport

Most viruses with nuclear and cytoplasmic replication require nuclear proteins to fa-
cilitate their replication [1]. Some viral proteins from viruses with cytoplasmatic replication
localize in nuclei during infection. Moreover, the inhibition of nuclear transport of viral
proteins using different drugs targeting the transport machinery has been shown to inhibit
viral replication, suggesting that viral proteins have essential roles in the nucleus of the
infected cells [2].

Different positive-strand RNA viruses modify the nucleus–cytoplasmic traffic, altering
the Nuclear Pore Complex (NPC) through various mechanisms (Table 1). These alterations
are carried out to (a) access nuclear proteins that participate in viral replication in the
cytoplasm, (b) modulate the antiviral immune response by preventing the trafficking of
transcription factors to the nucleus, and (c) negatively regulate the export of cellular mRNA
to the cytoplasm by avoiding competition for the translation machinery and reducing the
translation of proteins related with the antiviral response [2–8].

Since it has been well established that disruption of the import–export mechanism
is a checkpoint for virus replication, it is not surprising to find that viruses induce the
degradation of some components of the NPC, such as nucleoporins (Nups), by the action
of their own viral proteases. This review discusses how proteases of positive-strand
RNA viruses from the genera Enterovirus, especially Poliovirus and Rhinovirus (Family
Picornaviridae), and Flavivirus (Family Flaviviridae), affect the composition of the NPC and
the consequences for nucleus–cytoplasmic traffic through the processing of Nups.
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Table 1. Mechanisms of positive-strand RNA viruses to affect the nucleus–cytoplasmic trafficking.

Group Baltimore RNA-Virus (Family) Viral
Protein NPC Alteration Mechanism

IV (ssRNA+)

SARS-CoV
(Coronaviridae) NSP1 Nup93 delocalization to nucleoplasm [9].

SARS-CoV-2
(Coronaviridae) ORF6

Delocalization of RAE-1 and Nup98 to the
cytoplasm and nuclear accumulation of
hnRNP A1 [10]

SARS-CoV-2
(Coronaviridae) ORF6

Hijacking the RAE-1-Nup98 complex to
prevent the nuclear translocation of STAT-1
and 2 and the IFN response [11].

DENV (Flaviviridae) NS3pro Cleavage of Nup153, Nup98, and Nup62
by the viral protease [12].

ZIKV (Flaviviridae) NS3pro Cleavage of TPR, Nup153, and Nup98 by
the viral protease [12].

Porcine reproductive and
respiratory syndrome virus
(Arteriviridae)

Nsp1β

Alteration of the immune response through
the interaction with Nup62 interrupts the
import of transcription factors related to
IFN [13].

Encephalomyocarditis virus
(Picornaviridae) Leader

Inhibition of the nucleus–cytoplasmic
trafficking by hyper-phosphorylation of
Nup62, Nup153, and Nup214 [14].

Theiler’s murine
encephalomyelitis virus
(Picornaviridae)

Leader Blocking the cellular mRNA export and
promotion phosphorylation of Nup98 [15].

Rhinovirus
(Picornaviridae) 2Apro

Cleavage of Nup62, Nup98, Nup153,
Nup98 by the viral protease alters
nucleus–cytoplasmic transport
[3,5,8,16,17].

Rhinovirus
(Picornaviridae) 3C pro/3CD

Cleavage of Nup358 (TPR), Nup214,
Nup153, and Nup62 by viral protease alters
nucleus–cytoplasmic transport [16,17].

Poliovirus
(Picornaviridae) 2Apro

Cleavage of Nup153, Nup98, Nup62 by
viral protease alters nucleus–cytoplasmic
transport [4,6].

V (ssRNA−)

Rift Valley fever virus
(Phenuiviridae) Non-structural protein

Alteration of the antiviral response due to
the degradation of Nup62. Besides, the
participation of Nup98 in the nuclear
import of NSs and in viral replication [18].

Influenza A virus
(Orthomyxoviridae) NS2 Interaction with Nup214 for the export of

viral RNA [19].

Influenza A virus
(Orthomyxoviridae) NS2 Interaction with Nup98 to promote viral

spread [20].

Influenza A virus
(Orthomyxoviridae) -

Regulation of the antiviral immune
response by lowering Nup98 and Rae1.
Deterioration of mRNA export [21].

VI (ssRNA-RT)

VIH-1 (Retroviridae) -
Relocation of hnRNP A1 and vRNA to the
cytoplasm by the negative regulation of
Nup62 [22].

VIH-1 (Retroviridae) Capsid
Participation of RanBP2/Nup358, Nup153,
and Nup98 in anchoring the capsid to the
nucleus [23–28].
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2. NPC Structure and Function in the Cell: One Way to Access the Nucleus
2.1. The Machinery of The Nuclear Pore Complex (NPC)

The import and export of viral proteins requires interaction with the components of the
nuclear envelope (NE), which is formed by a double membrane that harbor protein channels
called nuclear pore complexes (NPCs). NPCs are formed by multiple copies of Nups
that participate in the bi-directional nucleus–cytoplasmic transport of macromolecules,
ribosomal subunits, viral proteins and RNAs (mRNAs, rRNAs, tRNAs, miRNAs) from
both cellular and viral origin [29–31].

The NPC is made up of approximately 30 multi-copy of Nups, arranged from the
cytoplasm to the nucleoplasm, which makes up the cytoplasmic filaments, cytoplasmic ring,
internal pore ring, nuclear ring, and nuclear basket [32,33]. Inside the NPC, there are Nups
with repeating sequences rich in phenylalanine (Phe) and glycine (Gly), called FG-Nups,
such as Nup358, Nup62, Nup58, Nup54, Nup98, Nup45, Nup214, hCG1, Nup153, TPR,
and Nup50, that facilitate the nuclear transport in both directions since they join to nuclear
transport receivers (NTRs) (Figure 1) [34–36].
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Figure 1. The machinery of the Nuclear Pore Complex. The NPC’s different components, which participate in the import
and export of proteins and RNAs, and the FG-Nups, which participate in nuclear–cytoplasmic transport, are shown.

2.2. Bidirectional Nucleus–Cytoplasm Transport

Molecules smaller than approximately 40–50 kDa can pass freely through the nuclear
envelope; however, higher molecular weight molecules such as proteins and RNAs from
both cellular and viral origin are actively transported through the NPC, between the
nucleoplasm and the cytoplasm. The nuclear import and export of molecules are regulated
by NTR (nuclear transport receptors), such as importins, exportins, carriers, and small
GTPases of the Ran family that regulate the activity of importins and exportins that
transport cargo molecules (Figure 2) [36–38].
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Figure 2. Bidirectional Nucleus–cytoplasm Transport. In the classical pathway of import (importin α/β), the importins and
cargo complex are formed through the recognition of the NLS (nuclear location sequence). In the case of Export via CRM-1,
the charge contains an NES (nuclear export sequence). In both cases, a GTP gradient is required. Molecules <40 kDa pass
through passive diffusion towards the nucleus by the NPC.

NTRs recognize specific sequences in cargo proteins that cross the nuclear membrane
from the cytoplasm, such as nuclear location sequences (NLS) that contain repeated arginine
(Arg or R) and lysine (Lys or K) amino acids. The classical NLS consists of five KKKRK
amino acids. Moreover, some proteins possess bipartite NLS consisting of two groups
of basic amino acids, separated by approximately ten amino acids [39,40]. On the other
hand, nuclear export sequences (NES) participate in the trafficking from the nucleus to
the cytoplasm. They are composed of sequences rich in leucine or hydrophobic amino
acids such as valine (Val), isoleucine (Ile), phenylalanine (Phe), or methionine (Met), which
are found in motifs conserved in cargo proteins, such as some transcription or translation
factors and mRNA transport proteins [41–43]. The nuclear localization of a given protein
occurs by the recognition of the NLS by the NTRs; for example, importin α through its NTR
binds to NLS-cargo, then importin β binds to importin α to form a trimeric complex and its
cargo molecule. If the NLS is atypical, then importin β directly binds to its cargo molecule
without the participation of importin α. The directionality of the cargo is given by the
Ran-GTP gradient, regulated by the Ran-GTP/GDP cycle. Once the trimeric complex has
entered the nucleus, the Ran-GTP activated by RCC1 (GEF) joins importin β and thereby is
released from its cargo. Importin β is transported to the cytoplasm, and the Ran-GTP is
deactivated to Ran-GDP by GAP (GTPase Activating Protein) to free itself from importin β

for its next import cycle.
On the other hand, the nuclear export is given by the recognition of the nuclear export

sequences (NES). Nuclear export begins with Ran-GTP binding to exportin (e.g., CRM-1),
which causes an increased affinity for the export cargo. Then, the complex moves to the
nuclear pore and Ran-GTP hydrolyze (activated by RCC1), which forms the export complex.
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The complex crosses the NPC, and in the cytoplasm, GAP deactivates RanGTP (hydrolyses
the GTP in GDP), causing the export protein to be released from its cargo [39,40,44].

3. Flavivirus: A Genus of Medical Importance

Flavivirus is a genus belonging to the family Flaviviridae, which contain viruses such as
SPONV (Spondweni virus), YFV (Yellow fever virus), WNV (West Nile virus), JEV (Japanese
encephalitis virus), DENV (Dengue virus), and ZIKV (Zika virus), widely distributed in
tropical and subtropical areas. [44–49]. These viruses, transmitted by mosquitoes of the
genus Aedes spp. [44], causes diseases with high morbidity and mortality; therefore, of
medical importance.

Flaviviruses contain RNA genomes of positive sense that encode a polyprotein that
gives rise to three structural proteins (C, E, and prM) present in the viral particles and
seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) essential for
controlling several cell pathways for the replication of the viral genomes, assembly, and
release of the viral particles from the infected cells (Figure 3A) [50–53].
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(helix-α in purple, 310 helix in blue, β-sheets in yellow, β-bridge in tan, and turn in cyan), and the zoom of the catalytic triad
H51, D75, and S135 in green)). Also, cofactor NS2B (red) is shown (PDB ID: 2VBC). Panel (C) shows the cleavages of Nups
by NS3pro from DENV and ZIKV.
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Flavivirus has a cytoplasmic replicative cycle, translating and replicating its genome in
the ER [54–56]. However, some viral proteins, such as C, NS1, and NS5, contain nuclear
location signals (NLS) and have been seen located in the nucleus of Vero cells [57–59].
Other proteins located in the nucleus of human lung carcinoma (A549) infected cells are
NS2A, NS3, and NS4A; moreover, the NS3 protein also locates in the nucleus of Huh7 and
C636 cells during DENV infection. [60–63].

The NS3 protein is the only protease encoded by these viruses and is required for
the cleavage of the viral polyprotein and the unwinding of the viral RNA since it has
the function of protease and helicase. Since this molecule is involved in the infection
establishment, it has been used as a pharmacological target against the different Flavivirus
infections [64–66].

The Non-Structural Protein 3 (NS3): A Shuttling Protein

The NS3 protein of Flavivirus is a trypsin-like serine protease. It requires a 40-residue
hydrophilic segment of the NS2B transmembrane protein as a cofactor, and it is involved
in the processing of the polyprotein that gives rise to the mature viral proteins [67,68].

NS3 protease has a catalytic triad conserved in the different members of the genus
(His51, Asp75, and Ser135) and a total length of approximately 620 amino acids. NS3
protease cleaves between a basic residue (Arg-Lys) and another amino acid such as serine
or threonine. In addition to the protease function, at its carboxyl terminus, NS3 has
RNA triphosphatase, nucleoside triphosphatase, and helicase activities (Figure 3B). The
conservation of the amino acid sequence from NS3 among the different Flaviviruses (DENV,
WNV, JEV, ZIKV, and YFV) is between 50% to 75% [68–71].

NS3 from ZIKV is mainly located in the perinuclear region of the infected cell, and
alters the morphology of the nuclear lamina, a component of the nuclear envelope, forming
extrusion sites; thus, it is suggested that it may affect the function of the centrosome [58].
NS3 is also accumulated in the concave face of the kidney-shaped altered nuclei and may
be responsible for modifying other components of the nuclear envelope [60]. Our research
group has recently found that NS3 of DENV is located in the nucleus of DENV infected
Huh7 and C636 cells at early times post-infection (8 to 12 h) and in the cytoplasm at later
times (16 to 24 h post-infection) [61,62].

In addition to the polyprotein processing, NS3pro from several Flaviviruses have other
cellular proteolytic targets. Hill et al. have reported that NS2B-3 from ZIKV can process 31
different cellular proteins, such as JIP4, ATG16L1, eIF4G1, TAK1. Among them, 42% are
involved in the processing of genetic information, 28% in transport and the cytoskeleton,
12% in metabolism, 10% in signal transduction, and 8% in immunity [69]. On the other
hand, NS3pro from ZIKV and DENV also cleaves FAM134B (related to reticulophagy) [72];
ZIKV NS3pro cleaves Septin-2 (cytoskeletal factor, related to cell cytokinesis) [73], PDIA3,
ALDOA (glycolysis) [70]; and NS3pro cleaves DDX21 (immune response) (DENV) [71] and
GrpEL1, (mitochondrial matrix protein) [74].

Flavivirus NS3pro also cleaves components of the NPC [12], a subject of this review;
these alterations occur to guarantee its replication in the host cell.

4. Alterations of the NPC by NS2B-3 Protease of Flavivirus: The Cleavage of the Complex

We have recently described the alteration of the NPC during the infection with ZIKV,
DENV-2, and DENV-4. We found that NS2B-3 from DENV-2 and DENV-4 cleaves Nup153
(located in nuclear basket), Nup98 (located in cytoplasmic filaments and internal pore ring),
and Nup62 (located in the inner pore ring). On the other hand, we found that NS2B-3 from
ZIKV cleaves TPR (located in nuclear basket), Nup153, and Nup98 (Figure 3C). Besides,
we found that the subcellular location of some Nups was also affected. The role of the
cleavage/degradation of the NPC during infection with Flavivirus is still unknown [12].
However, during infection with other RNA-viruses such as Poliovirus and Rhinovirus, the
degradation of nucleoporins has been associated with the inhibition of the import/export



Viruses 2021, 13, 706 7 of 17

of transcription factors, mRNAs, and immune response modulation to guarantee viral
replication [75].

Nucleus Involvement during Flavivirus Infection: A Brief Overview

Flavivirus infections cause a spectrum of diseases, including fever, hepatitis, vascular
shock syndrome, neurological and congenital abnormalities, and encephalitis [76].

Although the Flaviviruses have a cytoplasmic replication cycle, it has been observed
that some DENV and ZIKV proteins such as C, NS1, and NS5 are located in the nucleus
of Vero cells. The transport to the nucleus of the viral proteins is mediated by the NLS
present in its sequence [57–59]. In the same way, the C, NS3, NS4B, and NS5 proteins of
other Flavivirus such as JEV, WNV, and DENV have also been observed in the nucleus
of infected cells [62]. However, little is known about the role of these proteins in the
nucleus. Interestingly, mutations in the NLS of C and NS5 reduce the production of
virions suggesting that its presence in the nucleus is essential during the viral replicative
cycle [2,77–81].

Besides internalization of viral proteins into the nucleus during Flavivirus infections,
some nuclear components are highjacked to avoid the antiviral immune response. The
presence of the NS5 polymerase of WNV, DENV, and JEV in the nucleus mediates the
IFN response pathway at different levels of the JAK/STAT signaling pathway and thereby
prevents the entry of transcription factors into the nucleus to avoid the innate immune
response [82–85].

On the other hand, nuclear proteins such as La (DENV), PTB (DENV), RNA Helicase A,
TIA1/TIAR (WNV), and Tudor-DN/p100 (DENV) migrate to the cytoplasm to participate
in the assembly of the viral replication machinery [86–91].

Despite the knowledge of the presence of nuclear components in the viral replicative
complexes, the mechanisms involved in this process are still unknown [2].

5. Picornaviridae: A Family of Small Viruses

The Picornaviridae family is formed of at least 30 genera, including the Enterovirus
genus, and more than 75 species [92].

Viruses of the Picornaviridae family have a single-stranded RNA genome of positive
polarity of 6.7 to 10.1 kb in length. They are small, non-enveloped viruses, which infect
several vertebrates, such as mammals, birds, reptiles, amphibians, and fish. They are also
human pathogens of medical relevance because they affect the central nervous system,
heart, liver, skin, gastrointestinal tract, and upper respiratory tract [92–94].

The replicative cycle of the Picornaviridae is cytoplasmic, and the RNA genome is
translated and replicated in the endoplasmic reticulum (ER). The genome of the Picor-
naviridae is composed of a single open reading frame (ORF), which codes for a polyprotein
that, when cleaved by viral proteases, gives rise to three to four structural proteins that
conform the capsid and seven non-structural proteins involved in viral replication and
the modulation of the immune response. The genome at its 5′ end is covalently linked
to a VPg protein involved in RNA replication and is polyadenylated at its 3′ end. Two
untranslated regions (UTR) containing RNA stem-loop structures involved in the regula-
tion of replication flanked the unique ORF; particularly, the 5′ UTR, of 1/10 of the total
genome length promotes viral protein synthesis through an internal ribosome entry site
(IRES). This polyprotein is processed by the viral proteases to produce P1–P3 regions that
are further processed to produce precursor and mature proteins. The P1 region conformed
by the structural proteins (VP1-VP4), and the P2 (2A–2C) and P3 (3A–3D) regions give
rise to non-structural proteins. Intermediate protein precursors are also produced, having
essential roles, such as the 3CD protease-polymerase protein (Figure 4A) [92,95–99].
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Figure 4. Polyprotein cleavage and structure of Enterovirus 2Apro and 3Cpro. Panel (A) shows the Enterovirus RNA genome
that encodes four structural and seven non-structural proteins and the cleavage sites by 2Apro and 3Cpro. Panel (B) shows
2Apro and its catalytic triad H18, D34, and C105, from RV (PDB ID: 2M5T). Panel (C) shows 3Cpro and its catalytic triad
H40, E71, and C147, from PV (PDB ID: 1L1N). Color code: helix-α in purple, 310 helix in blue, β-sheets in yellow, β-bridge
in tan, and turn in cyan.

Both precursor and mature proteins produced by the proteases cleavage partici-
pate in viral replication, virion structural formation and modify the host immune re-
sponse [100,101].

5.1. Enterovirus

The best-studied group of viruses altering the NPC by viral proteases belongs to the
Enteroviruses genus, which comprised at least 300 different types of viruses, which cause
diseases in humans (Rhinovirus A, B, C, and Enterovirus A–D) [101,102].

Although enteroviruses are cytopathic and mainly infect the gastrointestinal or the
respiratory tracts, they can also infect the central nervous system like Poliovirus (PV). PV
infects the gastrointestinal tract, where the infection is asymptomatic; however, it also has
a tropism for motor neurons of the lower extremities, generating paralytic poliomyelitis
in approximately 1% of the infected individuals [103,104]. On the other hand, Human
Rhinoviruses (HRV) is the leading cause of almost half of the common human cold. They
infect the upper respiratory tract and, in some cases, can cause chronic lung diseases,
asthma, severe bronchiolitis in infants, and fatal pneumonia in adults. HRVs are classified
into HRV-A, HRV-B, and HRV-C [105,106].



Viruses 2021, 13, 706 9 of 17

Particularly in the next section, we will discuss the alterations of the NPC by the viral
proteases during the infection of the Enterovirus genus members, specifically PV and HRV.

5.2. Viral Proteases of Poliovirus and Rhinovirus

Unlike Flaviviruses, the polyprotein of both PV) and RV) is cleaved into functional
proteins by two viral proteases: 2Apro and 3Cpro. While 2Apro cleaves P1 from P2 and
P3, 3C pro is responsible for the cleavage of almost all precursors and mature proteins.
Moreover, besides the polyprotein cleavage, both proteases are involved in establishing the
infection [96].

5.2.1. Apro

2Apro from PV and RV participates in the polyprotein processing at the P1 (VP1-2A)
site (Figure 4B). Initially, 2Apro splits itself at its N-terminal site, and 3Cpro is involved in
the cleavage of 2Apro at its C-terminal. 2Apro is a chymotrypsin-like cysteine protease,
with catalytic triad His18, Asp34, and Cys105. Its structure comprises four antiparallel
β-sheets in the N-terminal region and a β-barrel in the C-terminal region, and a length of
140–150 aa [107,108].

In addition to the polyprotein cleavage, 2Apro has other cleavage targets, such as
the translation initiation factors (eIF4G-I and eIF4G-II), necessary to recognize the cap in
the mRNAs by the ribosomes [109]. Therefore, by cleaving these initiation factors, en-
teroviruses disrupt cap-dependent translation and highjack the functional ribosomes to
initiate viral synthesis via an independent cap mechanism known as IRES-dependent trans-
lation. On the other hand, in PV-infected HeLa cells, 2Apro cleaves cytokeratin 8, favoring
the cytopathic effect and cell lysis to release the viral particles [110]. In the case of Coxsack-
ievirus B3, PV, and Enterovirus 71, 2Apro has proteolytic activity on MDA5 (melanoma
differentiation-associated protein 5) and MAVS (Mitochondrial antiviral-signaling protein);
this action leads upstream to the blockage of IFN-I transcription and interferes with the
innate immune response [111]. Also, 2Apro from PV and HRV participate from its per-
inuclear subcellular localization in altering the nuclear–cytoplasmic traffic through the
processing of Nups, components of the NPC [3,7]. NPC disruption results in the presence of
nuclear proteins in the cytoplasm of the infected cells, such as La and the PTB, considered
among others, as internal translation associated factors (ITAFs) crucial for the regulation of
IRES dependent translation.

5.2.2. Cpro

As 2Apro, 3Cpro is a chymotrypsin-like cysteine protease; however, it adopts a
fold-like conformation of the serine proteases, responsible for the processing of different
proteolytic targets [96]. The structure of 3Cpro of PV contains two β barrel domains (6 an-
tiparallel β sheets), opposite each other, and a length of 183 residues. The binding to the
substrate occurs between both domains and contains the catalytic triad His40, Glu71, and
Cys147. The polypeptide loop that precedes Cys147 is flexible and undergoes a conforma-
tional change after binding to the substrate [112]. 3Cpro cleaves at Gln/Gly residues, and
it is responsible for most of the cuts in the polyprotein within P1 to produce VP0, VP1 and
VP3, P2 (C-terminal 2A, 2B and 2C), and P3 (3A, 3B and 3C) sites (Figure 4C) [113].

Besides its role in the polyprotein precursor cleavage, 3Cpro has different proteolytic
targets that affect many cell pathways at various levels to promote its viral replication and
the establishment of the infection. 3Cpro can locate in the nuclei of the PV infected cells and
inhibits host RNA synthesis by processing cell transcription factors, such as factor 110 as-
sociated with TATA-binding protein (TAF110), TATA box-binding protein (TBP), binding
protein to the response element to cAMP-1 (CREB-1), octamer-binding protein-1 (Oct-1),
p53 and transcription factor IIIC (TFIIIC) [114–119]. It causes a reduction of mature RNA
molecules released into the cytoplasm, and therefore a decrease in molecules competing
with the viral RNAs to be translated. 3Cpro from PV cleaves the poly-A binding protein
(PABP) and the nuclear proteins PTB and La; in the latter, 3Cpro separates the NLS of the
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protein, allowing its cytoplasmic localization and participation in IRES translation [120,121].
Moreover, 3Cpro also processes cytoplasmic proteins such as translation initiation factor
5B (eIF5B) and the ITAF poly (rC) binding protein 2 (PCBP2), that, when processed, loses
its translation function but maintains its role in RNA replication [122–125].

The cleavage of RIG-I by 3Cpro from PV and RV can block the recognition of viral
RNA by the host’s innate immune system [111,126]. On the other hand, 3Cpro from PV can
also affect the integrity of the cellular cytoskeleton through the cleavage of microtubule-
associated protein 4 (MAP-4) [127].

Furthermore, 3Cpro from PV and RV also alters the nucleus–cytoplasmic traffic by
processing nucleoporins, such as Nup62, Nup153, Nup214, and Nup358, components of
NPC [4,16,17,19].

As mentioned above, the viruses use these strategies to favor their replication by
preventing the activation of genes related to the antiviral immune response and avoiding
competition with cellular mRNA by the translational machinery.

6. Alterations of the NPC by 2Apro y 3Cpro of Poliovirus and Rhinovirus: The
Cleavage of the Complex

NPC alterations during viral infections due to specific cleavage of Nups by cysteine
proteases with a chymotrypsin-like activity of cytoplasmic viruses such as PV and RV
have been reported. The nucleoporins that are most commonly targets of these proteases
are Nup358, Nup214, Nup153, Nup98, and Nup62, which results in the alteration of the
nucleus–cytoplasmic transport of proteins and mRNAs [3,4,8,100], the reduction of cellular
mRNA translation, seizing the translation machinery for viral replication and antiviral
immune response control (Figure 5) [5–8,17,128,129].
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6.1. Inhibition of the Nucleus–Cytoplasmic Trafficking of Proteins and RNA during PV Infection

Some authors have reported that during infection with PV, the nuclear proteins La,
Sam68, and nucleolin were delocalized towards the cytoplasm [130–132]. Given this, in
2001, Gustin and Sarnow [4] analyzed the effects of infection with PV on the nucleus–
cytoplasm traffic.

To analyze the classical nuclear import pathway (importin α/β), these authors used
chimeric EGFP proteins coupled with the SV40 large T antigen NLS. Using confocal
microscopy, they found that during infection with PV, the EGFP-NLS signal was located
mainly in the cytoplasm, contrary to control uninfected conditions where the signal was in
the cell nucleus. On the other hand, they analyzed the non-classical transport pathways,
such as the one mediated by transportin 1 during infection. Transportin 1 participates in
the bidirectional transport of proteins containing sequence M9-NLS (also called PY-NLS),
present in proteins such as the heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1),
and some others involved in RNA binding, transcription, or processing [133]. When this
pathway was analyzed during PV infection, Gustin and Sarnow found that EGFP-NLS-M9
was also redistributed from the nucleus to the cytoplasm in infected cells.

Furthermore, a battery of antibodies directed against proteins that use different trans-
port routes was used to analyze their location. The hnRNP A1 (transportin 1 pathway [133]),
hnRNP K (Importin α/β pathway and K nuclear-shuttling (KNS signal) [134]), and hnRNP
C (nuclear retention sequence (NRS) was relocated to the cytoplasm during PV infec-
tion [135]). However, some pathways were not affected by infection, such as the Exportin
CRM1 pathway and the Transportin SR pathway (demonstrated by the cellular location
of SC35 [136]). These results show that some transport pathways are affected, and others
remain functional during PV infection.

A necessary mediator for nucleus–cytoplasmic transport is the NPC, which was
analyzed during infection with PV. Using the monoclonal antibody 414 (directed against
FG-Nups) and specific antibodies against Nup153 and Nup62, a dramatic reduction in
these proteins was observed in infected cells [4].

In 2008, this same group described that 2Apro from PV is responsible for Nup153,
Nup98, and Nup62 cleavage; therefore, for the nuclear–cytoplasmic traffic during infection
with PV [6]. Later in 2009, Castelló et al. reported that the cleaving of Nup153, Nup98, and
Nup62, by 2Apro, interferes with the traffic of mRNAs, rRNAs, and U snRNAs from the
nucleus to the cytoplasm, without any apparent effect on tRNA transport (Figure 5).

6.2. Inhibition of Nuclear–cytoplasmic Trafficking of Proteins and RNA during Infection with RV

Like PV, RV requires host nuclear proteins such as nucleolin, La, and Sam68 for its
replication [5]. Given this fact, Gustin and Sarnow analyzed whether RV could alter the
NPC integrity and its effect on nucleus–cytoplasmic transport.

As in PV infection, during the RV infection, Nup153 and Nup62 were also degraded,
and consequently, the nuclear–cytoplasmic traffic was altered. Importin α/β (classic NLS),
transportin 1 (M9-NLS), hnRNP A1 (transportin 1 pathway [133]), hnRNP K (Importin
α/β pathway and K nuclear-shuttling (KNS signal) [134]), and hnRNP C (nuclear reten-
tion sequence (NRS) pathways were altered [135]), while others (such as Transportin SR
pathway [136]) were not affected.

Furthermore, it was found that 2Apro of HRV-2 is responsible for cleaving Nup62 and
thus altering the nuclear–cytoplasmic traffic [8]. In addition to these findings, Watters and
Palmenberg reported that 2Apro from various RVs (HRV-A, HRV-B, and HRV-C) cleaves
Nup153, Nup98, and Nup62 at different sites [7].

HRV 3Cpro and its precursor 3CD also participate in the cleavage of Nups and the
alteration of the nuclear–cytoplasmic traffic. 3Cpro and 3CD degrade Nup153, Nup214,
and Nup358 [16]. Furthermore, 3Cpro also downgrades Nup62 and Nup98 [17]

FG-Nups (Phe/Gly repeats) are recognized by the nuclear–cytoplasmic transport
machinery (carioferins) [29]. Thus, the cleavage of the Nups by the proteases 2Apro and
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3Cpro inhibits the transport activity. The proteolytic activity of 2Apro on NPC inhibits the
importin α/β, transportin 1, transportin 3 (SR), and export pathways Crm1 (Figure 5) [137].

7. Conclusions

The consequences of the inhibition of transport can occur at the antiviral level through
the inhibition of transport via importin α/β of NF-KB [138], IRF-3 [139], and STAT-1 [140];
at the translational level, through changes in the subcellular localization of nuclear proteins
to replication centers, such as La, PTB, nucleolin, and Sam68; in RNA biosynthesis, by
inhibiting the nuclear import of hnRNPs and SR proteins and by avoiding competition for
the translational machinery by hampering the export of mRNAs.

The viral proteases of RNA-viruses are indispensable proteins for viral progeny
production since they are the major components for the processing and maturation of viral
proteins. Moreover, viral proteases also have essential roles in viral infection; for that,
proteases alter the nucleus–cytoplasmic transport by targeting Nups in the NPC; thus,
modifying different cellular pathways to favor viral replication and to evade the immune
response. Thus, viral proteases constitute an attractive pharmacological target for the
design of antiviral drugs.

In this review and other related works, it becomes clear that there is a need to not only
study the participation of the cell nucleus and its components but also the involvement
of viral proteins in the nucleus during the promotion of viral replication and infection of
RNA-viruses and, thus, to influence in the development of drug targets. Viral proteases
also have essential roles in viral infection.
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