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Abstract: Personalised prosthetic sockets are fabricated by expert clinicians in a skill- and
experience-based process, with research providing tools to support evidence-based practice.
We propose that digital volume correlation (DVC) may offer a deeper understanding of load
transfer from prosthetic sockets into the residual limb, and tissue injury risk. This study’s aim
was to develop a transtibial amputated limb analogue for volumetric strain estimation using DVC,
evaluating its ability to distinguish between socket designs. A soft tissue analogue material was
developed, comprising silicone elastomer and sand particles as fiducial markers for image correlation.
The material was cast to form an analogue residual limb informed by an MRI scan of a person with
transtibial amputation, for whom two polymer check sockets were produced by an expert prosthetist.
The model was micro-CT scanned according to (i) an unloaded noise study protocol and (ii) a case
study comparison between the two socket designs, loaded to represent two-legged stance. The scans
were reconstructed to give 108 µm voxels. The DVC noise study indicated a 64 vx subvolume and 50%
overlap, giving better than 0.32% strain sensitivity, and ~3.5 mm spatial resolution of strain. Strain
fields induced by the loaded sockets indicated tensile, compressive and shear strain magnitudes in
the order of 10%, with a high signal:noise ratio enabling distinction between the two socket designs.
DVC may not be applicable for socket design in the clinical setting, but does offer critical 3D strain
information from which existing in vitro and in silico tools can be compared and validated to support
the design and manufacture of prosthetic sockets, and enhance the biomechanical understanding of
the load transfer between the limb and the prosthesis.

Keywords: amputation; prosthetic; digital volume correlation; DVC; micro-CT

1. Introduction

For the estimated 0.5% of the world’s population who need prosthetic or orthotic services [1],
successful rehabilitation has a substantial influence on their quality of life. Lifetime healthcare costs
are substantial for individuals with amputation, estimated to average nearly £3000/yr per patient [2].
This includes considerable expenditure on prosthetic limb components: a child losing a limb at 10 years
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old may require 25 prosthetic limbs in their lifetime [3]. A critical component of the prosthetic limb is
the socket, which is the load-bearing interface between the prosthesis and the residual limb. The socket
plays the primary role in providing a sound, functional coupling allowing transfer of dynamic loading
from gait and other activities whilst distributing these loads to the skin, soft tissues and musculoskeletal
system, to minimise discomfort and the risk of tissue damage.

Prosthetic sockets are personalised to accommodate different residual limb anatomy, through
design and fabrication by expert prosthetists. Several well-established design theories exist, including
the Total Surface Bearing (TSB) approach [4], which aims to minimise pressure gradients across the
limb–socket interface, and the Patellar Tending Bearing (PTB)) approach [5,6], which preferentially
loads the residual limb’s pressure tolerant zones, and unloads sensitive areas, such as the fibular head.
Prosthetists often design and fit the socket by an iterative process informed by their client’s feedback,
and observation of physiological responses to pressure, for example, skin blanching. Socket fit is
described as a primary concern of many prosthesis users [7], but discomfort and soft tissue damage are
common [8], especially during early rehabilitation. Indeed, prosthesis users need numerous visits to
clinics, returning on average nine times in their first year post-amputation across a range of different
amputation levels and socket types [9,10]. Whilst some iterative work is inevitable as the residual limb
reduces in volume during post-surgical healing and biomechanically adapts, the clinical prosthetics
community’s consensus is that objective tools are needed to enhance the evidence base for socket
design, supporting the application of their experience and skill, and reducing avoidable iterations.

Researchers have presented tools to assess the mechanical conditions at the skin–socket interface
using sensors [11,12] and the use of finite element (FE) analysis to predict these conditions to
inform socket design was first proposed in the 1980s [13,14]. Recent work has established highly
computationally efficient implementations, with a view to facilitate translation into the clinic [15].
Previously, it has only been possible to validate an FE model’s surface stress predictions [16], but it is
recognised that soft tissue injury is a product of tissue shear strains in the superficial and in deeper
tissues, particularly around bony prominences [17]. These tissue shear strains may not correspond to
surface pressure points or gradients, thus requiring in vivo or in silico estimation of tissue deformations.
In the latter case, there is a need to provide confidence in finite element (FE) models’ volume strain
predictions, which could be addressed through digital volume correlation (DVC).

DVC involves estimating a displacement field between two volumetric imaging datasets,
often reconstructed from micro-focus computed tomography (µCT), by correlating unique pattern
features in subvolumes in the voxel intensity array [18]. In contrast to surface-based digital image
correlation, which often employs an applied pattern of speckles, DVC typically uses features in a
material’s structure such as the reinforcement phase of composites [19] or the trabecular rod, plate and
pore structures of trabecular bone [20,21], as well as microstructural features in cortical bone [22–24].

Soft tissue strain fields have proven harder to characterise using these techniques, owing to
a lack of highly-contrasting pattern in µCT imaging [25]. Researchers have tracked mitral valve
deformations in µCT by applying glass, sand, sea-shell and clay fiducial markers to the tissues’
surface [26]. Other researchers have approached the problem using different imaging modalities,
for enhanced contrast. The strain field in tendon fascicles has been estimated with DVC using tenocyte
nuclei as the pattern, stained for increased contrast, and imaged using confocal microscopy [27]. Optical
coherence tomography (OCT) may allow larger structures to be imaged than confocal microscopy,
but still only within superficial tissue samples (millimetre depth penetration). This has been applied
in 3D to a variety of ex vivo and phantom materials containing particles [28,29]. More recently,
DVC has been applied to cadaveric intervertebral discs using native tissue features visible using ultra
high-field (9.4 T) MRI [30], and using ECG-gated CT angiographic imaging for in vivo characterisation
of aortic wall displacement and strain [31]. The translation of µCT imaging-based DVC is limited in the
in vivo clinical setting due to radiation dose and lack of contrasting pattern for correlation. However,
phase contrast µCT imaging has been proposed as a promising future direction for visualising the
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required texture in ex vivo soft tissues for strain field estimation [25], recently demonstrated for the
cartilage–subchondral bone interface [32].

We propose that DVC may be used to gain a deeper understanding of the sub-surface load transfer
from prosthetic sockets into the residual limb, to compare socket design parameters and support
FE model validation. Therefore, this study’s aim was to develop an analogue transtibial amputated
residual limb for volumetric strain estimation using DVC and assess its sensitivity to detect the strain
patterns typically observed in residual limbs during prosthetic socket use.

2. Materials and Methods

2.1. Soft Tissue Analogue Material

First an analogue material was developed, to represent the gross stiffness of residual limb soft
tissues at small strains. This included a distribution of fiducial markers enabling the images to be
used in DVC analysis. The target stiffness was set around 100 kPa. Transtibial residual limb soft
tissues are reported to present a range of stiffness from approximately 50–150 kPa, or 50–100 kPa
excluding the patella tendon [14,33,34], reaching the higher end of this range when muscles are
contracted. Samples of a range of two-part silicone elastomers were prepared, including examples with
deadener additive to reduce the nominal stiffness, and the addition of sand particles in varying volume
fractions. The specimens were cured under −1 bar vacuum to minimise porosity introduced in mixing.
The materials’ compressive modulus was characterised according to Standard ASTM D 575-91 [35].
The tests were performed on an Instron 5569 mechanical test machine (Instron Corp, Norwood, MA,
USA) with a 2kN load cell, in ramped displacement-controlled compression up to 60% strain at 5%/sec,
between flat plates lubricated with bicycle oil to allow transverse expansion. The compressive force was
used to calculate engineering- and estimated true stress, assuming incompressibility [36], and plotted
against strain calculated from the loading plate displacement, which was corrected for machine
compliance. These data were used to estimate linear tangent moduli. The selected material included
a silicone rubber matrix of 62.5% Platsil Gel 25 and 37.5% Platsil Gel 25 Deadener LV (Mouldlife,
Bury Saint Edmunds, UK), giving a tangent modulus from 0–10% strain of 74 kPa (R2 = 0.974).
This increased to 95 kPa (R2 = 0.990) when mixed with 0.1–0.5 mm size range sand (EuroSand, Ziegler
Group, Weiden, Germany) at approximately 15% by volume (30% by mass).

2.2. Analogue Residual Limb Fabrication

MRI scans of a single, left transtibial amputated residual limb were obtained under secondary
data analysis ethical approval (ERGO29927). The participant (male, 67 yrs) had a unilateral
transtibial amputation 12 years earlier due to complications from diabetes mellitus. Prior to imaging,
the participant provided written, informed consent (Fraunhofer IPA #2016_BLM_0009). The scans were
collected in a 3 T MRI scanner (MAGNETOM Spectra, Siemens Healthcare GmBH, Erlangen, Germany
at Radiologie im Zemtrum, Agusburg, Germany), with T1-weighting using a spine coil, 13 ms echo
time, and 742 ms repetition time, producing 3.0 mm axial slices and 0.5 × 0.5 mm in-plane resolution
(Figure 1A). The participant was scanned whilst wearing his usual elastomeric prosthetic liner. The MRI
image stack was segmented (ScanIP 2017.06, Synopsys Inc., Mountain View, CA, USA) to provide
representations of the liner’s external surface, and the residual bones. The reconstructed MRI was
used to identify nearest size-match composite bone models (4th Generation Composite Sawbones,
Femur #3403, Tibia #3401, Fibula #3427-1 and Patella #3419 with tabs removed, Sawbones AG, Malmö,
Sweden), which were resected and potted in resin (Technovit 3040, Kulzer GmbH, Wehrheim, Germany).
This included simplified collateral ligaments and rubber sheet, to provide nominal compliance at the
articulating surfaces (Figure 1B). A nylon mould was 3D printed to the residuum’s neutral shape.
The same Platsil25 and sand mixture was stirred, degassed at −1 bar for 4 min, poured into the mould
(which contained the residual bones supported by a retort stand), and degassed again at −1 bar
for 2.5 min before being left to cure (Figure 1C). The model was extracted from the mould and a
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nylon stocking was donned, with a polyethylene terephthalate (PETE) check socket manufactured
for the study participant by an expert prosthetist (Figure 1D,E). The assembly was mounted in a
load frame comprising steel plates, carbon fibre pillars, and a single-axis actuator (Deben UK Ltd.,
Bury St Edmunds, UK, Figure 1F), with a 1 kN capacity and 10 mm travel. The bone-soft tissue surface
alignment was matched to the MRI scans. In the test rig, the loading axis was aligned between the
cut end of the femur and the distal-most tip of the socket. The socket was loaded through a shallow
cylinder, which allowed socket rotation but constrained off-axis translation of the socket tip.

Figure 1. Producing analogue residual limb from MRI data (A). Residual bone models and simplified
knee joint created, with nearest size-match to MR images (B). Residual bones suspended inside a mould;
silicone and sand analogue material mixed, degassed, poured, and degassed again (C). Model donned
with nylon stocking (D) and polyethylene terephthalate (PETE) check socket (E). Mounted on in situ
loading rig (F). Indicative rectification maps from −8mm (blue) to +8mm (red) are given for the Total
Surface Bearing (TSB) (H) and Patellar Tending Bearing (PTB) (G) sockets, calculated using the open
source AmpScan shape analysis tool [37].

2.3. Digital Volume Correlation Protocol

The assembly was mounted on the rotate stage within a custom 225/450 kVp Nikon/X-tek Hutch
micro-focus X-ray CT scanner (Nikon Metrology, Tring, UK, at the µ-VIS X-ray Imaging Centre,
University of Southampton, Figure 2). µCT scans were conducted using the 450 kVp source and
Perkin Elmer XRD 1621 CN03 HS detector (PerkinElmer Optoelectronics, Wiesbaden, Germany), with a
source-to-object distance of 440.9 mm and a source-to-detector distance of 800.7 mm. The polychromatic
X-ray beam had a 320 kVp peak voltage, with 59.2 W power. 3142 projection images were acquired
using 12 dB analogue gain and 134 ms exposures, averaging four frames/projection through 360 degrees
rotation, taking 30 min in total. Four scans were conducted for an unloaded noise study, and four to
compare the soft tissue analogue strain fields generated in TSB and PTB design sockets under a static
axial displacement corresponding with 400 N load, representing two-legged stance (Table 1). Following
preliminary tests, it was identified that a ~20 min dwell period was required between loading and
scanning, for viscoelastic stress relaxation effects to subside. A pre-determined displacement was
applied to give the desired load after stress relaxation.

The projection images were used to reconstruct 3D volumes of 2000 × 2000 × 2000 voxels
(cubic pixels) using CTPro3D (Nikon Metrology, Tring, UK) with 108 µm voxel size. DVC was
performed using combined fast-Fourier transform (FFT) and direct correlation (DC) algorithms
(DaVis 8, LaVisionUK Ltd., Bicester, UK). The DVC parameters were verified by performing multiple
correlation attempts between unloaded noise study image pairs with subvolume sizes from 28–128 vx,
and 50% overlap. Using the verified subvolume size, DVC correlations were performed between
the unloaded reference and loaded scans with each socket, in four steps with two passes, producing
three directional displacements and six strain components. The results data points were filtered to
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remove those outside the residuum model, and within the bone structures. Spatial strain distribution
histograms and percentile ranges were calculated.

Figure 2. Analogue model and check socket mounted on the in situ loading rig inside the HUTCH
microfocus CT scanner at µVIS X-ray Imaging Centre. Image shows X-ray source (left) and detector
(right), with loading rig mounted on a rotate stage.

Table 1. Scanning protocol.

Noise Scan ID Description

1 Unloaded
2 Repeat unloaded
3 Repeat unloaded, translated axially ~1 mm

4 Repeat unloaded, translated towards X-ray source for
magnification

5 TSB socket, nominally unloaded (<50 N)
6 TSB socket, single-leg stance axial load (400 N)
7 PTB socket, nominally unloaded (<50 N)
8 PTB socket, single-leg stance axial load (400 N)

3. Results

3.1. Noise Study

The sand particles and silicone gel showed high contrast in the reconstructedµCT images (Figure 3).
The particles were well-distributed throughout the structure, except for some sparse regions within the
knee joint space and a dense space at the distal tip, where ~5 mm particle sinking before full curing
caused particle collection. CT cone beam artefacts were visible at the proximal and distal ends of the
scan, outside the main region of interest. Of the tested subvolume sizes, the optimal balance of strain
sensitivity vs. spatial resolution of strain was obtained with 64 vx DVC subvolumes overlapping at
50% (Figure 4, Appendix A Table A1). In the three nominally-uniform strain scan pairs, with 64 vx
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subvolumes all strain components had a standard deviation of strain below 0.32% (translation case),
0.13% (magnification case), and 0.02% (repeat case). This 64 vx subset with 50% overlap and 108 µm
voxel size represents a spatial resolution of strain of approximately 3.5 mm.

Figure 3. Example reconstructed CT section of a sagittal plane through the model, with bones and
surrounding areas masked (A), magnified view of sand particle features compared to the 108 µm-cube
voxels (B), and comparing subvolume size (yellow squares) from 24 to 128 voxels (2.6 to 13.8 mm)
squares (C).

Figure 4. Noise study results for digital volume correlation (DVC) parameter selection. Plots of
standard deviation of strain components vs. subvolume size, for the three unloaded noise study test
conditions: repeat scans (A), nominal 1mm translation (B), and nominal 1% magnification (C). Selected
64 vx subvolume size indicated by dashed line.
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3.2. Comparative Socket Design Study

Axial and shear strain fields were extracted for the stance-loaded sockets when compared to
their donned and unloaded reference case, which are plotted on example sagittal and coronal sections
through the main axis of the tibia (Figure 5). The strain fields were analysed quantitatively by calculating
spatial strain distribution histograms (Figure 6) and percentile ranges (Appendix A Table A2). In a
region of interest (ROI) containing all soft tissue below the tibial plateau, axial strain magnitudes were
typically in the range of −4 to +6%, and shear strain ranged from −10 to +9% (10th–90th) percentile
ranges. There were many similarities in the sockets’ load transfer mechanisms:

• Both sockets demonstrated relatively uniform tensile and shear strain fields around the tibia,
and compression below the tibial plateau flare (Figure 5 ‘’tpf”), visible on the coronal plane.

• Relatively low distal soft tissue loading was observed for both sockets, with median 0.17%
(10th–90th percentile range −2.52–2.89) in a distal ROI below the tibial tip in the coronal plane
for the TSB socket, and −0.13% (−3.92–1.72) for the PTB socket. This distal soft tissue protection
was achieved through the sockets’ press-fit, which generates the observed shear stress around the
limb’s periphery as the socket is donned, restricting distal tip translation and contact.

• Despite the uniform pressure distribution targeted with the TSB design approach [4], asymmetries
in strain field distributions were observed, in particular on the coronal plane, for example, with a
tensile strain concentration near the medial anterior tibia (Figure 5 ‘dmt’). The same was observed
for the PTB socket.

However, clear local distinctions between the strain field estimates were detectable for the two
socket designs, most notably in sagittal plane axial and shear strain:

• The TSB design socket produced some compressive axial strain in the distal ROI with median
(10th–90th percentile ranges) of 0.58% (−3.67–4.58) on the sagittal plane. Conversely, the PTB
socket design displayed lower axial strain magnitude than the TSB case in the distal ROI, especially
visible in the sagittal plane, with median (10th–90th percentile ranges) of 0.12% (−2.50–3.45).
This is consistent with the PTB design approach, which aims to achieve load proximal transfer,
primarily at load-tolerant sites, and thereby off-load more sensitive and vulnerable sites, and bony
prominences [5,6].

• The other notable difference was a change in the shear stain field directions and magnitudes on
the sagittal plane, at the anterior distal tibial cut (Figure 5‘’dat”), a bony prominence often linked
with soft tissue sensitivity and vulnerability to damage. This shear strain gradient was produced
despite a lack of limb–socket interface contact here for the PTB design (Figure 5 ‘’ig”). The sagittal
shear strain fields were both shifted to a larger magnitude in the anterior part of the ROI with
median (10th–90th percentile ranges) of −2.08% (−8.88–14.69) for the PTB socket, compared to
−5.79% (−11.41–0.64) for the TSB socket.

Correlation failed proximally around the knee and at the distal tip, due to the mentioned imaging
artefacts and, respectively, sparser and denser sand content in these areas. Correlation was also lost in
areas near the limb–socket interface, where there is no contact, including the distal tip in both sockets,
and anterior to the distal tibial cut for the PTB socket.
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Figure 5. Example DVC axial- and in-plane shear strain maps for two socket designs: total surface bearing (TSB, top row) and patella tendon bearing (PTB, bottom
row). Zones where correlation has failed are shaded. Annotation key: tpf: tibial plateau flare; dat: distal anterior tibia; dmt: distal medial tibia; ig: interface gap.
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Figure 6. Example DVC axial- and in-plane shear strain distributions for TSB and PTB socket designs, in indicated regions of interest.
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4. Discussion

This study set out to develop an analogue transtibial amputated residual limb for volumetric
strain estimation using DVC and assess its sensitivity to detect an example of the strain patterns
typically observed in residual limbs during prosthetic socket use, representing double-leg standing.
The analogue was used to illustrate a case study comparison between two common clinically-used
socket design approaches. The estimated strain distributions from the DVC analysis identified key
differences between the socket designs, providing an objective means to quantify these differences in
both axial and shear strain distribution.

The simplified bulk soft tissue analogue material was produced, including sand particles as
fiducial markers for image correlation, and a compressive tangent modulus matched to literature
reports for transtibial residual limb tissues. When incorporated into a full analogue residual limb
mounted on an in situ loading rig, its DVC strain sensitivity was quantified as below 0.320% with a
spatial resolution of approximately 3.5 mm. For strain magnitude, this gives the potential of high
signal:noise ratio. The sand particles were well-distributed throughout the structure, except for some
sparse regions within the knee joint space and a dense space at the distal tip, where ~5mm particle
sinking before full curing caused particle collection. From an imaging perspective, this was accepted as
the sparse, proximal zones are above the functional socket area, so outside the main region of interest.
However, this would elevate the modulus of the more dense distal tip, though again distal tip is not
intended to bear load. Future work might investigate methods to further stabilise the sand distribution,
such as rotating the mould during curing, or by accelerating curing chemically or thermally.

In the subsequent case study evaluation, the majority of the residual limb’s region of interest
experienced estimated strain up to 10% for both axial and shear strains, which corresponded to the strain
range for which the analogue material’s stiffness was designed. This is corroborated by finite element
analyses, which give typical mean strain estimates of 3–15% for both principal tension, compression,
and maximal shear, and strain peaks of 30–75% [15,17,38]. The estimated strain distribution lies
below estimated thresholds for skeletal muscle damage from engineered tissue and rat models [39,40].
Strain predictions were consistent with the design intent for TSB [4] and PTB [5,6] socket types, and
provided a noteworthy illustration of how sub-surface shear strain gradients—a marker of deep tissue
injury risk—may be generated near bony prominences in the absence of interface pressure near the
anterior distal tip of the tibia.

Whilst this new approach provides additional insights into these complex, non-linear load transfer
mechanisms, limitations must be acknowledged. The presented model does represent a considerable
simplification of the true anatomy and physiology of the residual limb. Accepting practical limitations,
simplifications were made to match the most common approaches taken by the FEA community, such as
the use of a single, nominally homogeneous soft tissue analogue structure [16]. The model permits
limited knee flexion, where a fixed knee joint has been used in some FE approaches, and residual
limb models or simulators [41,42], which were designed to allow assessment of the residuum–socket
interface. Further, the material is more closely matched to transtibial residuum tissue properties
than many modelling studies that continue to use a stiff, 200 kPa linear elastic model [16]. Diffusion
tensor MRI may enable separate muscular structures to be modelled [43], although DVC would give
erroneous strain measurements between separate structures as the continuum assumption would no
longer hold. For similar reasons, this approach does not provide interface stress assessment, which
has been a key focus of prior research, and to provide such data the analogue would need to be
instrumented with interface pressure and shear stress sensors [44]. Interface displacement data would
be enhanced by including markers in the socket, for DVC analysis; alternatively, reflective markers
have been used to measure liner displacement inside a transparent check socket [45]. Finally, in this
demonstration only a single residual limb is represented, so the case study does not provide a basis to
draw general conclusions about socket designs, for which a statistically-representative range of limb
shapes and sizes would be required. This approach sets aside other key factors like the stiffness and
dynamics of associated componentry below the socket, such as the pylon and foot, and provides a
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constraint in that the fixed end of the bone and socket tip remain aligned on the loading axis, for test rig
stability. This may not perfectly represent the freely-self-aligning in vivo scenario but is comparable
between the two sockets. It is also acknowledged that the present study does not represent peak
loading that would be expected during walking or other dynamic activity, but rather a quiet standing
scenario. If strain can be assumed to correlate with load, this low load scenario is a harsher test for
the methodology’s strain resolution and comparative power; however, a more complete picture of
the potential range of loading conditions would be achieved with addition of moments to represent
quasi-statically the key instants of the gait cycle [46].

This development provides an additional dimension to residual limb interface simulators [41,42],
by providing a volumetric strain assessment. Non-invasive Digital Image Correlation (DIC) has also
been demonstrated to offer some insights into residuum biomechanics, capturing in vivo the shape
and free-deformation of the transtibial residual limb [47]. DVC may not yet be applicable in a clinical
setting using CT imaging due to radiation dose and lack of contrasting pattern for correlation, and even
standard field MRI is not collected routinely in these individuals. However, there may be value in using
these techniques for in vitro comparative analysis of socket design parameters, and the validation of
FE models.

5. Conclusions

An analogue residual limb was presented that provides a simplified model to estimate the soft
tissue load distribution pattern generated by prosthetic sockets. These results indicate that physiological
strain magnitudes can be observed, supporting the method’s use for comparative analysis of different
socket designs, and an indication of design details or anatomic features associated with elevated
deep-tissue injury risk [48].
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Appendix A

Table A1. Noise study results, showing the mean and standard deviation strain and displacement
for the residual limb region of interest. Maximum values from all six strain or three displacement
components are presented.

Test Subvolume Size, vx
Strain, % Displacement, mm

Max. Mean Max S.D. Max. Mean Max S.D.

Repeat
(Nom.

Identical)

24 0.004 0.364 0.002 0.010
32 0.005 0.272 0.002 0.009
48 0.005 0.096 0.002 0.009
64 0.001 0.022 0.002 0.008
96 0.001 0.010 0.002 0.008

128 0.001 0.008 0.002 0.008

z-Translation
(Nom. 1mm)

24 0.020 0.837 0.999 0.019
32 0.060 1.304 0.997 0.044
48 0.038 0.799 0.999 0.035
64 0.025 0.320 0.998 0.011
96 0.024 0.329 0.881 0.019

128 0.065 0.348 0.661 0.029

Magnification
(Nom. 1%)

24 0.916 0.917 0.564 0.196
32 0.919 1.149 0.564 0.196
48 0.944 0.936 0.572 0.185
64 0.909 0.125 0.567 0.169
96 0.903 0.151 0.558 0.157

128 0.917 0.327 0.534 0.157

Table A2. Loaded socket strain results, comparing axial and shear strain distributions for PTB and TSB
sockets on sagittal and coronal planes through the tibial axis. “Full” is defined as all soft tissue distal to
tibial plateau; “Distal” is defined as all soft tissue distal to cut end of tibia; “Anterior”, “Posterior”,
“Medial”, and “Lateral” are defined as sub-regions of “Full”, on either side of the tibial axis.

Median (10th–90th Percentile) Strain, %

Axial Shear

Region TSB Socket PTB Socket TSB Socket PTB Socket

Sagittal Plane

Full 2.13
(−2.18–5.47)

1.09
(−1.63–6.02)

−1.78
(−8.81–7.99)

1.29
(−6.91–6.57)

Distal 0.58
(−3.67–4.58)

0.12
(−2.50–3.45)

−2.81
(−6.10–3.02)

0.18
(−3.82–4.95)

Anterior 1.19
(−3.39–5.23)

1.20
(−2.93–12.03)

−5.79
(−11.41–−0.64)

−2.08
(−8.88–14.69)

Posterior 3.07
(−0.26–5.68)

1.17 (−0.
05–3.53)

3.64
(−2.88–8.54)

3.53
(−1.64–6.52)

Coronal Plane

Full 0.75
(−2.33–3.41)

0.17
(−3.12–2.84)

1.71
(−9.77–8.76)

0.39
(−7.50–7.37)

Distal 0.17
(−2.52–2.89)

−0.13
(−3.92–1.72)

0.30
(−5.46–6.31)

−0.97
(−6.40–2.91)

Lateral 1.19
(−1.93–3.54)

0.69
(−1.87–3.20)

4.36
(−0.21–9.25)

2.61
(−1.34–8.59)

Medial −0.77
(−3.88–2.92)

−1.33
(−3.73–1.94)

−7.21
(−11.89–−3.18)

−5.91
(−9.18–−1.17)
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