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Gaze and language are major pillars in multimodal communication. Gaze is a non-verbal

mechanism that conveys crucial social signals in face-to-face conversation. However,

compared to language, gaze has been less studied as a communication modality. The

purpose of the present study is 2-fold: (i) to investigate gaze direction (i.e., aversion and

face gaze) and its relation to speech in a face-to-face interaction; and (ii) to propose

a computational model for multimodal communication, which predicts gaze direction

using high-level speech features. Twenty-eight pairs of participants participated in data

collection. The experimental setting was a mock job interview. The eye movements

were recorded for both participants. The speech data were annotated by ISO 24617-2

Standard for Dialogue Act Annotation, as well as manual tags based on previous social

gaze studies. A comparative analysis was conducted by Convolutional Neural Network

(CNN) models that employed specific architectures, namely, VGGNet and ResNet. The

results showed that the frequency and the duration of gaze differ significantly depending

on the role of participant. Moreover, the ResNet models achieve higher than 70%

accuracy in predicting gaze direction.

Keywords: face-to-face interaction, gaze analysis, deep learning, speech annotation, multimodal communication

INTRODUCTION

Our skills of conversation by means of language, along with the accompanying non-verbal
signals, set us apart from other species. Hence, conversation is considered to be one of the
important indicators of humanness and human interaction. Recently, Embodied Conversational
Agents (ECAs) that allow face-to-face communication are becoming more common. Face-to-
face communication implies that interaction should be characterized as an inherently multimodal
phenomenon, instead of speech in isolation (e.g., Levinson and Holler, 2014; Kendon, 2015;
Mondada, 2016). This is because humans have an ability to send and receive information by means
of non-verbal cues such as facial expressions, gestures, gaze, and posture, during a face-to-face
conversation. In particular domains, they even correspond to 50–70% of the entire messages that
the speaker conveyed (Holler and Beattie, 2003; Gerwing and Allison, 2009).

Gaze is an important non-verbal cue that conveys crucial social signals in face-to-face
communication. Although its characteristics depend on individuals and cultural backgrounds,
we usually make eye contact with the interlocutor, which, for instance, facilitates joint and
shared attention. Even though we have such a tendency, face-to-face conversation is not just an
interactive communication where partners constantly sustain eye contact; instead, it involves a
sort of transition between gazing toward and away from the communication partner(s). Compared
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to non-human primates, the specialized morphology of the
human eyes, which have a sharp contrast between the white
sclera and darker pupil, indicates the special role of revealing
gaze direction by the sender and, thus, enables those around the
sender to acknowledge about the direction of his gaze. These
findings have been well-recognized since the past several decades
(e.g., Kobayashi and Kohshima, 1997). We have the ability to
make a distinction between directed and averted gaze from a
very young age. Even an infant can make such a distinction
in the first days of his life (Farroni et al., 2002). The present
study focuses on gaze within language context, thus proposing
a multimodal approach to computational analysis of face-to-face
conversation. In the following section, we present the related
work and technical background for the rest of the paper.

Related Work
Gaze in Social Interaction Settings
There exist various functions that the gaze fulfills in social
interaction. Expressing emotions is one of the well-known
function of gaze (Izard, 1991). An individual should perform
eye movements in an appropriate way for the aim of conveying
emotional states to an addressee successfully (Fukayama et al.,
2002). In addition, gaze takes part in regulation of conversation,
transmitting the intention, coordination of turn taking, asserting
uncertainty or dissatisfaction, regulation of intimacy, and
signaling the dominance and conversational roles (Kendon, 1967;
Duncan, 1972; Argyle et al., 1974; Ho et al., 2015).

In recent decades, the development of eye-tracking
technologies has enabled robust measurements and novel
experimental designs in this field (Gredebäck et al., 2010).
However, most of the studies have been performed in laboratory
settings by adopting static eye-tracking methods (Pfeiffer
et al., 2013), in which participants often monitor the stimulus
presented on a computer screen. Although such experimental
designs are advantageous in allowing one to provide a controlled
procedure, the findings lack generalizability. Eye movements
in the field might be different from those in studies conducted
with static stimuli in a highly controlled laboratory environment
(Risko et al., 2016). This difference can be explained by the
two-way function of gaze in social communication. While gaze
sends messages about, for instance, floor management or the
desire to work together, we also gather information on emotions,
intention, or attentional states of others by gazing on them.

Advances in mobile eye-tracking technology have opened the
door to researchers who study social interaction in daily-life
settings. Broz et al. (2012) studied mutual gaze in a face-to-
face conversation with participants wearing mobile eye-tracking
devices. They observed a mutual face gaze occurring for about
46% of a conversation. Rogers et al. (2018) also conducted
a dual eye-tracking study and reported that the mutual face
gaze comprised 60% of the conversation with 2.2 s duration
on average.

An important characteristic of gaze in communication is that
it is closely connected to speech acts. Accordingly, an analysis
of communication in daily settings has to address speech in
relation to gaze. In the following section, we introduce systematic
approaches to study speech in communication.

Speech Annotation
The studies of Natural Language Processing (NLP) involving text
mining, automated question answering, and machine translation
have gained momentum as a reflection of the developments
in Machine Learning (ML) technology (Meyer and Popescu-
Belis, 2012; Sharp et al., 2015; Popescu-Belis, 2016). Hence,
researchers’ attention to discourse analysis has increased in
parallel. In the last few decades, a variety of discourse annotation
schemas were proposed involving RST (Rhetorical Structure
Theory), RST Treebank (Carlson et al., 2001), SDRT, ANN-
ODIS, and PDTB (Penn Discourse Treebank) (Prasad et al.,
2008). Although there were some common communicative
functions in those schemes, there were also inconsistencies
between. In order to overcome mapping difficulty between
proposed schemes, in the late 1990s, a domain-independent and
multi-layered scheme, DAMSL1 (Dialogue Act Markup using
Several Layers) was proposed. Subsequently, many studies were
carried out until the establishment of ISO standard for dialogue
act annotation. Eventually, ISO standard 24617-2 “Semantic
annotation framework (SemAF)—Part 2: Dialogue acts” was
developed (ISO 24617-2, 2012).

The dialogue act is the act that the speaker is performing
during a dialogue. In a simplified sense, it is a speech act used in
a conversation. A dialogue act has a particular semantic content
that specifies the objects, events, and their relations. Furthermore,
it maintains a communicative function intended to change the
state of mind of an addressee by means of its semantic content.
In practice, dialogue act annotation generally depends on the
communicative function. A turn represents the duration that the
speaker is talking, and it is an important organizational tool in
spoken discourse. Turns can be rather long and complex; in this
case, they cannot be taken as units to determine communicative
functions. They need to be cut into smaller parts called functional
segments. Functional segments supply information to determine
both the semantic content, namely, “dimensions” (see Table 1),
and communicative functions of a dialogue act; for detailed
information, see ISO 24617-2 (2012) and Bunt et al. (2017a), and
for sample annotations, see DialogBank2 (Bunt et al., 2019).

Dialogue act annotation can be achieved in three main
steps: (i) the dialogue is divided into two or more functional
segments, (ii) every single functional segment is associated
with one or more dialogue acts, and lastly (iii) annotation
components are assigned to dialogue acts (see Table 2 for the
related components). Although ISO 24617-2 does not provide
any specific set for Rhetorical Relations (RRs), for this purpose,
it suggests a specific standard, namely, Semantic Relations in
discourse, core annotation schema (DR-Core) (ISO 24617-8,
2016).

A multimodal analysis of gaze and speech allows an
intuitive understanding of their accompanying role in face-to-
face conversation. However, a systematic analysis requires the
specification of the relationship between gaze and speech in

1For Draft of DAMSL: Dialog Act Markup in Several Layers, see https://www.cs.
rochester.edu/research/speech/damsl/RevisedManual/.
2You can find a collection of dialogues annotated according to international
standard ISO 24617-2 under https://dialogbank.uvt.nl/.
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TABLE 1 | Dimensions and communicative functions defined in ISO 24617-2.

Dimension Communicative functions

Task Category of dialogue acts that helps to carry out the tasks or

activities that inspire the dialogue

General Purpose Functions (GPFs)

Auto-feedback Category of dialogue acts that take place, in which the sender

addresses his processing of past dialogue

AutoPositive, AutoNegative, GPFs

Allo-feedback Category of dialogue acts that take place, in which the sender

argues about the addressee’s processing of past dialogue

AlloPositive, AlloNegative,

FeedbackElicitation, GPFs

Turn management Category of dialogue acts that are intended to coordinate the role

of the speaker

TurnAccept,

TurnAssign,

TurnGrab,

TurnKeep,

TurnRelease,

TurnTake, GPFs

Time management Category of dialogue acts that deal with the allocation of time

during the speech

Stalling,

Pausing, GPFs

Own communication management Category of dialogue acts where in the ongoing turn the speaker

alters his own speech

SelfCorrection,

SelfError,

Retraction, GPFs

Partner communication management Category of dialogue acts where in the ongoing turn the speaker

alters the speech of the previous speaker

Completion,

CorrectMisspeaking, GPFs

Discourse structuring Category of dialogue acts that organize the dialogue directly InteractionStructuring,

Opening, GPFs

Social obligations management Category of dialogue acts carried out to meet social

responsibilities such as welcoming, thanking, and apologizing

InitialGreeting,

ReturnGreeting,

InitialSelfIntroduction,

ReturnSelfIntroduction,

Apology,

AcceptApology,

Thanking,

AcceptThanking,

InitialGoodbye,

ReturnGoodbye, GPFs

TABLE 2 | Annotation components.

Component Number

Dimension 1..1

Communicative function 1..1

Qualifier 0..N

Rhetorical relation* 0..N

Participant

Sender 1..1

Addressee 1..1

Other 0..N

Dependence relation

Feedback** 0..N

Functional* 0..N

One and only one-dimension, communicative function, sender, and addressee should be

attached to a single dialogue act. On the other hand, there might be zero, one, or more

qualifiers, rhetorical relations, dependence relations, and participants other than sender

and addressee. *Relation is between dialogue acts. **Relation is between either dialogue

acts or a dialogue act and a functional segment.

terms of the identification of specific patterns, which would
allow making certain predictions about the interplay of gaze

and speech in dialogue. This requires the development of
computationalmodels that characterize gaze-speech patterns that
emerge during the course of communication. In the following
section, we introduce the concept of computational modeling
that we employed in the present study.

Computational Model
The deep learning approach has greatly improved many artificial
intelligence tasks includingmachine translation, object detection,
and speech recognition. In addition to classical AI tasks,
researchers have adapted deep learning to various areas. Wang
et al. (2017) performed sentiment analysis with data from
multiple modalities; Gatys et al. (2016) utilized neural models
to produce images in different styles; and Osako et al. (2015)
eliminated noise from speech signals.

Convolution Neural Networks (CNNs) are localized versions
of fully connected networks (LeCun et al., 1998; Goodfellow
et al., 2016). It is based on an important operation, namely,
convolution, which integrates the product of two functions.
Convolution is useful for calculating change in signals, finding
patterns, detecting edges, applying blurs, etc. CNN models that
essentially learn the right convolution operations for the task at
hand can produce high-accuracy results, especially in the areas of
image classification and recognition. A basic CNN architecture
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FIGURE 1 | A simple CNN model, composed of convolution, non-linearity (ReLU), pooling, and fully connected layers. The final output is one of the four flowers.

Drawing adapted from LeCun et al. (1998).

includes four fundamental operations: (i) convolution, (ii) non-
linearity (e.g., ReLU), (iii) pooling or subsampling, and (iv)
classification (Fully Connected), see Figure 1.

Although CNN models are mostly used for image processing,
they can be used in the same manner for time series (Fawaz et al.,
2019). In this study, we collected the gaze data in the form of a
time series and trained 1D CNN networks.

The Present Study
As reviewed in other articles (e.g., Admoni and Scassellati, 2017;
Stefanov et al., 2019), research on the relationship between gaze
and speech revealed their close coupling in communication
settings (Prasov and Chai, 2008; Qu and Chai, 2009; Andrist et al.,
2014). In the present study, we investigated the relation between
speech (particularly high-level features of it) and gaze direction
(i.e., face gaze or aversion) in a dyadic conversation.

The research into how speech and eye gaze are linked lead to
a better understanding of the underlying cognitive mechanisms,
but also this relation has been studied for practical applications
in Educational Science (e.g., Jarodzka et al., 2017), human robot
interaction (e.g., Chidambaram et al., 2012; Ham et al., 2015),
web-based conferencing (e.g., Ward et al., 2016), and virtual
reality (VR) systems (e.g., Garau et al., 2003; Batrinca et al.,
2013). Some of those studies hold under operational assumptions
such as simulating gaze aversion through head movements alone,
conducting research under highly controlled conditions, which
does not reflect real-life settings, or encoding just the presence of
human speech rather than exhaustive speech analysis.

The main motivation of the present study is to explore eye
gaze and speech relation in a more nuanced and comprehensive
manner through employing state-of-the-art technologies and by
taking into account the limitations of the previous studies in the
field. Moreover, by using the data gathered experimentally, we
trained the simplified versions of two deep networks, the ResNets
(He et al., 2016) and VGGNet (Simonyan and Zisserman, 2015)
that predict gaze direction based on high-level speech features.

Stefanov et al. (2019) showed that listener’s gaze direction
could be modeled from low-level speech features without
considering semantic information, and they concluded that
different methods are required for modeling speaker’s gaze
direction. In successful communication, the listener understands

what the speaker says the way the speaker desires. In doing
so, the listener takes into account the basic characteristics of
the speaker’s utterances, as well as the motivation behind the
initiation and the history of the dialogue, and even his/her
assumptions about the opinions and goals of the interlocutor.
We cannot derive the communicative function of a dialogue
by considering only the surface form of utterances since the
same utterance forms can have different meanings in different
conversations between different people. In the present study, to
model states of both listening and speaking, we used high-level
speech features.

It has been reported that (e.g., Dbabis et al., 2015; Bunt
et al., 2017b) as high-level speech features, the dimensions and
dialogue acts of ISO 24617-2 standard could be automatically
recognized with fairly high accuracy. Therefore, even in case of
a fully automated analysis, which can be conducted as a further
study, ISO 24617-2 standard is a good candidate for extracting
high-level speech features. The analysis of gaze and its ties to
co-occurring speech is not a new topic of inquiry (e.g., Ekman,
1979; Zoric et al., 2011; Ho et al., 2015); however, as mentioned
above, speech analysis was performed based on syntactic features
or just for specific communicative function(s) such as turn
taking, instead of adopting comprehensive semantic annotation
frameworks. To the best of our knowledge, ISO 24617-2 standard
has not been adopted in predicting gaze direction, so far.

In the present study, the speech annotation was handled
in two ways: (i) ISO 24617-2 and ISO 24617-8 for annotating
discourse and rhetorical relations, respectively, and (ii) an
alternative set of speech tags that we proposed based on the roles
attributed specifically to the gaze in social communication. The
reason of annotating speech with two different methods is to
investigate which characteristics of speech will produce better
performance in modeling social gaze. In the following section,
we present experimental investigation with analysis results.

EXPERIMENTAL INVESTIGATION

Materials and Design
Participants
Twenty-eight pairs involved seven professional interviewers, 4
females (mean age = 33.8, SD = 4.72) and 3 males (mean age
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= 35.7, SD = 0.58), with the mean age of 34.6 (SD = 3.51); and
28 interviewees, 14 females (mean age = 25.1, SD = 2.57), and
14 males (mean age = 25.4, SD = 2.68), with the mean age of
25.3 (SD= 2.58) took part in the study. Interviewers took part in
multiple interviews (M = 4, SD= 0.93). Participants in each pair
did not know each other beforehand. All the participants were
native speakers and had a normal or corrected-to-normal vision.

Apparatus
Both participants in a pair wore monocular Tobii eye-tracking
glasses, which had a sampling rate of 30Hz with a 56◦ × 40◦

recording visual angle capacity for the visual scene. The glasses
recorded the video of the scene camera and the sound, in addition
to gaze data. Interviewers read the questions and evaluated the
interviewee’s response on a Wacom PL-1600 15.6 Inch Tablet,
which enables users to interact with the screen by using a
digital pen.

Procedures
The task was a mock job interview. It is adopted from the
previous studies (i.e., Andrist et al., 2013, 2014). Eight common
job interview questions, adopted from Villani et al. (2012),
were translated into Turkish and presented to interviewers
beforehand. The interviewer was instructed to ask given
questions and also to evaluate the interviewee for each question
right after the response. A beeping sound was generated to
indicate the beginning of a session. The participants stayed alone
in the room throughout the sessions.

Data and Analysis
Data analysis consists of three main steps. In the first one, we
extracted gaze directions of each participant. As the next step,
we analyzed audio data for extracting high-level speech features.
In the final step, we synchronized gaze direction data with
speech annotations.

We have developed an open source application that provides
an environment for researchers working in the field without
requiring a technical background (Arslan Aydin et al., 2018).
It is capable of detecting and tracking conversation partner’s
face automatically, overlaying gaze data on top of the face
video, and incorporating speech through speech tag annotation.
It automatically detects whether the extracted raw gaze data
is face gaze of an interlocutor or an aversion. In addition, it
provides interfaces for speech analysis involving segmentation,
synchronization of pair recordings, and annotation of segments.
It significantly reduces the time and effort required for manual
annotation of eye and audio recording data. Manual annotation
is vulnerable to human-related errors, and in addition, automatic
annotation with the state-of-the-art methods provide further
information that may not be extractedmanually such as detecting
the coordinates of facial landmarks, taking into account the error
margins while annotating the gaze direction or segmentation of
the speech at milliseconds precision. The application employs
OpenFace (Baltrusaitis et al., 2016) for gaze direction analysis,

CMUSphinx3 for audio recording analysis, and dlib4 for training
custom face detector. We generally used interfaces of the
developed application in the gaze and the speech tag set analysis.

Speech Analysis
Audio stream from each participant’s recordings was extracted
before performing the speech analysis. The mean duration of the
recordings was 09:41.543 (SD= 04:05.418) (inmm:ss.ms format).
We performed speech analysis with two methods both including
segmentation and annotation sub-steps. As the first step of speech
tag set analysis, the audio files of sessions were segmented into
smaller chunks including sub-words and pauses. The number
of segments (M = 737.4, SD = 414.1) varied depending on
the length and the content of the audio. Since the developed
application called Sphinx4 libraries for the segmentation of audio
files, each segment had amaximum temporal resolution of 10 ms.

Then, in order to determine session intervals and provide
synchronization between the pair recordings, we listened to audio
segments and identified the ones containing beeping sound.
The time offset between the pair’s recordings was calculated
by using the application interface. Lastly, for improving
segmentation quality, the synchronized pair recordings were re-
segmented via merging the time interval information of both
participants’ segments (see resources5 for an example and usage
of developed application).

At the annotation stage of speech tag set analysis, segments
were annotated with the predefined speech labels that we decided
to use by benefiting from the founding of previous social gaze
studies (e.g., Kendon, 1967; Emery, 2000; Rogers et al., 2018) and
also by examining the data we have collected. We considered the
following factors while creating the tag set including 14 labels:

• Separate labels were identified for Speech, Asking a Question,
and Confirmation.

• We classified pauses by their duration as proposed by Heldner
and Edlund (2010) (Pre-Speech, Speech Pause, Micro Pause).

• In parallel with the turn management role of speech, we
defined separate label for Signaling End of Speech.

• We named the conversation segment as Thinking when it
included filler sounds, such as uh, er, um, eee, and drawls.

• As the interviewer reads the questions from the screen, the
interviewer’s gaze would evidently be directed toward the
screen, so we tagged this case separately (Read Question).

• A separate label for repeating the question was identified
(Repetition of the Question).

• We assumed that gaze direction would be affected by laughter
(Laugh, Speech While Laughing).

• We handled Greeting apart from Speech, because we assumed
that the sender would aim to signal intimacy while greeting
and this might have an effect on gaze direction.

3The Sphinx4 is a speech recognition system jointly designed by Carnegie Mellon
University, Sun Microsystems Laboratories, Mitsubishi Electric Research Labs,
and Hewlett-Packard’s Cambridge Research Lab. The Official website is: http://
cmusphinx.sourceforge.net/.
4It is a C++ Library, http://dlib.net/ (accessed on April 15, 2017).
5See the MAGiC App Channel under YouTube, https://www.youtube.com/
channel/UC2gvq0OluwpdjVKGSGg-vaQ, and MAGiC App Wiki Page under
Github, https://github.com/ulkursln/MAGiC/wiki.
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• The interviewers evaluated the interviewee’s answer before
proceeding to the next question. This evaluation process was
performed by looking at the screen. If it did notmeet one of the
above conditions, the interval from the end of the interviewee’s
answer to the beginning of the new question was labeled as
Questionnaire Filling.

The second method is dialogue act analysis using the ISO 24617-
2 standard. The closer the microphone was to the participant,
the cleaner and the better the gathered audio recording was.
Therefore, in order to not miss any data, we transcribed the
conversations by listening to the audio streams of both the
interviewer and the interviewee in a pair separately. We first
opened a Google Document and enabled speech to text feature,
then started to articulate audio while listening to the interviewee’s
audio stream. After that, we listened to the same recording once
more to add non-verbal vocalizations to the transcribed texts,
such as Unfinished Word, Filler Sound, Laugh, Drawl, Warm-
up, and so on. Adding non-verbal vocalizations is recommended
by the ISO 24617-2 standard depending on their effect on the
choice of communicative function, or qualifiers (ISO 24617-
2, 2012; Bunt et al., 2017a). Then, while we were listening to
the interviewer’s audio stream for the same pair, we completed
missing words in the transcription text file of a session. Thus, we
reviewed the transcription of a session twice in this phase. Lastly,
we divided the transcription text file into two separate files based
on the source. As a result, at the end of the Transcription phase,
two files per session were created in total, one for the interviewer’s
transcription and other for the interviewee’s.

Secondly, by using the Praat6 program, three students marked
the time interval of a total of 16,716 words in 15 out of
25 sessions. When selecting these 15 sessions, we have given
priority to long sessions in which dialogue act and RR tagging
might be more frequent. Praat is a free application for speech
analysis in phonetics. We employed only the “Transcribing
speech with Praat function.” As we have already transcribed
audio stream, the word or non-word vocalization was copied
from the transcription file and pasted into the related area in
an interface. Then, the time interval of a word was specified by
marking the beginning and the end. Even though we reviewed
the transcript text twice in the previous phase, there would still
be some missed words or non-word vocalizations. In such cases,
the transcription file was updated with the missing word and/or
non-word vocalization. In addition to that, after each word was
processed, a controller checked if it was necessary to update
the time intervals of words and transcribed texts. Thus, the
transcribed text file was reviewed four times in total since its
creation and word intervals were checked twice. As a result, at the
end of this phase, we are left with a single transcription file and
two files storing time intervals of words, one for the interviewer’s
transcription and the other for the interviewee’s.

We segmented speech utterances into dialogue act units. As
proposed by Prasad and Bunt (2015), dialogue act units were
determined based on the meaning rather than the syntactic
features. Dialogue act represents the communicative function

6For detailed information, see the website: http://www.fon.hum.uva.nl/praat/.

that serves in a dialogue to change the state of mind of an
addressee by means of its semantic content.

Since we were investigating the relation between dialogue
act units and gaze direction, which was able to change quite
fast, we specified dialogue act units in smaller intervals that
differed from the previous and the subsequent dialogue act units
in terms of communicative function, qualifiers, and RRs. Even
though ISO 24617-2 supports RR annotation, it does not specify
any particular set for RR. Thus, we employed another standard
recommended by ISO 24617-2 for the annotation of discourse
relation. ISO 24617-8, also known as ISODR-Core, was proposed
as an international standard for the annotation of discourse
relations (Prasad and Bunt, 2015; Bunt and Prasad, 2016; ISO
24617-8, 2016). To understand the discourse as a whole, the
relation between the sentences or clauses in the discourse (i.e.,
Rhetorical Relations) should be considered.

Lastly, dialogue act units were annotated on the human-
friendly excel file in DiAML-MultiTab format; the workflow
is presented in Figure 2. According to DiAML-Multitab
representation, an annotator has to assign the unique ID to
each dialogue act. Moreover, if there is a functional or feedback
dependence between two dialogue acts, intending to represent
this relation, the ID of the preceding dialogue act should be
referenced by the succeeding one. We developed an excel macro7

to automatize the process of assigning unique ID’s and updating
references. As suggested in the annotation guideline, whatever
the way the speaker expressed himself, the following questions
were considered during annotation: (i) why the speaker said it,
(ii) what the purpose of the speaker in using this utterance is,
and (iii) what the speaker’s assumptions about the person he was
addressing are. ISO 24617-2 indicates that labeling should be
based on the speaker’s intention, instead of what he or she says
literally. Therefore, this standard proposes to think functionally
rather than relying on linguistic cues, which are useful but
focusing only on them couldmake usmiss what the speaker really
wants to say and that would cause false labeling8.

ISO 24617-2 proposed nine dimensions based on the type of
semantic content: Task, Turn Management, Time Management,
Auto Feedback, Own Communication Management, Discourse
Structuring, Social Obligation Management, Allo Feedback,
Partner Communication Management, and 56 communicative
functions. In the present study, we encountered 43 out of 56
communicative functions, except the following ones: Correction,
Accept Offer, Decline Offer, Decline Request, Decline Suggestion,
Auto Negative, Allo Negative, Feedback Elicitation, Return
Self Introduction, Question, Address Offer, Address Request,
and Address Suggest. Moreover, ISO DR-Core recommends 18
labels for RR annotation. In the present study, all 18 labels
were included.

We calculated the intra-annotator agreement via Cohen’s
Kappa score to measure annotation (or annotator) reliability.
More than 6 months after the first annotation, the same

7It is available under https://gist.github.com/ulkursln.
8A binary decision tree that can be used while determining the communicative
functions and the dimensions is available for annotation of Turkish dialogues,
under https://github.com/ulkursln/Dialogue-Act-Annotation.
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FIGURE 2 | The workflow of segmentation and annotation.

annotator annotated ∼25% of the data (corresponding to six
sessions out of 25 sessions for annotations with speech tag set
and four sessions out of 15 sessions for annotations with ISO
24617-2 standard). The Cohen’s Kappa scores were observed to
be equal to 0.85, 0.80, and 0.89 for dimensions of ISO 24617-
2, communicative functions of ISO 24617-2 and speech tags,
respectively (p < 0.0001).

Gaze Analysis
We performed gaze analysis by using the related interfaces of
developed application (Arslan Aydin et al., 2018). Firstly, we
exported raw data of eye movements as an output file storing x
and y positions of the right eye at a resolution of 33.3 ms.

Then, in order to interpolate missing gaze data, first the
scaling factor was calculated via Equation 1 (where t represents
timestamp), and then the location of the first sample after gap was
multiplied by the scaling factor, and lastly the result was added
to the location of the last sample before the gap. The max gap
length that would be filled with interpolation was chosen to be
shorter than a normal blink, which was 75ms as proposed by
previous studies (e.g., Ingre et al., 2006; Komogortsev et al., 2010;

FIGURE 3 | The set of facial landmarks are presented around the face of the

interviewer with pink circles. The green dot represents the gaze location of the

conversation partner. Color should be used in print.

Benedetto et al., 2011).

sscaling factor =
tsample to be replaced − tfirst sample after gap

tlast sample before gap − tfirst sample after gap
, (1)

[taken from Olsen, 2012]
Secondly, we extracted face boundaries with the default

detector proposed by the developed application. Video
recordings of 28 pairs consisting of a total of 828,618 frame
images were processed for gaze analysis. The face boundaries
over 68 2D facial landmarks were automatically detected and
stored under text files as an outcome of face-tracking process.
Thirdly, we extracted Area of Interest (AOI) labels corresponding
to the frame image, along with the input parameters: (i) 2D
landmarks of faces; and (ii) linearly interpolated raw gaze data.
AOIs provided information of whether, at a particular time, a
participant was looking at the interlocutor’s face, i.e., face gaze, or
looking away from it, i.e., aversion. Also, the relative positions of
gaze data with respect to the face on each particular frame image
were stored. If the gaze position was outside the face boundary,
one of eight character values, a, b, c, d, f, g, h, and i, was assigned
in order to denote gaze aversion; otherwise, an e character was
assigned as an AOI label to denote face gaze (see Figure 3).

Fourthly, we monitored the efficiency of face detection by
looking at the number and percentage of extracted AOI labels
in frame images. The detection of AOI labels failed due to
undetected faces and/or the missing gaze data. Fifthly, we trained
a custom face detector via training interface of the developed
application for the video streams in case more than 30% of
frame images could not be assigned to an AOI label. Then,
we extracted face boundaries with the custom detector and,
after that, monitored the performance. The detection percentage
of AOIs that were extracted by employing either default or
custom face detector were compared, and we continued the
analysis with the AOIs that got the higher detection ratio.
We carried on analysis for 11 records of interviewees and
a single record of interviewers with AOI labels extracted by
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FIGURE 4 | Process flow for fixation detection of gaze directions.

employing trained detectors. For all remaining recordings, the
ones extracted by employing default detectors were adopted.
Sixthly, we assigned AOI labels to the frame images manually for
the following cases:

• The face of the interlocutor was on frame image, yet it could
not be detected automatically.

• The face of the interlocutor was on frame image, but it was not
detected correctly.

• The face of the interlocutor did not exist for that particular
frame image. This happens especially when an interviewer
was looking at the monitor while evaluating the response or
reading the question. In such cases with respect to the location
of monitor, we easily inferred AOI label.

After reviewing and updating the extracted AOI labels manually,
we re-monitored the performance and eliminated three pairs in
which the amount of assigned AOI labels correspond to <70% of
interviewers’ and/or interviewees’ recordings in a pair. Hence, we
continued analysis with the remaining 25 pairs.

Lastly, in order to get rid of noise, saccadic movements, or
blinks in the data, fixations were extracted in order to group the
raw gaze data. In line with the literature (e.g., Manor andGordon,
2003; Camilli et al., 2008; Komogortsev et al., 2010; Benedetto
et al., 2011), we followed the consequent steps, as illustrated in
Figure 4.

Multimodal Data
For each speech annotation method, the data obtained in speech
and gaze analyses were merged into a single summary file. As a

result, we obtained a series of gaze direction and related features
taken at successive intervals of 33.3 ms.

Gaze and Speech Tag Set
The columns of the summary file were the speech tag, sender,
gaze direction of sender, and of an interlocutor on the particular
frame image.

Gaze and Dialogue Act
We first found the time interval of a particular dialogue
unit by concatenating the time intervals of each word
that produced a dialogue unit together. In the summary
file, each line represented the gaze direction of a sender
and of an interlocutor on the particular frame with the
corresponding communicative function(s), dimension(s), sender
information, and, if exist, RR(s), functional dependence(s),
feedback dependence(s), certainty, and sentiment qualifier.

ANALYSIS RESULTS

All statistical analyses were carried out in R programming
language (R Core Team, 2016) and publicly available9. We first
screened data and removed outliers. After that, we checked the
assumptions of analysis and consequently decided whether we
should transform data and run the parametric test or the non-
parametric one. We handled individual differences by employing
mixed models.

Frequency
We calculated the normalized frequency by dividing the count
of extracted AOIs of a particular session by the duration of that
session. The paired sample t-test was performed to compare
the frequencies of face gaze and aversion per role. The analysis
revealed that there was no significant difference between the
frequencies of gaze aversion (M = 20.8, SE = 2.62) and face
contact (M = 23.2, SE = 1.86) for interviewers, t(22) = −1.82, p
= 0.08. On the other hand, interviewees’ gaze aversion frequency
(M = 44.7, SE = 3.6) was significantly higher than their face
contact frequency (M = 35, SE = 3.13), t(24) = 2.49, p =

0.02. Moreover, interviewees performed aversion (M = 44.7, SE
= 3.60) and face gaze (M = 35, SE = 3.13) more frequently
compared to the interviewers (aversion:M= 20.8, SE= 2.62; face
gaze: M = 23.2, SE = 1.86) and the differences were significant
for both aversion, t(23) = −5.03, p < 0.000, and face gaze, t(22) =
−3.28, p= 0.003 (see Figure 5). It is possible for an interviewer to
perform higher frequency in both gaze directions. Because there
was also significant difference in the duration of gaze directions
between roles, see section Duration.

We conducted analysis with the fixations instead of raw gaze
data. Raw gaze data include noise and saccadic movements,
which are rapid and designed to direct the fovea to the vision
of interest. Saccadic behavior might be important for particular
research questions like searching for visual targets, but in the
present study, since we focused on maintaining gaze on the

9Please see https://github.com/ulkursln/R-scripts for R scripts.
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FIGURE 5 | The frequency of gaze directions per roles in a minute.

interlocutor’s face or out of the face, we should eliminate jumping
behaviors as well as noise from the data.

In this study, if we had worked with raw gaze data instead of
fixations, we could not observe a significant effect of the role on
the frequency of gaze directions. The average frequency of face
gaze comprised 53% of the sessions for interviewers, whereas it
was 58% for interviewees. We also examined the frequency and
duration of when two participants look at each other’s face at the
same time, i.e., mutual face gaze. The mutual face gaze averagely
comprised 27.7% (SE= 4.51) of the entire session, and its average
duration was 517.7ms (SE= 0.23).

Duration
We first screened data and removed outliers, and then tested the
assumptions of the linear mixed model. Since the data were non-
normal and violated the homogeneity assumption, we performed
penalized quasi-likelihood (PQL) instead of linearity test. PQL is
a flexible model that can deal with unbalanced design, non-linear
data, and random effects.

We compared the potential models by ANOVA test to find
out which one fits best. The statistical model for the duration
of gaze aversion is given in Equation 2 below. Fixed effects were
Gender, Partner Gender, Role, and their two-way and three-way
interactions. In addition to that, the mixed effect term was added
for varying intercepts by interviewers, and by interviewees that
are nested within interviewers’ groups. Lastly, we considered
varying the slope of the interaction between Gender and Partner
Gender differing across interviewers’ groups.

Fixedeffects = Role× Gender× PartnerGender,

Randomeffects = 1+ Gender×PartnerGender

|InterviewerID/IntervieweeID. (2)

The statistical model for the duration of face gaze is given in
Equation 3. We compared the potential models by ANOVA test
to find out which one fits best. Fixed effects were Gender, Partner
Gender,Role, and their interactions. In addition to that, themixed
effect term was added for varying intercepts by interviewers, and

FIGURE 6 | The average duration of gaze directions in ms.

by interviewees that are nested within interviewers’ groups.

Fixed effects = Role × Gender × PartnerGender,

Random effects = 1| InterviewerID /IntervieweeID. (3)

The interviewer’s face gaze duration (M = 648.9ms, SE = 7.06)
was significantly higher than the interviewee’s face gaze duration
(M = 585.8ms, SE = 6.06), t(10,434) = – 1.977, p = 0.048. There
was a significant effect of the role, i.e., being an interviewer or an
interviewee, on the duration of gaze aversion (see Figure 6). The
post-hoc tests revealed that a significant difference between the
aversion durations of interviewers (M = 258.2ms, SE=5.25) and
interviewees (M = 313.2ms, SE = 3.43) was observed when the
partner gender was female, t(9,760) = 5.75, p < 0.0001.

Multimodal Analysis of Gaze and Speech
In multimodal analysis, we examined the relation of gaze
direction with either speech tags or communicative functions.
The statistical analyses were conducted on the top five labels for
both annotation schemes. In this section, we will describe the
analysis steps via speech tag set. Similar calculations were also
performed for dialogue act analysis.

Primarily, we extracted the ratio of gaze behavior observed
during an instance of speech tag set. Each instance of speech tag
set might be assigned several times during a session. In Equation
4, let B be a set including percentages of aversion (A) and face
gaze (FG) during occurrences of speech tags, for session x and
participant p, where i is the element of F, which is a set of
frame IDs labeled with particular speech tag. D function gets
the frame IDs and type of gaze direction, namely, A or FG, as
input parameters and returns the durations of that specified gaze
direction among those frames.

Bx,p (S,A) =

{

i ǫ Fs :
D (i,A)

D (i,A) + D (i, FG)

}

, (4)

The process details are given in Table 3. A sample
implementation of Equation 4 for Table 3 would be as follows:

Frame Set:
Fs1 ={[1–9], [46–95]}
Gaze Directions:
D ([1− 9] ,A) ={6}; D ([46− 95] ,A) ={25, 14}
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TABLE 3 | Illustration of calculating the ratio of gaze direction (GD) to the

particular speech-tags, S1,#index and S2,#index.

Frame no. Speech-

Tag(S)

(id,#index)

GD Ratio of GD duration

1 S1,1 A |A| / |S1,1 |= 6/9

2 A

3 A

4 A

5 A

6 A

7 FG |FG| / |S1,1 | = 3/9

8 FG

9 FG

26 S2,1 FG |FG| / |S2,1 |= 10/20

27 FG

28–35 FG

36–44 A |A| / |S2,1 |= 10/20

45 A

46 S1,2 A |A| / |S1,2 | = 25/50

47 A

48–70 A

71 FG |FG| / |S1,2 | = 11/50

72–81 FG

82 A |A| / |S1,2 |= 14/50

83–95 A

Only the interviewer’s gaze behavior is considered. A similar calculation is also performed

for interviewees. We intentionally skipped the frames between 10 and 25 to simulate

realistic data. During the analysis, we excluded the frames in which there was no extracted

gaze direction for the interviewer or interviewee.

D ([1− 9] , FG) ={3}; D ([46− 95] , FG) ={11}
Set of Aversion Percentages, during S1:
B1,interviewer (S1,A) ={i ǫ {[1–9], [46–95]}: D(i,A)

(D(i,A)+D(i,FG))
}

B1,interviewer (S1,A) = {6/9, 25/50, 14/50}
Set of Face Gaze Percentages, during S1:

B1,interviewer (S1, FG) ={i ǫ {[1–9], [46–95]}: D(i,FG)
(D(i,A)+D(i,FG))

}
B1,interviewer (S1, FG) = {3/9, 11/50}

As well as the duration, we also calculated the frequency of
gaze directions during a particular speech tag. This time, we
just consider the fixation counts of related gaze direction. For
instance, in Table 3, the frequency of face gaze was one for S1,2,
whereas the frequency of aversion was two. Thus, the percentages
were 1/3 and 2/3, respectively.

Speech Tag Set Annotation
The data were non-normal and violated the homogeneity
assumption; thus, we performed PQL. The statistical model is
described by Equation 5. Fixed effects were Role, Speech tag, their
mutual interaction, Interviewer’s Gender, Interviewee’s Gender,
and their mutual interaction. Besides, the mixed effect term was
added for varying intercepts by interviewers and by interviewees
that are nested within interviewers’ groups. Lastly, we added the
Speech tag ID, which was a unique identifier for each occurrence

of speech tag, as a mixed effect term.

Fixed effects = Role × SpeechTag + Interviewer′s Gender

× Interviewee′s Gender,

Random effects = 1 | InterviewerID/IntervieweeID + 1|

Speech tag ID. (5)

There was a significant difference in the frequency of gaze
direction ratios between the interviewers and interviewees when
the speech tag was Thinking [t(6,840) = 13, p < 0.0001], Speech
[t(6,840) = 12.9, p < 0.0001], Speech Pause [t(6,840) = 10.8, p
< 0.0001], or Micro Pause [t(6,840) = 7.23, p < 0.0001] (see
Figure 7).

We also examined the difference in duration of gaze direction
between the interviewers and interviewees. Similarly, results
revealed that when the speech tag was Thinking [t(6,840) = 13.3,
p < 0.0001], Speech [t(6,840) = 12.9, p < 0.0001], Speech Pause
[t(6,840) = 10.7, p < 0.0001], or Micro Pause [t(6,840) = 7.8, p
< 0.0001], interviewee’s gaze aversion duration was significantly
longer than the interviewer’s.

Dialogue Act Annotation
The data were non-normal and violated the homogeneity
assumption; thus, we performed PQL. The statistical model is
described by Equation 6. Fixed effects were Role, Communicative
Function, their mutual interaction, Interviewer’s Gender,
Interviewee’s Gender, and their mutual interaction. In addition,
the mixed effect term was added for varying intercepts by
interviewers and by interviewees that are nested within
interviewers’ groups. Lastly, we also added the Communicative
Function ID, which was a unique identifier for each occurrence
of communicative functions, as a mixed effect term.

Fixed effects = Role × Communicative Function

+ Interviewer′s Gender × Interviewee′s Gender

Random effects = 1 | InterviewerID/IntervieweeID + 1|

Communicative Function ID. (6)

There was a significant difference in the frequency of gaze
direction ratios between the interviewers and interviewees when
the communicative function was Answer [t(5,334) = 13.1, p <

0.0001], Stalling [t(5,334) = 19.9, p< 0.0001], orTurn Take [t(5,334)
= 5.69, p < 0.0001] (see Figure 8).

We also examined the difference in the duration of gaze
direction between the interviewers and interviewees. Similarly,
results revealed that when the communicative function was
Answer [t(5,334) = 14.2, p < 0.0001], Stalling [t(5,334) = 19.8,
p < 0.0001], or Turn Take [t(5,334) = 5.58, p < 0.0001],
interviewee’s gaze aversion duration was significantly longer than
the interviewer’s.

A DEEP COMPUTATIONAL MODEL

For computational modeling, we use CNNs. CNNs are
specialized versions of fully connected networks with localized
receptive fields. In the present study, we adapted simplified
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FIGURE 7 | Frequency of gaze direction ratios for the top five speech tags observed in the collected data. Since the gaze direction can be either face gaze or

aversion, a total ratio for all bars are 1. Significant differences are presented with * character.

FIGURE 8 | Frequency of gaze direction ratios for the top five communicative functions observed in the collected data. Since the gaze direction can be either face

gaze or aversion, a total ratio for all bars are 1. Significant differences are presented with * character.

versions of two state-of-the-art CNN architectures, namely,
ResNet (He et al., 2016) and VGGNet (Simonyan and Zisserman,
2015).

We collected gaze data in the form of a time series and trained
two 1D CNN networks. In 1D CNNs, data points in time series
are generally introduced to the network as a window of instances.
The window is slid in time by a number of time steps, which is
called stride. For instance, for a two-channel signal consisting of
eight time steps, a window size of four and stride of two would
yield three input samples with a size of 4× 2 (see Figure 9).

We adapt two CNN architectures (VGGNet and ResNet) and
called them gazeVGG and gazeResNet (see Figure 10). Batch
normalization, pooling, weight regularization, and dropout were
applied to both networks for handling overfitting.

Data Presentation Details
In the present study, we obtained a series of gaze direction
and related features at successive intervals of 33.3ms. According
to the data obtained from the human–human experiment (see
section Experimental Investigation), the average gaze aversion
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FIGURE 9 | The time-series data and how they are prepared before processing with the deep networks. On the left, the input has a size of 8 × 2 where the number of

time steps is eight and the number of channels is two. On the right-hand side, the shape has changed to 3 × 4 × 2 where the window size is four and the stride is two.

FIGURE 10 | (A) GazeVGG architecture with batch normalization, regularization, and pooling. (B) GazeResNet architecture with batch normalization, regularization,

and pooling. There is convolution between blocks and a residual connection between the last item of the previous block and the current one. *L2 weight and bias

regularizers were applied. **L2 weight regularizer was applied.

duration was ∼300 ms. Therefore, we used nine as the window
size as single frame took 33.3ms, and since the minimum fixation
duration was 100ms, we set stride to three.

In our experimental design, while the interviewees
participated in a single session, interviewers took part in

multiple interviews. We designed our computational models
for predicting gaze direction of interviewers. At first, we
applied One-Hot-Encoding to convert categorical data into
numbers. For the input data including speech annotation with
the speech tag set, we used a total of 20 features including
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Sender, Speech Instance, Gender, Is the Same Person, and
Interviewee’s Gaze direction. On the other hand, a total of
137 channels involving Sender, Gender, Is the Same Person,
Interviewee’s Gaze direction, Communicative Function,
Dimension, Certainty, Sentiment, Functional Dependence,
Feedback Dependence, Rhetorical Relation, and Argument
Number of Rhetorical Relations were utilized for the dialogue
act models. Therefore, for a window of size nine, a single input
to a CNN had 180 dimensions for data annotated with the
speech tag set and 1,233 dimensions for data annotated with ISO
24617-2 standard.

Training and Implementation Details
For both CNNs, binary-cross entropy was used as the
objective function, which was minimized using Adam optimizer.
Moreover, we used dropout with a value of 0.2 and L2
regularization with a value of 0.001. We trained gazeResNet
models for 100 epochs with a batch size of 64. Similarly, we
trained gazeVGG models for 100 epochs with a batch size
of 64 and pool sizes of 2. We have empirically changed and
evaluated the different settings for L1, L2, epoch count, window
size, stride, etc., and we have provided the best settings. In
the hyper-parameter tuning phase, we used backtesting that is
specific to the time series as a cross-validation method. We
trained gazeVGG and gazeResNet models with 16 or 32 filters
in the first block and, taking input data, annotated either with
an ISO 24617-2 standard (i.e., dialogue acts) or speech tag set.
For the data annotated with dialogue acts with 32 filters in
ResNet and 16 filters in VGG, and for the data annotated with
a speech tag set, 32 filters in both VGG and ResNet achieved
better accuracies.

In the n-fold back-testing, the ratio of data provided for the
training and validation is different at each split. It is five for
the fifth split and one for the first split. When the training
data are not big enough, the network might not quite learn
about the underlying trend of the data. For instance, in the
present study, the second and the third interviewer had a greater
tendency to aversion whereas the sixth one had a tendency in
the opposite direction. Hence, especially for the second and the
fourth splits, the distribution of data for training and testing
was different, which resulted in validation fluctuations. Particular
orders of interviewers in the input data result in specific orders
of interviewers in splits used for training and validation. This
might cause testing the network with a different distribution than
the one used in training. The classical cross-validation method
enables one to handle such distribution issues by randomly
dividing the set of input data into training and test sets.
However, time-series data have temporal relations that prevent
randomized division. In order to overcome this issue, we trained
and evaluated themodels by building 5-fold cross-validation with
data sets created by shuffling the orders of interviewers in the
input data while preserving temporal order within each session.

Training was performed on Google Colab, which is a free
Jupyter notebook environment provided by Google. Colab offers
Tesla K80 GPU. The training codes were implemented in Python
3.0 by Keras libraries with Tensorflow backend.

Results
We analyzed the gaze prediction performances of the two CNN
architectures. Table 4 lists the performances with both dialogue
act and speech tag inputs. We see that models running on the
data annotated with speech tags generally perform better than the
ones running on the data annotated with dialogue acts.

In order to examine the quantitative differences between
classification accuracy of the models, we also analyzed confusion
matrices in Table 5, which contain the percentages of false and
correct estimations. We notice that models with both speech
tag and dialogue act could predict the direction of face gaze
with similar and relatively high accuracies (i.e., speech tag set
model achieved 85.1% accuracy and dialogue act model achieved
94.8% accuracy), whereas there was a difference in the prediction
accuracies of aversion between the models. Speech tag set model
could predict aversions better than Dialogue act model.

The performances of GazeResNet models were also assessed
via calculating the recall, precision, and F scores. In predicting
aversions, a precision of 0.69, a recall of 0.63, and an F score
of 0.65 were obtained for the data annotated with speech tag
scheme, while dialogue act scheme yielded a precision value of
0.65, a recall of 0.22, and an F score of 0.33.

DISCUSSION

Face-to-face communication is inherently multimodal. Gaze
provides an effective way to receive and send information in a
face-to-face interaction as a non-verbal communication channel
accompanying speech. When studying gaze and speech, it is
necessary to decide from which level both models will be
addressed. Low-level eye movements, anatomic features of the
eye, and kinematics of eye movements have been extensively
studied by physiologists. However, although there exist studies
in the related fields, eye movements have some other high-
level characteristics that are still waiting to be resolved, like
when they occur, how long they last, and what their roles
are in communication (Ruhland et al., 2015). As in the gaze
studies, researchers have dealt with the speech at different levels
for modeling non-verbal communication components driven by
speech (Cassell et al., 1999; Zoric et al., 2011;Marsella et al., 2013).

Experimental Analysis
In the present study, we investigated the roles of the high-level
characteristic of eye movements driven by high-level features
of speech in a face-to-face interaction. The two major research
questions of the study were: “What are the underlying features
of gaze direction among humans” and “What is the relation
between gaze and speech to achieve conversational goals in a
specified face-to-face interaction?” To examine these questions,
we conducted a mock job interview task. Twenty-eight pairs
consisted of seven professional interviewers and 28 interviewees
took part in the study. They wore Tobii glasses throughout
the study.

We automated the analysis mostly by utilizing the state
of the art methods. That way, we aimed to overcome some
methodological problems and reduce the amount of human-
related errors and the time necessary for annotation. We
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TABLE 4 | Performances of computational models with 5-fold cross-validation.

Tagging

scheme

CNN

architecture

Avg. training

accuracy

(%)

Test accuracy of

folds

(%)

Avg. test accuracy

(%)

Dialogue act VGG 83.2 (SD: 1.20) 89.5, 76.7, 70.6, 60.3,

57.1

69.6 (SD: 11.3)

ResNet 83.1 (SD: 0.88) 87.7, 77.1, 70.8, 59.8,

58

70.7 (SD: 12.3)

Speech tag

set

VGG 81.1 (SD: 0.18) 83.2, 68.6, 81.5, 76.9,

74.6

76.9 (SD: 5.82)

ResNet 81.1 (SD: 0.14) 84.6, 69.6, 81.4, 82,

76.2

78.8 (SD: 5.94)

The highest test accuracy was obtained with the GazeResNet model when applied on data annotated with the speech tags. Those accuracy values are presented in bold.

TABLE 5 | Confusion matrix of the GazeResNet models with the highest

performances for each tagging scheme.

Predicted class

Speech tag set/Dialogue act (%)

Face gaze Aversion

Actual class Face gaze 85.1/94.8 14.9/5.2

Aversion 23.7/46.0 76.3/54.0

It represents the percentages of true and false predictions made on actual classes, i.e.,

aversion and face gaze. The percentage of true aversion predictions is 76.3% for the

Speech tag set model, while it is 54% for the dialogue act model.

used an open source project (Arslan Aydin et al., 2018) that
provided interfaces for the analysis of gaze involving face
detection and identification of gaze direction. Moreover, it
enabled speech analysis including segmentation, annotation, and
synchronization of pair’s recordings.

Gaze direction was identified as either face gaze or gaze
aversion based on the decision whether the participant was
looking at the other person’s face or not. The gaze analysis was
carried out in three steps: (i) determining the boundaries of the
face, i.e., face detection; (ii) deciding whether the partner’s gaze
was within those boundaries, i.e., identification of gaze direction;
and (iii) fixation detection.

We monitored the ratio of unidentified gaze direction
on frame images of recordings. We observed that the AOI
identification rate on the frame images of the 11 interviewees’
recordings and two interviewers’ recordings was <70%. By
visualizing the recordings frame by frame, we realized that
even there exist gaze raw data of interviewees, the interlocutors’
(i.e., interviewers’) face might not be detected while they were
reading a question or evaluating the responses of an interviewee
by turning their head and accordingly face to the screen. For
such cases, we trained a custom face detector instead of using
Haar-Cascade classifiers, which were provided by the OpenFace
software, as the default detector. Moreover, in order to minimize
data loss, we manually determined the gaze direction on frame
images if they could not be detected automatically, but it was

possible to identify their AOI labels, like in the cases when the
face of the interlocutor was on frame image but could not be
tracked automatically.

We observed that interviewees performed face gaze and
aversion significantly more frequently when compared
to interviewers. Moreover, the gaze aversion durations of
interviewers were significantly longer than those of interviewees.
On the other hand, face gaze durations of interviewees were
significantly longer than that of interviewers. When we examined
gaze direction per role, we found that there was no difference
between the frequencies of gaze aversion and face gaze for
interviewers, while a significant difference was observed for
interviewees. Interviewees avert their gaze more frequently
compared to performing face gaze. These findings are in line
with the conclusions summarized by Kendon (1967) in his
detailed study investigating the function of gaze in a face-to-face
conversation. Kendon (1967) stated that individuals tend to look
at others more frequently when listening compared to speaking
and the glances of speakers would be shorter than the listeners.
He had grouped the roles in the conversation as speakers and
listeners. In the present study, due to the role of interviewees,
they spoke more frequently than the interviewers. Comparing
interviewers and interviewees, the gaze direction of the latter
was more similar to that of the speakers mentioned in Kendon
(1967).

Broz et al. (2012) studied mutual gaze in a face-to-face
conversation with participants wearing eye-tracking devices.
They observed a mutual face gaze occurring for about 46% of
a conversation. Rogers et al. (2018) also conducted a dual eye-
tracking study and reported that the mutual face gaze comprised
60% of the conversation with 2.2 s duration on average. On the
other hand, when cumulative data of all sessions are taken into
account, we found a lower ratio in the present study, which was
27.7% (SE = 4.51), and the average duration was 517.7ms (SE =

0.23), possibly due to differences in data collection settings and
analysis methods as reviewed below.

There are two crucial steps in determining mutual face gaze:
(i) deciding whether the gaze of an individual was inside the
face boundaries of an interlocutor, and (ii) synchronization
of recordings exported from eye-trackers. Broz et al. (2012)
and Rogers et al. (2018) manually annotated gaze direction
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in each frame. However, in the present study, interlocutor’s
face boundaries were detected based on 68 facial landmark
points and gaze direction was generally decided automatically.
Manual coding of gaze direction might be open to human-related
errors. Compared to the previous studies, we employed state-
of-the-art technologies for face boundary detection. Moreover,
because of the hardware or operational constraints, eye-tracking
devicesmight estimate gaze positions with deviations. Eye tracker
manufacturers provide the estimated error that is specific to
device in degrees for the visual angle. In the present study, we
utilized the developed application (Arslan Aydin et al., 2018),
which automatically considers such error margins to estimate
gaze direction, to visualize gaze and face boundaries overlaid
on a frame image. It is not possible to take exact error margin
into account just by visualizing data without benefiting from
proper scripts. For instance, Rogers et al. (2018) used 15 pixels
for the size of the circle that represents the gaze position.
They decided on a size of 15 pixels to achieve a balance
between comfort in the manual coding process while providing
distinguishable regions. In addition, using fixations instead of
raw gaze data and the methods adapted for fixation extraction
and synchronization of pair recordings might also affect the
findings. Also, differences in eye-tracking equipment, cultures,
spoken language, and experimental procedures might have an
impact on the variety of the reported ratio of mutual face
gaze and its duration. For instance, we performed a mock job
interview task; on the other hand, the ratio of gaze directions
of participants might be different in conversations without a
predetermined topic.

We handled speech analysis by employing two annotation
methods. In the first one, discourse and rhetorical relations
were annotated with standards of ISO 24617-2 and ISO 24617-
8, respectively. As a second method, we used an alternative
set of speech tags that we produce based on studies in the
role of eye movements in social communication and also based
on our observations on the data that we collected. Our aim
of annotating speech with the produced speech tag set is not
to propose an alternative scheme for speech annotation but
instead to investigate the characteristics of speech that produce
better performance in modeling social gaze. Then we conducted
analysis, to see the relation between gaze and speech. There
was a significant difference in the frequency of gaze directions
between the interviewers and interviewees when the speech
tag was Thinking, Speech, Speech Pause, and Micro Pause.
Interviewees’ gaze aversion frequency was higher for all those
cases. We performed similar analysis for dialogue acts. This time,
we found that, there was a significant difference between the
interviewer and interviewee when the communicative functions
wereAnswer, Stalling, and Turn Take. Similarly, for all these three
communicative functions, gaze aversion frequency was higher for
interviewees compared to interviewers.

Computational Models
The present study investigated further research questions
to improve the methodology of multimodal analysis of
communication, as follows: “How can we computationally model
gaze direction with the high-level features of speech” and “How

appropriate is employing discourse analysis scheme, namely,
ISO 24617-2 standard, in a computational model of gaze
direction?” To this aim, we trained two common Convolutional
Neural Network (CNN) architectures, namely, VGGNet and
ResNet. According to the experimental design, each interviewee
took part in a single session whereas an interviewer attended
more than one session. Therefore, we collected more data for
each individual interviewer compared to an interviewee. We
trained computational models to predict the gaze direction
of interviewers.

We trained GazeVGG and GazeResNet models with 16 or 32
filters in the first block and, taking input data, annotated with
either ISO 24617-2 standard or speech tag set. We observed
that GazeResNet models achieved better accuracies for both
annotation methods due to VGG bottleneck, which causes loss
of generalization capability after some depth whereas ResNet
handles this vanishing gradient problem by using residual
connections. Moreover, we found that the speech tag set
gave rise to better performances compared to dialogue act
annotations. Although both GazeResNet models predicted face
gaze with higher accuracies, ISO 24617-2 standard was not
good at predicting aversions. Compared to data annotated
with dialogue acts, Speech tags are more constant over time.
Therefore, attributing the difference in the accuracy of models
to that would not be a correct interpretation. The probable
reasons might be the differences in the number of features
and the number of input data. In addition, speech tag
set involves Pre-Speech, Speech Pause, and Micro Pause for
annotation of pauses whereas ISO 24617-2 standard does not
handle pauses.

We obtained a series of gaze direction and related features at
successive intervals of 33.3ms in the present study. According
to the human–human experiment data (section Experimental
Investigation) the average gaze aversion duration was ∼300
ms. Therefore, we used nine as the window size since a single
frame took 33.3ms. However, different values of window-size
and stride may lead to differences in the success ratio of the
models. Moreover, we just used the previous features in the
training. For instance, to predict the gaze direction at ti, the
features between ti−8 and ti were presented to the network.
However, we could get information from the subsequent frames
since we conducted an offline analysis. For instance, it might
be necessary to evaluate the entire speech up to ti+10 to decide
whether the speech label at ti was a Question. This constraint
should be addressed in an online system. We think that one way
to address this concern is as follows: Based on available data at the
time of a prediction, confidence values might be assigned to all
potential labels.

As presented in Table 4, even though we applied pooling,
weight, and dropout regularizations, there was still a difference
of around 10% between training and test accuracy performances
of the models that receive the data annotated by ISO 24617-2
standard. To get a more robust estimation about how accurately
models make predictions on unseen data, we then performed
10-fold cross-validation on those data by splitting the last 10%
of data for testing in each iteration. We obtained accuracy
performances similar to the 5-fold validation. Early stopping
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and increasing the size of input data might improve the model’s
generalization capability.

CONCLUSION

We investigated gaze accompanying speech in a face-to-face
interaction. Firstly, we studied the characteristics of gaze and its
relations with speech with an experimental research conducted
via mobile eye-tracking devices. The results indicate that the
frequency and duration of gaze differ significantly depending
on the role. We showed that these differences could not be
observed in the analysis performed with raw gaze data instead
of detected fixations. As in some of the previous studies,
performing gaze analysis with raw gaze data or with detected
fixations by using black box solutions is inadequate to obtain
comparable results. Moreover, in multimodal analysis, it is
important to automate annotations with the state-of-the-art
methods. Manual annotation is vulnerable to human-related
errors, and in addition, automatic annotation with the state-
of-the-art methods provide further information that may not
be extracted manually, such as detecting the coordinates of
facial landmarks, taking into account the error margins while
annotating the gaze direction or segmentation of the speech at
milliseconds precision. In the multimodal analysis, we find the
significant effect of speech tag set instances and communicative
functions, those related with time and turn management, in the
gaze directions.

Secondly, we developed CNN models of gaze direction in a
face-to-face interaction. At the computational model of gaze,
we observed that annotation with a simple tag set leads to a
better performance despite the higher effort spent for making
the dialogue act annotation on the same data. It might be
due to the differences in the number of features and input
data, but also a specific difference between the two annotation
methods is whether Pauses are addressed. The speech tag set
involves Pre-Speech (i.e., warming up the voice), Micro Pause
(i.e., gaps up to 200ms, as proposed by Heldner and Edlund,
2010), and Speech Pause (i.e., pauses that are not included in
the other two categories) for annotation of pauses. However, the
dialogue act annotation does not handle pauses. This suggests
that multimodality should be taken into account when proposing
automatic speech annotation schemes. Even though there was
no verbal communication, Pauses during a conversation had
an impact on non-verbal signals and, thus, on the interaction.
This finding may be justified by the fact that in natural settings,
listeners comprehend the speakers’ messages by integrating both
non-verbal and verbal channels in multiple channels (Kelly et al.,
2015). In addition, results showed that CNN, especially ResNet

models, allows us to predict high-level features of eye movement
with high-level features of speech.

As future work, other non-verbal cues accompanying
speech might be experimentally investigated to examine their
characteristics, roles, and relations in social communication. In
addition, the effect of language, culture, and personal differences
might be investigated to assess the generalizability of the result.
Moreover, neural network models mimic humanly cognitive
faculty at the behavioral level. Thus, suchmodels do not represent
the process that take place in the brain. There exist articles
discussing the capabilities of DNNs (e.g., Cichy and Kaiser,
2019). Despite the advances and rapid adaptation of deep neural
networks in various fields, their lack of interpretability remains
a problem. In particular, the visualization of 1D-CNN models
that take the input data as 1D vector is relatively new; however,
considering its explanatory power, future studies can be done to
explore the effect of input features.
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