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Abstract

Background: Idiopathic pulmonary fibrosis (IPF) is a progressive, chronic interstitial lung disease that is unresponsive to
current therapy and often leads to death. However, the rate of disease progression differs among patients. We hypothesized
that comparing the gene expression profiles between patients with stable disease and those in which the disease
progressed rapidly will lead to biomarker discovery and contribute to the understanding of disease pathogenesis.

Methodology and Principal Findings: To begin to address this hypothesis, we applied Serial Analysis of Gene Expression
(SAGE) to generate lung expression profiles from diagnostic surgical lung biopsies in 6 individuals with relatively stable (or
slowly progressive) IPF and 6 individuals with progressive IPF (based on changes in DLCO and FVC over 12 months). Our
results indicate that this comprehensive lung IPF SAGE transcriptome is distinct from normal lung tissue and other chronic
lung diseases. To identify candidate markers of disease progression, we compared the IPF SAGE profiles in stable and
progressive disease, and identified a set of 102 transcripts that were at least 5-fold up regulated and a set of 89 transcripts
that were at least 5-fold down regulated in the progressive group (P-value#0.05). The over expressed genes included
surfactant protein A1, two members of the MAPK-EGR-1-HSP70 pathway that regulate cigarette-smoke induced
inflammation, and Plunc (palate, lung and nasal epithelium associated), a gene not previously implicated in IPF.
Interestingly, 26 of the up regulated genes are also increased in lung adenocarcinomas and have low or no expression in
normal lung tissue. More importantly, we defined a SAGE molecular expression signature of 134 transcripts that sufficiently
distinguished relatively stable from progressive IPF.

Conclusions: These findings indicate that molecular signatures from lung parenchyma at the time of diagnosis could prove
helpful in predicting the likelihood of disease progression or possibly understanding the biological activity of IPF.
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Introduction

Idiopathic Pulmonary Fibrosis (IPF) is a chronic progressive

disease of unknown etiology that is characterized by irreversible

scarring in the lung. IPF is one of a subgroup of the diffuse

parenchymal lung diseases (DPLD) of unknown origin, represent-

ed by the idiopathic interstitial pneunomias (IIPs). IPF is the most

common form of IIP, and pathologically is represented by usual

interstitial pneumonia (UIP) [1–3]. While hypotheses have been

put forth, varying from chronic inflammation leading to

widespread fibrosis to abnormal wound healing and deregulated

epithelial cell function [4–9], the basic mechanism of disease

pathogenesis remains unknown.

Disease progression is highly variable in IPF. While the 3 to 5

year mortality is 50%, this is quite variable with some patients

living up to 10 years following diagnosis [10]. The disease course is

also variable, ranging from patients who remain stable for

protracted periods of time to others whom experience rapid

stepwise progression with accelerated mortality [11–13]. Although

predictors of survival [10] and disease progression [14] have

included demographic factors, exposures, lung physiology, radi-

ography, and pathology, it remains difficult to predict the

prognosis of any one case of IPF. Moreover, none of the

prediction models have accounted for differences in molecular

features of the pathological process.

Unfortunately, patients generally present in the later stages of

disease. And no medical treatment either reverses or slows the

progression of IPF. This heterogeneity of disease progression and

the lack of available treatment emphasize the importance of early

diagnosis, especially with the hope that intervention may be more
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effective in the early stages of disease. This also underscores the

need for biomarkers which not only may predict progression but

may contribute to discovery of molecular mechanisms that are

involved in disease pathogenesis.

We hypothesized that by comparing the transcriptome of

relatively stable and progressive IPF, markers of disease activity

would be identified that could lead to biomarker discovery,

improved prognostic ability, and further contribute to the

understanding of IPF pathogenesis. In this study, we generated

the lung expression profiles from pre-treatment, diagnostic surgical

lung biopsies using SAGE technology [15] from 6 individuals with

relatively stable (or slowly progressive) IPF and compared these

profiles to 6 individuals with progressive IPF. In silico analyses of

the comprehensive SAGE profiles allowed for the generation of an

IPF molecular signature that distinguished relatively stable from

progressive patients, and identified genes not previously implicated

in IPF. Moreover, the SAGE IPF gene expression profile identified

molecular pathways that may be important in disease development

and progression.

Results

A summary of the clinical and demographic features are

presented in Table 1. The average age was 64.8 years in the

progressive group and 66.7 years in the relatively stable group.

Both groups included smokers and non-smokers. However, only

one female subject was present in the progressive group, whereas 3

were included in the relatively stable group (Table 1). The

percent predicted pulmonary function test (PFT) values at baseline

and end point for both groups are depicted in Figure 1. The

mean of the percent predicted PFT values at baseline are not

significantly different between both groups (Table 1). The actual

PFT values are depicted in Figure S1. A significant difference

between the progressive and the relatively stable group was found

for the actual change in DLCO and the change in percent

predicted DLCO with a P-value,0.05 based on a Mann-Whitney

test. Given that not all samples were collected at equal time

intervals between baseline and end point, a time-weighted factor

was calculated to assure the correct group assignment. The time-

weighted change in % predicted values between the two groups

was significantly different with P-values between 2.2E-3 (DLCO)

and 8.7E-3 (FVC).

IPF SAGE Transcriptome
For an in-depth assessment of the IPF transcriptome, we

generated and analyzed 12 IPF SAGE libraries with an average of

79,578 tags per library. A total of 954,932 transcript tags were

sequenced of which 168,272 were unique. After removal of linker

and repetitive sequences the number was reduced to 168,066.

Transcript tags with a raw count of one in the entire IPF

transcriptome (singletons) were also removed resulting in 149,291

transcripts. For comparison purposes, the tag counts in each

library were normalized to 200,000 tags. We also included 8 other

human lung tissue libraries comprising another 500,244 tags that

were downloaded from the SAGE Genie (http://cgap.nci.nih.

gov/SAGE) or the GEO website (http://ncbi/geo/). All libraries

included in this study are described in Table S1. Hierarchical

clustering analysis of the 12 IPF and 5 normal lung parenchyma

SAGE libraries included in this study demonstrated that IPF

Table 1. Clinical and demographic variables

Variable
Progressive group
(n = 6)

Relatively Stable
group (n = 6)

Age 64.866.7 66.765.5

Sex male/female 5/1 3/3

Smoking status

never 3 2

ever 3 4

current 1 1

% predicted DLCO baseline 58.7611.0 56.0610.9

Actual change in DLCO 26.461.5 22.5063.34

Change in % predicted DLCO 220.864.8 22.33621.77

% predicted FVC baseline 61.2618.1 68.0616.9

Actual change in FVC 20.7360.4 20.2460.5

Change in % predicted FVC 216.067.8 24.17613.9

The percent predicted DLCO and FVC values at baseline, as well as the changes
in actual and predicted (DLCO or FVC) values over a 12 months period are
indicated as the mean with standard deviation for each group.
doi:10.1371/journal.pone.0005134.t001

Figure 1. Forced vital capacity (FVC) and carbon monoxide diffusing capacity (DLCO) values. The percent predicted DLCO (A) and FVC
(B) values are indicated at baseline and end point for the two IPF disease groups. The progressive group is represented in red and the relatively stable
group in blue.
doi:10.1371/journal.pone.0005134.g001
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samples are distinguishable from normal lung parenchyma

(Figure 2A). Three IPF samples are clustered together and are

dissimilar from the other 9 IPF samples indicating the possible

existence of other subtypes and reflecting the heterogeneity among

IPF patients. Though the three samples belong to the relatively

stable group (Table S1), it cannot be excluded that this separation

might be simply due to normal lung parenchyma present within

the surgically removed biopsy sample. We repeated the unsuper-

vised clustering with all 22 SAGE libraries available and noticed

that these particular three samples are still closer related to certain

normal tissue samples though the separation between IPF and

normal lung parenchyma is not as efficient as in the first analysis

(Figure S2A).

Initially, we compared the normal lung parenchyma libraries

NB1, NLP-1 and NLP-2 with the 12 IPF SAGE libraries in order

to identify genes that are over expressed in IPF and are minimally

expressed or absent in normal lung parenchyma. The filter applied

for each individual transcript tag selected for a P-value#0.05 and

a fold difference of at least 10; less than 2 counts in the normal

libraries; 10 or more counts in the IPF group; and an expression

level of at least 5 counts in 50% of all the IPF SAGE libraries,

which resulted in 1,121 transcript tags. The tag to gene mapping

was performed using SAGE Genie downloads and the tag to gene

classifications of the 1,121 transcript tags shows that 80% of the

tags can be mapped to well-defined transcripts, 5% match to

hypothetical proteins/open reading frames of unknown function

and 13% represent unknown transcripts (Figure 2B). A total of

18% of the significantly over expressed transcripts possibly

represent novel genes and/or alternative transcripts [16] uniquely

expressed in the IPF transcriptome. Careful analysis of the over

expressed genes in IPF revealed known genes that have been

shown to be highly expressed in IPF like S100 calcium binding

protein 2, chemokine CXC ligand 14, several collagens, tenascin,

metalloprotease 7, and fibronectin. These results confirm previ-

ously published IPF and normal expression profiles comparisons

[17–19]. However, our results also indicate that there are other

genes over expressed in our SAGE IPF libraries when compared to

normal lung with an unknown role in IPF pathogenesis like

Figure 2. Analysis of the IPF transcriptome. (A) Hierarchical clustering based on the gene expression profiles of 12 IPF and 5 normal lung SAGE
libraries described in Table S1. The branch length in the dendrogram represents the distance or relatedness between the samples; the shorter the
branch the higher the similarity between samples. In yellow are indicated up regulated and in blue down regulated genes. (B) Tag to gene mapping
classification of the 1,121 transcript tags significantly over expressed in IPF when compared to normal lung parenchyma. (C) Most significant
canonical pathways associated with pulmonary fibrosis according to the IPA pathway analysis tool. The significance of the association between the
dataset and the canonical pathway was measured as a ratio (number of genes from the dataset that map to the pathway divided by the total number
of molecules that exist in the canonical pathway). A Fischer’s exact test was used to calculate a P-value. (D) Hierarchical clustering based on the 293
transcriptional signature that distinguished IPF from normal lung parenchyma.
doi:10.1371/journal.pone.0005134.g002
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syndecan 1(SDC1), suppression of tumorigenicity 5 (ST5,

regulator of MAPK1/ERK2 kinase) and centaurin delta 2

(CENTD2); all of which have been associated with lung

adenocarcinomas. Interestingly, we did not find significantly down

regulated genes in IPF compared to normal lung tissue.

Given that the IPF samples used in this study were selected

based on clinical variation in disease progression, we applied a

more stringent criteria in order to define a clear molecular

signature that would distinguish IPF from normal lung parenchy-

ma. We applied the above mentioned criteria and then selected for

the expression of at least 5 counts in more than 75% of all the IPF

SAGE libraries. This yielded a list of 293 transcripts tags of which

244 matched to well defined genes (Table S2). A T-test analysis

showed that the mean expression level of the 293 transcripts in IPF

differs significantly from the mean level in normal lung

parenchyma (P#2.7E-31). Furthermore, cluster analysis, including

five normal lung SAGE libraries (Table S1), indicated that this

signature is sufficient to separate IPF from normal lung by a single-

linkage hierarchical algorithm (Figure 2D), a clear improvement

in separation when compared with Figure 2A. Interestingly, even

when using all 22 SAGE libraries the 293-signature results in a

good separation of most IPF from the normal lung parenchyma

samples demonstrating the strength of the 293-signature (Figure
S2B).

Differentially expressed genes characterizing the
progressive and relatively stable disease groups in IPF

After establishing that our newly generated SAGE IPF

transcriptome contained sufficient information to distinguish IPF

from normal lung parenchyma and other lung diseases, we

analyzed the differential expression between progressive and

relatively stable IPF. The progressive and relatively stable groups

had 446,158 and 508,774 total SAGE tag counts respectively.

After applying a filter for a total sum of at least 2 or more tag

counts in both groups only 16,089 unique transcript tags were left

of which 13,745 were in common between the two groups; 1,268

were only present in the progressive group and 1,076 were only

present in the relatively stable group. To identify significant

differentially expressed transcript tags that distinguished the two

groups, we also selected for a fold difference $5, a minimal tag

count in the corresponding group $5 counts, and a P-value#0.05

resulting in 243 differentially expressed transcripts. As a final filter,

we selected for an expression level of 4 or more counts in at least

50% of the SAGE libraries representing either of the two groups.

In this way, we identified 102 transcripts up regulated and 89

down regulated transcripts in the progressive group (Figure 3A,

Table 2 and S3). The up regulated genes in the progressive

group includes surfactant protein A1 (SFTPA1) and also members

of the MAPK-EGR1-HSP70 pathway that regulates cigarette-

smoke induced inflammation [20]. Other up regulated genes are

ADM (adrenomedullin), CCL2 (chemokine ligand 2), PTPRF

(protein tyrosine phosphatase receptor F) and SPP1 (osteopontin).

Interestingly, we found 26 genes among the list of 102 up

regulated transcripts that are also associated with various cancers

like Heat shock 70KDa protein 1A (HSPA1A), Macropain

(PSMA7), Ras homolog gene family member B (RHOB), FK506

binding protein 2 (FKBP2) and Plunc (palate, lung and nasal

epithelium carcinoma associated). None of the above mentioned

genes, with the exception of SFTPA1, have been previously

correlated with disease progression in IPF. Other candidate

molecular biomarkers, not necessarily previously implicated in IPF

pathogenesis, were selected by IPA analysis among the differen-

tially expressed genes in the progressive group and are listed in

Table 3. Real-time PCR confirmed the over expression of ADM,

Plunc, SPP1, and the down regulation of RTKN2 (rhotekin 2) in a

subset of samples (n = 4) used for SAGE library construction

representing the progressive group. The values obtained for the

relatively stable group (n = 4) was arbitrarily set to one in order to

calculate a fold difference (Figure 3B). Both ADM and SPP1

have been previously shown to be up regulated in IPF confirming

our results [13,21,22]. To examine the cellular distribution of

Plunc, we analyzed IPF and normal lung tissue by immunohis-

tochemistry. Plunc was found to be mainly expressed in the

secretory/goblet type of bronchial columnar cells. In regions of

honeycombing there are bronchial/bronchiolar epithelia (includ-

ing the secretory type) that are strongly staining. It appears that

Plunc is also secreted into the mucus that is filling these cystic

spaces (Figure 3C). No Plunc expression was detected in normal

lung tissue (Figure 3D).

A molecular signature for disease progression in IPF
To determine if the identified 191 differentially expressed genes

associated with rapid progression in IPF (102 up and 89 down

regulated) represent a molecular signature, we selected for genes

with a P-value,0.05, and analyzed the significance of the

difference in mean expression level in both groups and determined

that the expression level of 134 of the 191 genes was sufficient to

correctly distinguish the progressive from the relatively stable

group (Student T-test P-values between 6.5E-3 and 2.4E-5). This

expression signature was tested by an unsupervised hierarchical

clustering of all IPF lung SAGE libraries used in this study showing

a clear distinction between the progressive and relatively stable

groups (Figure 4A). Interestingly, a study by Selman and

colleagues described an accelerated and slowly progressive variant

of IPF [13]. The sample size in the Selman microarray based study

is small but offers an opportunity to test our 134-signature in an

independent cohort. We found 90 genes (67%) in common with

our 134 expression signature that were represented on the custom

Affymetrix oligonucleotide microarrays [13]. Cluster analysis using

those 90 genes was insufficient to clearly distinguish the

accelerated variant from the slow variant (Figure 4B). Analysis

of the significance of the difference in mean expression level

between the accelerated and slow variant group among the 90

genes tested, demonstrated that only 58 out of the 90 genes were

significant (Student T-test P-value of 8.0E-3). This prompted us to

repeat the hierarchical clustering using a smaller set of genes and

the results show an improved separation of both groups

(Figure 4C). It is possible that when using the full progressive

IPF signature of 134, the clustering will be even more definitive for

the accelerated and slow variant. The clustering ‘behavior’ of the

dataset might simply reflect the differences in definition of the

accelerated and slow variant between Selman’s study and our

study. The main distinction being that the slow variant group in

Selman’s study included subjects with more than 24 months of

symptoms while in our study we selected subjects based on their

PFT values within a 12 months period following the initial biopsy.

Though the preliminary results are promising, the small sample

size does not support any formal conclusions regarding the

classification strength of the proposed 134-expression signature.

Pathway analysis of the IPF transcriptome and biomarker
selection

Ingenuity pathway analysis (IPA) was applied to select for the

main canonical pathways represented in the 1,121 transcript list of

over expressed genes in the IPF SAGE Transcriptome, using a

Fisher’s exact test with a P-value threshold of 0.05. These

pathways are the IGF-1 signaling, the ERK/MAPK signaling, the

protein ubiquitination, the PI13/AKT signaling, the cardiac

Disease Progression in IPF
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b-adrenergic signaling, the actin-cytoskeleton signaling, the

integrin signaling, and the NRF2-mediated oxidative stress

response pathway (Figure 2C). Some of the canonical pathways

identified in this study have been previously implicated in IPF

[23,24]. Biomarker analysis using the IPA software identified 33

candidate biomarkers in the 293-IPF SAGE transcript signature.

Expression of these genes has been detected in various bodily fluids

like blood, bronchoalveolar lavage fluid, plasma/serum, sputum,

and lung tissue in various diseases (Table S4). Two genes located

in the extracellular space have been detected in sputum as well as

in other bodily fluids; complement factor H (CFH) and

metallopeptidase inhibitor 1 (TIMP1). CFH is secreted into the

bloodstream and has an essential role in the regulation of

complement activation, and it acts as an adrenomedullin binding

protein [25]. The metallopeptidase inhibitor 1 has been previously

detected in interstitial macrophages in human IPF samples [26]

and is a key player in the fibrogenic response to bleomycin in

C57BL/6 mice [27,28]. The proteins encoded by the TIMP gene

family are natural inhibitors of the matrix metalloproteinases

(MMPs), a group of peptidases involved in degradation of the

extracellular matrix. Though it is unmistakable that MMPs play

an important role in IPF pathogenesis the exact mechanism how

TIMP1 is activated is still unresolved [29]. Recently it has been

shown that the over expression of TIMP1 was an independent

prognostic marker in patients with non-small cell lung carcinoma

[30].

Gene Ontology, Pathway and Network analysis of
significant differentially expressed genes among patients
with progressive IPF

The identified differentially expressed genes in the progressive

group offer insight to the possible pathways and cellular processes

that might be involved in IPF progression. For a systematic and

unbiased analysis we used the Ingenuity Pathway Analysis

program to explore the list of differentially expressed genes.

Figure 5A depicts the top canonical pathways that are

significantly associated with our dataset and are highly represented

in either the up regulated or down regulated list of genes. The

significance is determined by a high ratio (or percentage of genes

in pathway found in the gene list) and by a high negative logarithm

of the P-value; indicating that the pathway is significantly

associated with the data and that a large portion of the

corresponding canonical pathway may be affected.

The most prominent pathways in the progressive group (up

regulated list of genes) are integrin signaling, regulation of actin-

Figure 3. Differentially expressed genes in the lung parenchyma from the relatively stable and progressive IPF. (A) Selection criteria
applied in order to find significantly differentially expressed genes. (B) Relative mRNA expression of selected genes. Real-time PCR reactions were
performed in triplicate, and the threshold cycle numbers were averaged. Gene expression levels were normalized to GAPDH, and PGK1. The genes
ADM (adrenomedullin), Plunc (palate, lung and nasal epithelium carcinoma associated), and SPP1 (osteopontin) were selected as up regulated; and
RTKN2 (rhotekin 2) as down regulated in the progressive group. The values obtained for the relatively stable group was arbitrarily set to one to
calculate a fold difference. The fold difference in the progressive group is indicated by solid bars and the levels in the relatively stable group are
represented by the patterned bars. The differences were not significant as calculated by a Mann-Whitney test. (C) Paraffin-embedded tissue was
stained with Plunc antibodies and counterstained with hematoxylin. A representative IPF sample shows strong staining of the secretory/goblet type
of bronchial columnar cells (10X magnification). (D) Control bronchial normal lung tissue showed no staining (10X magnification).
doi:10.1371/journal.pone.0005134.g003
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Table 2. Top 50 differentially expressed genes in progressive group

ID Tag Sequence Log2 ratio Symbol Gene description

1 AGAGGGTGGG 3.5 DNAJB1 DnaJ (Hsp40) homolog, subfamily B, member 1

2 CTGAATGTAC 3.5 MEST Mesoderm specific transcript homolog (mouse)

3 ATGGTGGGGG 3.3 ZFP36 Zinc finger protein 36, C3H type, homolog (mouse)

4 GTACTAGTGT 3.3 CCL2 Chemokine (C-C motif) ligand 2

5 TCAAGCCATC 3.3 EGR1 Early growth response 1

6 ATTGATGTGT 3.2 SFTPA1 Surfactant, pulmonary-associated protein A1

7 TGCCTCACCT 3.2 PLUNC Palate, lung and nasal epithelium carcinoma associated

8 AAGAGCGCCG 3.2 HSPA1A Heat shock 70kDa protein 1A

9 ATGATGTGTA 3.2 SPATS2 Spermatogenesis associated, serine-rich 2

10 AATGTAATCA 3.2 SRI Sorcin

11 ACATCATACT 3.2 IPO4 Importin 4

12 CCCTTCTATT 3.2 CMAS Cytidine monophosphate N-acetylneuraminic acid synthetase

13 GAAAAGGGTT 3.2 LAPTM4B Lysosomal associated protein transmembrane 4 beta

14 TTTAAATAGC 3.2 KLF4 Kruppel-like factor 4 (gut)

15 GCCGATCCTC 3.2 TBCA Tubulin-specific chaperone a

16 AACTCCCAGT 3.0 GADD45B Growth arrest and DNA-damage-inducible, beta

17 TGCCAGGTCT 3.0 SFTPA2 Surfactant, pulmonary-associated protein A2B, shorter alternative
transcript

18 GCCCCGAGCC 3.0 REEP5 Receptor accessory protein 5

19 GTCCGAGTGC 3.0 TM4SF1 Transmembrane 4 L six family member 1

20 ACCACTTATC 3.0 CTSB Cathepsin B

21 AGCTTCCAGC 3.0 METRNL Meteorin, glial cell differentiation regulator-like

22 CGGCTGCCCA 3.0 SNCG Synuclein, gamma (breast cancer-specific protein 1)

23 CTCTCTACTT 3.0 ITGB1BP1 Integrin beta 1 binding protein 1

24 GAAGTTTTAC 3.0 GNS Glucosamine (N-acetyl)-6-sulfatase (Sanfilippo disease IIID)

25 GGGGGAGGGA 3.0 TMEM30A Transmembrane protein 30A

26 CTTCTAGGGA 22.6 SIN3B SIN3 homolog B, transcription regulator (yeast)

27 GACAGTCACT 22.6 ARHGEF4 Rho guanine nucleotide exchange factor (GEF) 4

28 GCTGTGCTGG 22.6 RIP RPA interacting protein

29 GGCTATACAG 22.6 YLPM1 YLP motif containing 1

30 GTTGTGTTAA 22.6 TMEM125 Transmembrane protein 125, internally primed

31 TAAGAAAAAA 22.6 CHRDL1 Chordin-like 1

32 TAGAGCTTGT 22.6 NEK4 NIMA (never in mitosis gene a)-related kinase 4

33 TCTGTTACAC 22.6 PITPNM2 Phosphatidylinositol transfer protein, membrane-associated 2

34 TGCAAGAGAG 22.6 ARHGAP30 Rho GTPase activating protein 30

35 TGCCATTAAG 22.6 mitochondrial

36 TGCGTCACCG 22.6 SMARCA4 SWI/SNF related, matrix associated, actin dependent regulator of
chromatin, subfamily a, member 4

37 TGGTCTGGAG 22.6 MYO18A Myosin XVIIIA

38 TGTATTTGAA 22.6 SLC11A2 Solute carrier family 11 (proton-coupled divalent metal ion
transporters), 2

39 TGTTAACAGA 22.6 NHLRC2 NHL repeat containing 2

40 TTTTGAAGAA 22.6 GTF2I General transcription factor II, i

41 ACCTCCCCAC 22.3 CYP2B7P1 Cytochrome P450, subfamily B, polypeptide 7 pseudogene 1

42 TTTACTTTGG 22.3 C9orf61 Chromosome 9 open reading frame 61

43 TTTGAATCAG 22.3 FAM46A Family with sequence similarity 46, member A

44 ACGCTCTCGA 22.3 CD37 CD37 antigen

45 AGCCACCTCA 22.3 ZCCHC4 Zinc finger, CCHC domain containing 4

46 GCCCAGGGAA 22.3 ARRDC2 Arrestin domain containing 2

47 TACTCAGAGG 22.3 PAK2 P21 (CDKN1A)-activated kinase 2

48 TATATTTCCA 22.3 P29 CCNDBP1 interactor

Disease Progression in IPF
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based mobility (cell migration), glycosaminoglycan (mucopolysac-

charides) degradation, (LXR/VDR) retinoic X receptor (RXR)

activation and chemokine signaling; suggesting an important role

for integrin signaling, immune function, bone metabolism and

vitamin D3/RXR activation in disease progression. The glycos-

aminoglycan degradation pathway is a process that seems to be

significantly associated with increased disease progression

(Figure 5). Glycosaminoglycans (mucopolysaccharides) are car-

bohydrate molecules or complexes of protein and carbohydrate

that form the ground substance of connective tissue. One of these

carbohydrates is hyaluronic acid. All substances passing to and

from cells must pass through the ground substance. Variations in

its composition and viscosity may therefore have an important

influence on the exchange of materials between tissue cells and the

blood. Another finding is the association of the nuclear RXR

(retinoic X receptor)/VDR (vitamin D receptor) activation

pathway with disease progression. The nuclear RXR can regulate

transcription by forming complexes with other nuclear factors and

can be activated by retinoid acid. This pathway has until now been

unexplored in pulmonary fibrosis, however it is important to note

that VDR-deficient mice failed to develop experimental allergic

asthma, suggesting an important role for the vitamin D endocrine

system in the generation of Th2-driven inflammation in the lung

[31].

Another clear distinction can be seen between the two groups of

patients with IPF when analyzing the percentage of genes

associated with various molecular and cellular functions

(Figure 5B). During disease progression, an increase is detected

in genes associated with cellular growth and proliferation, cellular

compromise (stress), cell signaling, cell morphology, cell death, cell

cycle and cell movement; molecular functions usually associated

with cancer. These results were confirmed by performing a

Network analysis. This analysis identified five partially overlapping

networks (Table 4) in our list of differentially expressed genes,

highlighting similar molecular functions associated with the

corresponding networks. The overlap between Network 1 and 3

is depicted in Figure 6 in which the central role for genes like p38

MAPK, NFkB, HSP70, EGR1, CCL2 and Ras homolog can be

easily detected.

Discussion

Our results indicate that molecular signatures of gene

expression appear to be useful in the identification of the presence

and predictive of the activity of IPF. We have shown that

molecular signatures can distinguish IPF from both normal lung

and other chronic lung diseases. Moreover, our findings suggest

that molecular signatures from lung parenchyma at the time of

diagnosis appear to be helpful in predicting disease progression

and may prove valuable in predicting the activity of IPF.

Genome-wide analyses of gene expression have facilitated the

identification of gene expression patterns or signatures revealing

the complexity of human cancer. Most of the work using large

scale gene expression data has been focused on discovering gene

expression profiles that can lead to a better understanding of

tumor development and proliferation. The strength of gene

expression analysis has been shown by the ability to identify new

cancer subtypes and predict clinical outcome [32]. A prognostic

gene expression signature has been proposed for survival in early-

stage lung cancer [33] and was recently validated in a large,

training-testing, multi-site, blinded study [34]. Gene expression

profiling has also allowed the prediction of breast cancer

recurrence [35] which has ultimately lead to the development of

the Mammaprint, a clinical test based on a 70-genes signature that

predicts the risk of metastasis in breast cancer patients [36].

While gene expression profiling has proven to be a powerful tool

for the identification of specific gene patterns and pathways

associated with certain types of human cancers, our findings

suggest that these molecular signatures may also prove useful in

understanding complex lung diseases, like IPF. The increase of the

protein ubiquitination pathway could be associated with an

increase of apoptosis of epithelial cells but has not been extensively

studied in IPF. There are few studies implicating the PI3/AKT

signaling pathway in IPF. Bleomycin-induced pulmonary fibrosis

studies in mice have shown activation not only of TGF-beta but

also phosphatidylinositol 3-kinase (PI3K) and protein kinase B via

a Semaphorin (SEMA) 7A-dependent mechanisms, and PKB/

AKT inhibition diminished TGF-beta-induced fibrosis [37].

SEMA 7A was not found to be differentially expressed in our

dataset though many family members and its receptor intergrin

beta are involved in the transcriptional profile of IPF. It has been

shown that collagen accumulation can be reduced by the

administration of PI3K inhibitors [38], implying that the PI3K/

AKT pathway might play an important role in pulmonary fibrosis.

Deregulation of the PI3K/PTEN/AKT pathway is one of the

most common altered pathways in human malignancy. Significant

advances have been made in the understanding of the AKT

signaling pathway in oncogenesis and in the development of small

molecule inhibitors. Whether this pathway could be targeted in

human pulmonary fibrosis remains to be established and could

offer new treatment opportunities. The integrin signaling pathway

is anticipated to be associated with pulmonary fibrosis since

integrins are the primary extracellular matrix (ECM) receptors

mediating ECM remodeling [39]. In response to changes in the

ECM, integrin signaling also regulates many other interrelated

cellular processes like proliferation, survival, cell migration and

invasion. However, further studies in larger cohorts, using either,

real-time PCR, a customized SAGE signature array or tissue-

array, are needed to validate the importance and relevance of

these findings for early diagnosis and disease management.

Our results may have a significant impact in the development of

early biomarkers for IPF. Identifying biomarkers that could reduce

the time to diagnosis may create a window of opportunity for

therapeutic intervention, especially in a disease like IPF where the

diagnosis is often delayed. While our transcriptional signature for

ID Tag Sequence Log2 ratio Symbol Gene description

49 TCCAAACCCC 22.3 DST Dystonin

50 TGGTGATGAT 22.3 TAL1 T-cell acute lymphocytic leukemia 1

The top 25 up and down regulated genes in the progressive disease group are indicated. A complete list of the differentially expressed 191 transcript tags and their
corresponding matching genes group is presented in Table S3.
doi:10.1371/journal.pone.0005134.t002

Table 2. cont.
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Table 3. Candidate Biomarkers for disease progression based on IPA database survey

Gene Symbol Gene Description Location Fold change B BAL P/S Sp L

HLA-DQA1 major histocompatibility complex, class II, DQ A1 Plasma Membrane 14 x x

MEST mesoderm specific transcript homolog (mouse) Extracellular Space 11 x x

CCL2 chemokine (C-C motif) ligand 2 Extracellular Space 10 x x x x

ZFP36 zinc finger protein 36, C3H type, homolog Nucleus 10 x x

HSPA1A heat shock 70kDa protein 1A Cytoplasm 9 x x x

KLF4 Kruppel-like factor 4 (gut) Nucleus 9 x x

PLUNC palate, lung and nasal epithelium carcinoma ass. Extracellular Space 9 x x x

SRI Sorcin Cytoplasm 9 x x

ADM adrenomedullin Extracellular Space 8 x x x

AQP1 aquaporin 1 (Colton blood group) Plasma Membrane 8 x x

CTSB cathepsin B Cytoplasm 8 x x x x

DYNLT1 dynein, light chain, Tctex-type 1 Cytoplasm 8 x x

GADD45B Growth arrest and DNA-damage-inducible, beta Cytoplasm 8 x x

TMBIM1 transmembrane BAX inhibitor motif containing 1 Unknown 8 x x

PSMA7 proteasome (macropain) subunit, alpha type, 7 Cytoplasm 7 x x x x

UBB ubiquitin B Cytoplasm 7 x x

CD14 CD14 molecule Plasma Membrane 6 x x x x

CDC42 cell division cycle 42 Cytoplasm 6 x x x

LGALS3 lectin, galactoside-binding, soluble, 3 Extracellular Space 6 x x x x

NAGLU N-acetylglucosaminidase, a-Sanfilippo IIIB Cytoplasm 6 x x x x

PTPRF Protein tyrosine phosphatase, receptor type, F Plasma Membrane 6 x x x x

SPP1 secreted phosphoprotein 1 (osteopontin) Extracellular Space 6 x x x

APOA1BP apolipoprotein A-I binding protein Extracellular Space 5 x x

CD74 CD74, major histocompatibility complex II Plasma Membrane 5 x x

CD276 CD276 molecule Plasma Membrane 5 x x

EIF3A eukaryotic translation initiation factor 3A Cytoplasm 5 x x

FKBP2 FK506 binding protein 2, 13kDa Cytoplasm 5 x x

FOXA1 forkhead box A1 Nucleus 5 x x x

PDIA4 Protein disulfide isomerase family A, member 4 Cytoplasm 5 x x x x

RHOB ras homolog gene family, member B Cytoplasm 5 x x

TBCA Tubulin folding cofactor A Cytoplasm 5 x x

TES testis derived transcript (3 LIM domains) Plasma Membrane 5 x x

VDAC3 Voltage-dependent anion channel 3 Cytoplasm 5 x x x

ACTR3 ARP3 actin-related protein 3 homolog (yeast) Plasma Membrane 4 x x x

DST dystonin Plasma Membrane 25 x x x x

TAL1 T-cell acute lymphocytic leukemia 1 Nucleus 25 x x

AHNAK AHNAK nucleoprotein Nucleus 26 x x x

BIRC6 baculoviral IAP repeat-containing 6 (apollon) Cytoplasm 26 x x x

EMR4 Egf-like, mucin-like, hormone receptor 4 Plasma Membrane 26 x x

ITPKB inositol 1,4,5-trisphosphate 3-kinase B Cytoplasm 26 x x

MGAT4A mannosyl-glycoprotein, transferase 4A Unknown 26 x x x

SIN3B SIN3 homolog B, transcription regulator (yeast) Nucleus 26 x x x

SMARCA4 SWI/SNF related, matrix associated, actin dependent regulator
of chromatin A4

Nucleus 26 x x

YLPM1 YLP motif containing 1 Nucleus 26 x x x

ARHGEF10 Rho guanine nucleotide exchange factor 10 Cytoplasm 27 x x

SAFB2 scaffold attachment factor B2 Unknown 27 x x x

KIAA1217 KIAA1217 Cytoplasm 29 x x x

Based on the literature available in the IPA database the cellular localization and detection in bodily fluids/tissue is indicated. Fold change is represented as the difference in
expression level between the progressive and relatively stable group. B = blood; BAL = Bronchoalveolar Lavage Fluid; P/S = Plasma/Serum; SP = Sputum; L = Lung.
doi:10.1371/journal.pone.0005134.t003
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disease progression was developed using lung biopsy samples, 47 of

the 134 gene products that were associated with clinical

progression have been detected in body fluids in various diseases

(such as blood, plasma/serum, bronchoalveolar lavage fluid or

sputum) according to Ingenuity Pathway Analysis software.

Although for many of these 47 genes the biological function and

role in IPF pathogenesis is unknown, these genes and gene

products could potentially serve as biomarkers for this disease.

Genes like ADM (adrenomedullin), CCL2 (chemokine ligand 2),

PTPRF (protein tyrosine phosphatase receptor F) and SPP1

(osteopontin) play a role in the migration of smooth muscle cells

and cell proliferation and/or invasion implying a potentially more

important role of these processes in disease progression. The

chemokine CCL2 have been previously detected in metaplastic

epithelial cells and vascular endothelial cells of IPF cases and it was

proposed that CCL2 may play a key role in the irreversible

progression of IPF [40]. In addition, a decrease of lung fibrosis was

detected in CCL2 null mice when exposed to bleomycin [41,42].

Figure 4. Heat map SAGE molecular signature. (A) Unsupervised clustering of gene expression patterns of IPF lung SAGE libraries described in
Table S1, based on the expression signature of 134 transcripts showing a clear distinction between relatively stable (slow) and progressive (rapid)
IPF. (B–C) Hierarchical clustering of 8 IPF samples previously identified as a slow and accelerated variants [13] based on 90 (B) or 58 (C) genes in
common with the SAGE 134 molecular signature.
doi:10.1371/journal.pone.0005134.g004

Figure 5. Biological differences between progressive and relatively stable disease groups in IPF. (A) Ingenuity Canonical Pathway
analysis showing the most significant pathways associated with the datasets of up and down regulated genes in the progressive group. The
significance of the association between the dataset and the canonical pathway was measured as a ratio (number of genes from the dataset that map
to the pathway divided by the total number of molecules that exist in the canonical pathway). A Fischer’s exact test was used to calculate a P-value.
(B) Main molecular and cellular functions significantly associated with the datasets of up and down regulated genes in the progressive group
according to the IPA functional analysis tool.
doi:10.1371/journal.pone.0005134.g005
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What’s more, CCL2 has been shown to be elevated in human

bronchoalveolar lavage fluid from patients with IPF [42,43]. The

protein was measured in plasma as well and it was shown that there

was no significant difference between IPF patients and normal

controls [44]. Our results indicate that CCL2 is a potential marker of

disease progression in IPF. Whether the plasma levels of CCL2

correlates with disease progression remains unknown [44]. Interest-

ingly, SPP1 have been localized to the alveolar epithelial cells in IPF

lungs, was also significantly elevated in bronchoalveolar lavage fluid

from IPF patients [21] and, has been detected in plasma from

patients with idiopathic interstitial pneumonia [45]. Previous studies

have shown that SPP1 null mice clearly develop less fibrosis when

exposed to bleomycin. It was suggested that SPP1 is secreted by the

epithelial cells and has a profibrotic effect [21].

Some of these potential biomarkers genes have been implicated

in human cancers. Heat shock 70KDa protein 1A (HSPA1A) is up

regulated in brain, lung, and liver cancer. Macropain (PSMA7) is

increased in brain, breast, and stomach cancer, and plays an

Figure 6. Network analysis. The network map represents the interaction between members of two networks highlighting the crosstalk between
the multiple differentially expressed genes in the progressive group. Nodes represent genes, and theirs shapes represent the functional classes of the
gene products. Solid lines indicate a direct interaction and dashed lines indicate an indirect interaction.
doi:10.1371/journal.pone.0005134.g006
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important role in colorectal cancer progression providing a unique

target for drug development. The Ras homolog gene family

member B (RHOB), a Rho GTPase, is up regulated in brain and

breast cancer though down regulated in lung neoplasms. These

GTPases are crucial regulators of the actin cytoskeleton and also

play an important role in membrane trafficking. Associated with

lung cancer are FK506 binding protein 2 (FKBP2) and Plunc

(palate, lung and nasal epithelium carcinoma associated). The

latter gene belongs to the PLUNC family of proteins postulated to

play a role in innate immune response and is uniquely expressed in

the upper respiratory tract. Studies in cystic fibrosis have shown a

significant elevation of Plunc expression in diseased airways

[46,47]. As Plunc can be detected in sputum [48] and

bronchoalveolar lavage fluid, it appears to be an ideal candidate

biomarker for disease progression in IPF. SAGE and microarray

analysis have recently indicated that Plunc is a novel marker that

distinguishes gastric hepatoid adenocarcinoma from primary

hepatocellular carcinoma [49].

The extensive SAGE IPF transcriptome presented in this

investigation demonstrates the complexity and scope of the

biological activity involved in IPF. Some of the pathways identified

by SAGE profiling have not been previously associated with IPF.

Network and pathway analyses have also shown that various

signaling pathways can interact or even partially overlap with each

other, thereby suggesting that IPF may be the result of multiple,

consecutive (or interactive) biological events, possibly triggered

by environmental stimuli. However, despite this biological

complexity, our findings clearly illustrate that molecular signatures

of gene expression in IPF may prove helpful in predicting disease

progression among those with IPF. Molecular and cellular

functions like cell proliferation, migration, invasion and cell

morphology appear to be over represented in the more progressive

IPF group; a striking similarity with human cancers. The

association with disease progression and the identifiable heteroge-

neity seen within samples emphasize the importance and the need

for an extensive molecular classification of IPF and other forms of

interstitial lung disease. The recognition that IPF may have

different subtypes that can be distinguished by their molecular

patterns could identify novel therapeutic targets and personalize

the clinical approach to this complex group of diseases.

Materials and Methods

Study Population
Lung tissue was obtained from patients with IPF who had a

definitive diagnosis based on UIP pathology from a surgical lung

biopsy [1,2]. Flash frozen surgical lung biopsy specimens, were

obtained from 12 patients with IPF who were undergoing initial

diagnostic evaluation and were not being treated for their IPF.

The protocol was approved by the Institutional Review Board

from National Jewish Health and written informed consent was

obtained where required. Further processing of the frozen samples

was performed at the National Institutes of Health (NIH). This

research activity was approved by the Office of Human Subjects

Table 4. Functional network analysis of differentially expressed genes in the progressive group

ID Molecules in Network Score (1)
Number Focus
Genes Top Functions

Number
associated
genes (2) P-Values (3)

1 ARHGEF4, BIRC6, CARD8, Caspase, CCL2, CD14, CDC42,
DNAJB1, EGR1, FAM46A, FNBP1L, GADD45B, Hsp70,
HSPA1A, ITGB1BP1, ITPKB, Jnk, KLF4, Mek, Nfat, NFkB,
P38 MAPK, Pak, PAK2, Pdgf, Rac, Ras, Ras homolog,
RHOB, SLC25A4, SNCG, UBB, Ubiquitin,
VitaminD3-VDR-RXR, ZFP36

43 21 Cell Signaling
Cell Death
Cancer

10
14
14

1.45-E05 – 1.2E-02
3.67E-05 – 1.59E-01
1.04E-04 – 2.02E-02

2 ADM, Akt, ANXA7, Ap1, ARNT, ATP6V0E1, ATPase,
BAT1, Ck2, CLEC2B, COL4A2, F Actin, HIF3A, Histone
h3, Insulin, KIF1C, LDL, LGALS3, Mapk, MTUS1, MYH9,
MYO9B, NFIL3, PBEF1, PDGF BB, PI3K, Pkc(s), PTPRF,
SH3BP2, SLC2A3, SPP1, TAL1, Tgf beta, TLN1, Tni

33 17 Hepatic System
Disease
Gene Expression
Cardiovascular System
Development and
Function

3

7
9

1.18E-05 – 8.49E-02

8.2E-05 – 3.59E-02
1.48E-04 – 7.0E-02

3 ACTR3, AQP1, ARNT2, ATP2B2, ATP5F1, beta-estradiol,
CCL18, CD37, CEBPB, CRK, CTSB, CTSH, DEFB103A, DLG2,
DOCK4, DYNLT1, DYNLT3, FOS, GLUL, GNS, HLA-DQA1,
HLA-DQB1, IFNG, IL13, MEST, MRPL37, NR3C1, PRL,
PSMA7, RAB7A, RABGGTB, RFXAP, SERPINA3G, TM4SF1

30 16 Gene Expression
Cancer
Tumor Morphology

11
16
6

6.38E-09 – 1.33E-03
2.68E-08 – 1.41E-03
2.68E-08 – 6.24E-04

4 ABCB1B, ACSS1, ALDH1A7, ANXA7, AQP1, BDKRB1, Ca2+,
DMN, DST, DTNA, ELF3, F2, HPSE, KLF6, KLF15, M6PR,
NAGLU, PLUNC, POLR3H, RARRES1, RCP9, retinoic
acid, RPL6, Ryr, SCMH1, SERPINB2, SLC2A3, SNCG,
SOD3, SP1, SRI, TGM1, TM4SF1, TNF, VEGFA

25 14 Cancer
Cellular Movement
Cell-to-Cell Signaling
and Interaction

21
14
11

1.28E-07 – 1.64E-01
1.28E-07 – 1.25E-03
1.45E-07 – 1.35E-03

5 amino acids, AREG, BCL2L1, CMAS, COG1, COG2, COG3,
COG4, COG5, COG6, COG7, COG8, DUSP4, DUSP6, ELF3,
ERBB2, ERRFI1, HGF, HIPK2, IL11, ILK, IRF8, Mek1/2, Mlcp,
NEK4, PDE8A, PPP1R12A, PPP1R12B, PRKG1, PTPRE,
ROCK1, ROCK2, SERP1, VDAC3, WBP5

14 9 Amino Acid Metabolism
Post-Translational
Modification
Small Molecule
Biochemistry

12
14

15

3.27E-10 – 1.54E-03
3.27E-10 – 2.01E-03

3.27E-10 – 4.02E-03

Up regulated genes are indicated in bold. Down regulated genes are underlined. Genes not altered in our signature are indicated in plain text. (1) Negative logarithm of
the P-value; indicating the likelihood that the focus genes within a network are grouped as a result of random chance; using a confidence level of 99% IPA regards a
score $2 as significant. (2) Number of significantly associated genes with the corresponding molecular function. (3) Range of significances of the associated genes for
the corresponding molecular function.
doi:10.1371/journal.pone.0005134.t004
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Research at the NIH. The 12 specimens were specifically obtained

from two groups of patients; progressive IPF or relatively stable

IPF. In the progressive group (n = 6), the percent predicted forced

vital capacity (FVC) and the percent predicted diffusing capacity of

carbon monoxide (DLCO) declined significantly up to 12 months

following biopsy (respectively $10% and $15% ). The relatively

stable group (n = 6) had a relatively uneventful eventless course

over the 12 months following surgical lung biopsy with a decline in

percent predicted FVC,10% or a decline in percent predicted

DLCO,15%. No patient in either group received treatment for

IPF prior to lung biopsy.

RNA isolation and SAGE library construction
Total RNA was extracted from frozen lung tissue using the

RNAgents total RNA isolation system (Promega, Madison, WI,

USA). The quality of total RNA was analyzed using the RNA

6000 Nano Labchip kit on a 2100 BioAnalyzer (Agilent

Technologies, Santa Clara, California). On average 1 to 5 mg of

total RNA as determined by the Ribo-Green RNA Quantification

kit (Molecular Probes, Eugene, OR, USA) was used to construct

SAGE libraries from 12 IPF samples using Nla III as the anchoring

enzyme and BsmF I as the tagging enzyme according to a micro-

SAGE protocol [50]. The SAGE library clones were arrayed and

inserts were purified and sequenced at Agencourt Bioscience

Corporation. The SAGE 2000 software version 4.5 (available at

http://www.sagenet.org) was used to extract SAGE tags from the

original sequence files, remove duplicate ditags, remove linker

sequences, remove one base pair variations of linker sequences and

tabulate the occurrence of each tag. Tag sequences, tag counts and

gene associations were stored in a Microsoft Access relational

database for subsequent analysis. The complete SAGE IPF dataset

have been deposited in the GEO database (GSE11665). Other

SAGE profiles used in this study were downloaded from the GEO

(http://ncbi/geo/) or the SAGE Genie [51] website and are

depicted in Table S1. P-values for differentially expressed

transcripts were calculated according to the sequence odds ratio

and significant test (http://cgap.nci.nih.gov/SAGE). Similar

results were obtained when using the SAGE software Monte

Carlo approach or the significant test available as part of the

DiscoverySpace application [52].

Hierarchical Clustering
The open source clustering software Cluster 3.0 was used for

gene expression data analysis. Cluster 3.0 is an enhanced version

of Cluster [53] built for the Microsoft Windows platform. The

Cluster program is based on a modified Pearson correlation, and

was applied to the normalized SAGE data. Starting with a dataset

of 149,291 unique transcript tags, a second filter selecting for a

project total (sum expression level all 22 libraries included in this

study) of $10 counts was applied reducing the amount of

transcript tags to 23, 649. This SAGE dataset was then filtered for

at least five observations across the 22 libraries, with an absolute

value $2 and a maximum minus minimum value $2. These

settings produced a data set of 11,467 transcript tags. This data set

was subsequently adjusted by performing median centering and

normalization. This procedure resulted in a median-polished (i.e.

all row and column-wise median values are close to zero) and

normal (i.e. all row and column magnitudes are close to 1.0)

dataset. Next, the dataset was analyzed by applying a correlation

centered complete linkage clustering, which assembles the dataset

into a tree. Items joined by short branches are very similar,

whereas longer branches represent decreasing similarities. Results

were displayed with the TreeView program [53]. For confirmation

of the results and subsequent clustering of small datasets or

microarray data, the MultiExperiment Viewer (Version 4.1,

January 18th, 2008) was used [54] as well as a modified version

specific for SAGE data analysis [55].

Real-time PCR
Equal amounts of total RNA (5 mg) were used in a 20 ml cDNA

synthesis reaction primed with oligo-dT (Superscript II; Invitro-

gen, Carlsbad, CA, USA). Control reactions were prepared in

parallel without reverse transcriptase. Prior to cDNA synthesis,

residual genomic DNA was removed from total RNA with a

DNase I treatment (DNA-free; Ambion, Austin, TX, USA).

Quantitative PCR was performed with a 7900TH Fast Real-Time

PCR system (Applied Biosystems, Foster City, CA, USA) using

SYBR-Green. PCR reactions were performed in triplicate, and the

threshold cycle numbers were averaged. Gene expression levels

were normalized to ACTB (actin, beta), and PGK1 (phospho-

glycerate kinase 1). The relative expression levels were calculated

in comparison to the levels in total RNA from normal lung

(Ambion, Austin, TX) according to the Comparative Ct method in

which the relative expression equals 2-DDCt. PCR primers were

designed using the Primer 3 interface (http://www.bioinformatics.

nl/cgi-bin/primer3plus/primer3plus.cgi).

Immunohistochemistry
Five micron sections of paraffin-embedded tissue were depar-

affinized using 5 minute incubations in Xylene followed by 100%

and 95% ethanol. Slides were rinsed in distilled water and then

incubated for 30 minutes in a 3% aqueous solution of hydrogen

peroxide at room temperature. Slides were rinsed in distilled water

and then transferred to a Citrate buffer at pH 6.0 for antigen

retrieval in a pressure cooker at 125uC for 5 minutes followed by a

gradual cooling back to room temperature. Slides were rinsed in

distilled water, and then washed for 5 minutes in Tris-buffered

saline with 0.1% Tween (TBS-T). Washed slides were incubated in

Serum-free protein blocking buffer (DAKO, Carpenteria, CA) for

30 minutes. Blocking buffer was removed without washing and

100 ul of biotinylated primary antibody (#BAF1897, 1:50 dilution

in TBS-T, R&D Systems, Minneapolis, MN) was applied to each

slide. Slides were incubated in primary antibody solution overnight

at 4uC. Slides were washed for 5 minutes in TBS-T. Biotin-labeled

antibody detection was carried out using the Vectastain RTU

ARB reagent (Vector Laboratories, Burlingame, CA) following the

manufactures instructions. Staining was visualized with a 5 minute

room temperature incubation using DAB chromagen/buffer

(DAKO, Capenteria, CA). The color reaction was stopped in

distilled water and slides were counterstained for 3 minutes in

hemotoxylin, dehydrated in graduated ethanol’s and cleared using

Xylene prior to cover slipping. All slides were scanned using the

Aperio ScanScope XT (Aperio, Vista, CA).

Gene Ontology, Biomarker selection and Functional
Network Analysis

Data were analyzed through the use of Ingenuity Pathways

Analysis (Ingenuity SystemsH, www.ingenuity.com). Ingenuity

Pathway Analysis (IPA) is a web-based application that enables

the visualization, discovery and analysis of molecular interaction

networks within gene expression profiles. All generated gene lists

and corresponding expression levels, represented as the log2 ratios,

were uploaded within the IPA database for further analysis. Both

gene symbols and gene bank accession numbers were used with no

apparent differences in results. These genes, called focus genes,

were overlaid onto a global molecular network developed from

information contained in the Ingenuity knowledge base. The IPA
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knowledge base represents a proprietary ontology of over 600,000

classes of biologic objects spanning genes, proteins, cells and cell

components, anatomy, molecular and cellular processes, and small

molecules. Networks of the focus genes were then algorithmically

generated based on their connectivity. The Functional Analysis
of a network identified the biological functions and/or diseases

that were most significant to the genes in the network. The

network genes associated with biological functions and/or diseases

in the Ingenuity knowledge base were considered for the analysis.

Fischer’s exact test was used to calculate a P-value determining the

probability that each biological function and/or disease assigned

to that network is due to chance alone. Canonical Pathways
Analysis identified the pathways from the Ingenuity Pathways

Analysis library of canonical pathways that were most significant

to the dataset. The significance of the association between the

dataset and the canonical pathway was measured in 2 ways: 1) a

ratio of the number of genes from the dataset that map to the

pathway divided by the total number of molecules that exist in the

canonical pathway is displayed; 2) Fischer’s exact test was used to

calculate a P-value. Biomarker Analysis allows the identifica-

tion of the most relevant molecular biomarker candidates from a

dataset based on contextual information such as mechanistic

association with a disease or detection in bodily fluids.

Supporting Information

Figure S1 Lung function test values for individual samples

included in this study. Actual DLCO (A) or FVC (B) values are

depicted in a scatter dot plot with mean and standard deviation.

The progressive group is represented in red (dots) and the

relatively stable group in blue (squares).

Found at: doi:10.1371/journal.pone.0005134.s001 (0.45 MB TIF)

Figure S2 Unsupervised Hierarchical clustering analysis of all

22 SAGE libraries based on 11,467 transcripts (A) and based on

the 293-gene expression signature (B).

Found at: doi:10.1371/journal.pone.0005134.s002 (1.02 MB TIF)

Table S1 Summary SAGE libraries included in this study

Found at: doi:10.1371/journal.pone.0005134.s003 (0.03 MB

PDF)

Table S2 Genes over expressed in IPF when compared to

normal lung.

Found at: doi:10.1371/journal.pone.0005134.s004 (0.07 MB

XLS)

Table S3 Differentially expressed genes in progressive group

Found at: doi:10.1371/journal.pone.0005134.s005 (0.06 MB

XLS)

Table S4 Candidate IPF biomarkers.

Found at: doi:10.1371/journal.pone.0005134.s006 (0.02 MB

XLS)
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