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Abstract: A novel coronavirus related to a condition known as a severe acute respiratory syndrome
(SARS) was termed as SARS Coronavirus-19 (SARS-CoV-2 or COVID-19), which has caused an
unprecedented global pandemic. Extensive efforts have been dedicated worldwide towards deter-
mining the mechanisms of COVID-19 associated pathogenesis with the goals of devising potential
therapeutic approaches to mitigate or overcome comorbidities and mortalities. While the mode of
SARS-CoV-2 infection, its structural configuration, and mechanisms of action, including the critical
roles of the Spike protein have been substantially explored, elucidation of signaling pathways regu-
lating its cellular responses is yet to be fully determined. Notably, phosphoinositide 3-kinases (PI3K)
and its downstream pathway have been exploited among potential therapeutic targets for SARS-
CoV-2, and its activation modulates the release of cytokines such as IL-8. To that end, the current
studies were sought to determine the response of the SARS-CoV-2 Spike S1 protein on PI3K-mediated
IL-8 release using relevant and widely used cellular models. Overall, these studies indicate that PI3K
signaling does not directly mediate Spike S1 protein-induced IL-8 release in these cellular models.

Keywords: COVID-19; PI3K signaling; interleukin-8

1. Introduction

The SARS-CoV-2 outbreak (also referred to as COVID-19) started in December 2019 and
was later declared by The World Health Organization (WHO) as a global pandemic, which
has affected over 66 million people worldwide until early December 2020, resulting in
a death toll surpassing 1.5 million cases. Of significance, older people (>65 years) and
patients with predisposing medical conditions, including diabetes, cardiovascular, or lung
diseases, have been found to be at a higher risk of more likely developing serious symp-
toms/complications, leading to an increased mortality rate [1–4]. Meanwhile, the overall
risks and death rates in non-elderly individuals (<65 years old) were reported to be less
compared to the non-elderly people with comorbidities [5]. Moreover, healthcare workers,
young adults, and the pediatric population have also been found susceptible to SARS-CoV-
2 infection [6–8]. However, the majority of these individuals either remained asymptomatic
or developed mild-to-moderate symptoms, including fever, dry cough, and respiratory
illness [6–8].

Multiple underlying pathogeneses, including altered immune responses, immune sup-
pression, a state of chronic systemic inflammation associated with cytokine storm, lung
injury, and multiorgan system failure, are associated with poor prognosis in SARS-CoV-
2 contracted individuals, which subsequently increased their morbidity and mortality [9–11].
To that end, extensive efforts have been dedicated worldwide towards determining the
mechanisms of COVID-19 associated pathogenesis with the goals of devising potential
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therapeutic approaches to mitigate or overcome comorbidities and mortalities. Sev-
eral immunological and pharmacological interventions have been explored for treating
COVID-19 patients, which were associated with encouraging outcomes and reduced
mortality [12–15]. Besides, there are no specific drugs for COVID-19 treatment or to
control the cytokine storm leading to rapid disease progression. However, many clinical
trials are currently testing vaccines in diverse settings of the human population, and their
results are underway. Moreover, in addition to the restrictions implemented by the US
Centers for Disease Control and Prevention (CDC), several preventative supplementa-
tion approaches, including nutraceuticals and vitamin D, have been suggested to help
strengthen the immune system to avoid or overcome infections [16,17].

Notably, much has been explored in terms of the SARS-CoV-2 infection and the
specific role of the angiotensin-converting enzyme 2 (ACE2) receptor, a part of the dual
renin-angiotensin-system (RAS) in facilitating its entry to a wide range of human cells [18].
This exploration has also rationalized the evaluation of ACE inhibitors in COVID-19
patients [19,20]. Besides, the interaction between the ACE2 receptor and the SARS-CoV-
2 Spike protein has been shown to play a critical role in host cell recognition, which deter-
mines the overall disease severity [21,22]. However, the elucidation of critical signaling
pathways involved in regulating SARS-CoV-2 Spike protein-mediated cellular responses
is yet to be fully determined. Importantly, among various cellular pathways, phospho-
inositide 3-kinase (PI3K)/protein kinase B (PKB, also known as AKT) and its downstream
molecule, mammalian target of rapamycin (mTOR), are considered as the potential thera-
peutic targets against SARS-CoV-2 [23,24], and their activation modulates cytokine release
such as interleukin 8 (IL-8) [25,26].

To that end, the current studies were sought to determine the response of the SARS-
CoV-2 Spike S1 protein (referred to as Spike S1) on PI3K-mediated IL-8 release via phorbol
12-myristate 13-acetate (PMA) using relevant and widely used cellular models. The ratio-
nale of using PMA is supported by several studies demonstrating that PI3K activation is
required for PMA-induced effects [27–29]. This is due to the crosstalk between PI3K/AKT
and protein kinase C (PKC, for which the PMA acts as an agonist) pathways, as inhibitors
of PI3K have been shown to block PMA-induced effects [27–29]. Our studies demonstrate
that only PMA but not Spike S1 were able to induce IL-8 release. Moreover, the pretreat-
ment of PMA but not Spike S1 elicited an increased IL-8 secretion. Overall, these studies
indicate that PI3K signaling does not directly mediate Spike S1-induced IL-8 release in these
cellular models.

2. Materials and Methods
2.1. Reagents and Cell Lines

The PMA was purchased from Sigma-Aldrich (St. Louis, MO, USA). The SARS-CoV-
2 Spike S1 subunit protein (synonyms: Spike protein, S Protein, S1 Subunit, host cell
receptor-binding domain (RBD)) was from RayBiotech (Peachtree Corners, GA, USA).
The human IL-8 ELISA kit was procured from R&D Systems (Minneapolis, MN, USA).
The culture media DMEM was purchased from Corning Mediatech, Inc. (Manassas, VA,
USA), and F-12K was from GE Healthcare Biosciences (Marlborough, MA, USA). The fetal
bovine serum (FBS) was from Corning (Corning, NY, USA), antibiotic–antimycotic was
from Gibco (Gaithersburg, MD, USA), and penicillin–streptomycin was purchased from
Hyclone (Logan, UT, USA). Human nasopharyngeal carcinoma KBP cells were grown
in DMEM high glucose media, and non-small cell lung cancer A549 cells were grown
in F-12K media supplemented with 10% FBS and antibiotic/antimycotic, as previously
described [30,31].

2.2. IL-8 Release

Cell lines were grown to approximately 80–90% confluency in 6 well plates and then
treated with various doses of PMA, Spike S1 subunit protein, or a combination of PMA and
Spike S1, mentioned in the figure legends. Following incubations at the given time points,
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the supernatants were collected and tested for IL-8 secretion using a human IL-8 ELISA kit,
similar to as previously reported [30,32].

2.3. Statistical Analysis

Statistical analysis was assessed by GraphPad Prism software version 7.0 (GraphPad
Software, San Diego, CA, USA). The experiments were repeated, independently, at least
three times. Data were analyzed by Student’s t-test (to compare between two groups) or
one-way ANOVA (for more than two groups) with post hoc Tukey or Bonferroni multiple
comparison tests. The value of p < 0.05 was considered to indicate a statistically significant
difference between the tested groups.

3. Results and Discussion
3.1. Evaluation of Spike S1 Response on IL-8 Release

Multiple cell types such as the epithelial lining of the nasal, tracheobronchial, bronchial,
and respiratory cells have been shown to be primarily infected by SARS-CoV-2 [33,34].
To that end, our first studies tested the dose–response effect of Spike S1 on IL-8 release
from human nasopharyngeal carcinoma and the KBP cell line using PMA as a positive
control. For this, we took advantage of our published report indicating that PMA (100 nM
dose) induces IL-8 secretion from KBP cells [32]. As shown in Figure 1, PMA induces a
dose-dependent release of IL-8 as compared to the vehicle control (i.e., Ctrl-EtOH)-treated
group. However, we did not notice IL-8 release by Spike S1 at all the concentrations
evaluated as compared to the Ctrl-EtOH group (Figure 1).
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change to control). A statistically significant difference (* = p < 0.05) was observed between Ctrl-
EtOH and PMA (100 nM), and ns denotes non-significant differences between the Ctrl-EtOH- and 
Spike S1-treated groups. 
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Figure 2, we observed that PMA induces IL-8 release in a dose-dependent manner, yet no 
response of Spike S1 was noted as compared to the Ctrl-EtOH group. 

To determine if pre-stimulation with Spike S1 or PMA (1 nM) could elicit higher IL-
8 secretion, we tested the effects of Spike S1 and PMA, as well as PMA and Spike S1 com-
binations. Our studies demonstrate that there were no significant differences in Spike S1 
+ PMA or PMA + Spike S1 combinations when compared with the PMA alone group (1 
nM) (Figure 2). Moreover, no significant difference was noted between the Spike S1 + PMA 
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was noticed by the PMA + Spike S1 combination when compared with the Spike S1 alone 
group (Figure 2). 

These findings indicate that pretreatment of PMA but not Spike S1 elicits an in-
creased IL-8 secretion, which is not surprising given that PMA alone (1nM) treatment ex-
hibited a significantly higher response of IL-8 release (Figure 2). Overall, these studies 
indicate that PI3K signaling does not directly mediate Spike S1-induced IL-8 release in 
these cellular models despite the fact that nasopharyngeal carcinomas and the A549 cell 
line have been found to express high levels of ACE2 expression [40–42]. Besides, there are 
several limitations to these studies. First, only two cell lines (KBP and A549) were tested 
for Spike S1 protein response on IL-8 release. Second, future studies are required to further 
determine the role of other SARS-CoV-2 Spike proteins in the same context. Finally, other 
cellular models of tracheobronchial or bronchial epithelial origins such as Calu-3 and pri-
mary alveolar type II (ATII) cell lines should be explored to evaluate SARS-CoV-2 Spike 
protein responses, which have been shown to be permissive to SARS-CoV-2 infection 
[34,43]. 

Figure 1. Dose–response evaluation of PMA and Spike S1 on IL-8 release. KBP cells were treated with
0.1% ethanol (EtOH) as vehicle control (Ctrl-EtOH) or with various concentrations of PMA (10 and
100 nM) and Spike S1 (1, 5, and 25 µg/mL). After 6 h of incubation, the supernatants were collected
and evaluated for IL-8 secretion by ELISA assay. Data are mean ± SE from three independent
experiments done in triplicates, normalized per 1 × 106 cells, and represented as IL-8 release (fold
change to control). A statistically significant difference (* = p < 0.05) was observed between Ctrl-EtOH
and PMA (100 nM), and ns denotes non-significant differences between the Ctrl-EtOH- and Spike
S1-treated groups.

Given that SARS-CoV-2 infection and its severity in various experimental models
and humans have been found to be dependent on the dose/load of this virus [35–37], we
considered the fact that the Spike S1 doses used in our study might not be sufficient to
induce an IL-8 response. However, a recent report demonstrated that the SARS-CoV-2 spike
protein enhanced ACE2 activity (i.e., ACE2 proteolytic activity was measured via the
degradation of fluorogenic caspase-1 substrate and ACE2 cleavage of bradykinin analog)
in a dose-dependent manner with significant changes noted at 7, 14, and 75 µg/mL [38]. In
addition, only the SARS-CoV-2 RBD but not the SARS-CoV RBD was found to enhance
ACE2 activity, indicating the specific response of the Spike S1 protein (RBD) in augmenting
SARS-CoV-2-induced ACE2 activity.
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Along similar lines, studies by Bortolotti and colleagues have shown that the SARS-
CoV-2 Spike 1 protein (at 1 µg concentration) transfected lung epithelial cells and modifies
the degranulation and cytotoxicity of co-cultured natural killer (NK) cells [39]. NK cell
degranulation was measured via CD107a staining and cytotoxicity using a 7AAD/CFSE
Cell-mediated cytotoxicity assay kit. These findings indicate that the Spike S1 protein
concentrations used in our study were within the range (Figure 1) that was able to induce
the functional responses in ACE2 and NK cell activities. Thus, the observed differences
noted in the cellular responses of the SARS-CoV-2 Spike 1 protein could be due to the
different model systems (e.g., FreeStyle293 F cells [38], K562 lymphoblastoid, and BEAS-2B
bronchial lung epithelial cell lines [39] versus KBP and A549 (as detailed below) cell lines).

3.2. Effects of PMA, Spike S1, and Their Combination on IL-8 Secretion

Given that A549, a human non-small cell lung cancer (NSCLC) cell line of alveolar
origin has also been shown to be infected by SARS-CoV-2 [34], we attempted to evaluate
its response on IL-8 secretion. For this, we tested a similar dose–response effect of PMA
(as in Figure 1) along with Spike S1 at a dose of 5 µg/mL, as a similar trend of IL-8 release
was noted at all the concentrations (Figure 1). We observed a much higher dose–response
of PMA on IL-8 release (data not shown). Thus, our next studies evaluated the PMA
dose–response effect at much lower concentrations (ranging from 0.125 to 1 nM). As shown
in Figure 2, we observed that PMA induces IL-8 release in a dose-dependent manner, yet
no response of Spike S1 was noted as compared to the Ctrl-EtOH group.
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Figure 2. Evaluations of the dose–response effect of PMA and its combination with Spike S1 on
IL-8 release. A549 cells were treated with 0.1% EtOH as vehicle control (Ctrl-EtOH), with various
doses of PMA (0.125, 0.25, 0.5, and 1 nM), Spike S1 (5 µg/mL), and a combination of Spike S1 and
PMA or PMA and Spike S1. After 24 h of incubation for PMA and Spike S1 alone treatments or
30 h of incubation for combination treatments, the supernatants were collected and evaluated for
IL-8 secretion by ELISA assay. Data are mean ± SE from three independent experiments done in
triplicates, normalized per 1 × 106 cells, and represented as IL-8 release (fold change to control).
Statistically significant differences were observed between Ctrl-EtOH and PMA (* = p < 0.05), and
Spike S1 vs. PMA + Spike S1 (# = p < 0.01). ns denotes non-significant differences were observed
between Ctrl-EtOH and Spike S1, PMA vs. Spike S1 + PMA or PMA + Spike S1, and Spike S1 vs.
Spike S1 + PMA.

To determine if pre-stimulation with Spike S1 or PMA (1 nM) could elicit higher
IL-8 secretion, we tested the effects of Spike S1 and PMA, as well as PMA and Spike
S1 combinations. Our studies demonstrate that there were no significant differences in
Spike S1 + PMA or PMA + Spike S1 combinations when compared with the PMA alone
group (1 nM) (Figure 2). Moreover, no significant difference was noted between the Spike
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S1 + PMA combination and the Spike S1 alone group. However, significantly increased
IL-8 release was noticed by the PMA + Spike S1 combination when compared with the
Spike S1 alone group (Figure 2).

These findings indicate that pretreatment of PMA but not Spike S1 elicits an increased
IL-8 secretion, which is not surprising given that PMA alone (1nM) treatment exhibited a
significantly higher response of IL-8 release (Figure 2). Overall, these studies indicate that
PI3K signaling does not directly mediate Spike S1-induced IL-8 release in these cellular
models despite the fact that nasopharyngeal carcinomas and the A549 cell line have
been found to express high levels of ACE2 expression [40–42]. Besides, there are several
limitations to these studies. First, only two cell lines (KBP and A549) were tested for Spike
S1 protein response on IL-8 release. Second, future studies are required to further determine
the role of other SARS-CoV-2 Spike proteins in the same context. Finally, other cellular
models of tracheobronchial or bronchial epithelial origins such as Calu-3 and primary
alveolar type II (ATII) cell lines should be explored to evaluate SARS-CoV-2 Spike protein
responses, which have been shown to be permissive to SARS-CoV-2 infection [34,43].

Several studies have shown that the SARS-CoV-2 spike (S) glycoprotein binds with
ACE2 with higher affinity and that the S1 subunit containing a receptor-binding domain
(RBD) of one protomer in the spike protein trimer tightly interacts with ACE2 extracellular
enzymatic domain [38,44–47]. To that end, high-affinity peptide sequences and neutralizing
antibodies targeting SARS-CoV-2 spike-RBD have been developed with the overall goal of
evaluating their efficacy as novel diagnostic or therapeutic modalities [48–50]. Thus, it is
important to explore the critical signaling pathways involved in regulating the spike protein
to gain further mechanistic insights to develop novel therapies for COVID-19 treatment.
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