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Abstract: In recent years, electroencephalogram (EEG) signals have been used as a biometric modality,
and EEG-based biometric systems have received increasing attention. However, due to the sensitive
nature of EEG signals, the extraction of identity information through processing techniques may
lead to some loss in the extracted identity information. This may impact the distinctiveness between
subjects in the system. In this context, we propose a new self-relative evaluation framework for
EEG-based biometric systems. The proposed framework aims at selecting a more accurate identity
information when the biometric system is open to the enrollment of novel subjects. The experiments
were conducted on publicly available EEG datasets collected from 108 subjects in a resting state
with closed eyes. The results show that the openness condition is useful for selecting more accurate
identity information.

Keywords: electroencephalogram (EEG); biometrics; person identification; identity information;
open environment; frequency selection

1. Introduction

Recently, there has been growing interest towards the use of the electroencephalogram
(EEG) in biometrics [1]. An EEG-based biometric system allows the automatic recognition
of people’s identity using their EEG signals, which are recorded while performing a given
task. EEG-based biometric systems have been successfully used in a resting state [2–4]
and under conditions of visual stimuli [5–7], mental tasks [8] and emotional stimuli [9,10].
Many research problems in the EEG-based biometric system have been discussed in the
literature, including, but not limited to, channel selection [11], frequency selection [12],
EEG permanence [13], task sensibility [14], cryptography [15], feature extraction [16] and
EEG classification [17].

The extraction of features from EEG signals is one of the most crucial processing steps
in EEG-based biometric systems. It allows the determination of ID vectors containing
the extracted identity information from EEG signals for each subject in the system. In-
deed, some unique individual-specific features can be extracted from EEG signals due
to genetic and environmental factors [18]. Many methods have been used in feature ex-
traction, namely the autoregressive model (AR) [19], power spectral density (PSD) [20],
wavelet transform [21], coherence features (COH) [22], shannon entropy [23] and common
spatial patterns [24], among others. The AR model was first used in the earlier work of
Poulos et al. [25] to predict the ID vectors of four subjects in a resting state, evaluated
through the vector quantizer network, and was able to achieve correct classification scores
in the range of 72% to 81%. Later, AR features were used in many other works [26–29].
Furthermore, the authors in [13] showed that AR features demonstrate a discriminative
capability that is higher than PSD and COH features in a resting state.

The ID vectors should ensure a clear distinction between subjects of the EEG-based
biometric system by acquiring sufficient identity information in these ID vectors. However,
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the sensitive nature of EEG signals may lead to some loss in the extracted identity informa-
tion. First, EEG signals are non-stationary signals that reflect all brain activities in general,
including cognitive processing, the response to external stimuli and the functioning of the
whole body. Therefore, it is hard to comprehensibly extract all identity information from
the EEG signals. Second, the noisy characteristics of EEG signals due to their acquisition
process might cause some damage in the identity information contained in these signals.
Finally, the dispersion of the EEG signals, the limited spatial resolution and the selection
of channels might omit some sources containing parts of the identity information. For all
these reasons, different quality levels of identity information contained in the ID vectors
may be extracted from EEG signals through processing techniques [30]. The selection of a
higher quality of identity information is necessary to improve the distinctiveness between
subjects in EEG-based biometric systems.

Furthermore, the distinctiveness of EEG signals has been approved with a small
number of subjects [18]. This might be due to the difficulty in setting up the subject for
the signal acquisition process. The small number of subjects in [31] has been mentioned
as a limitation that is not easy to overcome (23 subjects were used while using wireless
low-cost devices to record EEG signals). Additionally, the current EEG-based biometric
systems are evaluated in static conditions with a fixed number of subjects. However, in the
real world, systems are open to the emergence of novel subjects to be enrolled. Enrollment
continuously increases the number of subject classes, and the EEG-based biometric system
has to update these additional subject classes.

Nevertheless, the system performance after being updated depends essentially on
the quality of identity information extracted from EEG signals. Indeed, we hypothesize
that more accurate identity information may ensure better performance stability when
increasing the number of subject classes. In this context, the present study proposes a new
self-relative evaluation framework for EEG-based biometric systems. The framework aims
at the selection of more accurate identity information when the biometric system is open
to the enrollment of novel subjects. Alongside the openness condition, the framework
simulates the enrollment of a growing number of subjects in steps in order to track any
performance degradation after each system update. Moreover, the framework creates dif-
ferent quality levels of identity information extracted from EEG signals through processing
techniques. Finally, the openness condition is carried for each level of identity information
in order to select the identity information related to the minimal performance degradation
observed through openness.

The designed EEG-based biometric system of the current work uses AR features to
predict the ID vectors. Moreover, biometrics include two types of application, namely
identification and authentication. The designed system aims to use person identification
to recognize the identity of any subject from their EEG signals, which are recorded while
performing a given task. The conducted analysis uses a freely available EEG dataset [32]
containing EEG signals recorded in a resting state with closed eyes from 108 subjects.
Therefore, the present study uses the self-relative evaluation framework to evaluate an
EEG-based person identification system using AR features extracted from EEG signals in a
resting state. This evaluation allows the selection of the identity information that ensures
the lowest performance degradation while increasing the number of subjects enrolled in
the system.

This paper is structured as follows. Section 2 describes the conceptual representation
of the self-relative evaluation framework. Section 3 presents the dataset and the conducted
experiments on the self-relative evaluation framework. Section 4 reports the results and
discussion. Finally, in Section 5, we provide the conclusion and future perspectives.
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2. Materials and Methods
2.1. Framework Description

This section describes the conceptual representation of the self-relative evaluation
framework for EEG-based biometric systems. The proposed framework contains four main
parts (see Figure 1):

1. Parametric representation of the system: This presents the parametric representation of
the designed EEG-based biometric system through the selected processing techniques.

2. Identity information distribution: This creates different quality levels of identity
information contained in EEG signals through processing techniques.

3. Openness condition: This simulates the enrollment of a growing number of labeled
subjects through steps. In each step, the system updates the additional subject classes
using a class-update strategy.

4. Performance evaluation: This defines the self-relative metrics to measure the perfor-
mance degradation resulting from the openness condition.

Parametric
Representation of

EEG-based
Biometric System

Performance
Evaluation 

Identity Information
Distribution

Openness 
 Condition

Figure 1. Main parts of the self-relative evaluation framework for an EEG-based biometric system.

2.2. Parametric Representation of the System

In the EEG-based biometric system, EEG signals are processed through a series of
methods, namely channel selection, filtering, segmentation, feature extraction and clas-
sification. In each method, input data are processed to provide output data; that is, the
input data of the following method (see Figure 2). Besides this, every method includes its
necessary input parameters to process the data.

Reduced
Data

Channel
Selection

Filtered 
Data

Filtering

Sweeps

Segmentation

Feature
Matrix

Feature
ExtractionRaw data Classification Performance

ClassificationParamChannelParam FilterParam SegmetationParam FeatureParam

Figure 2. Processing steps of the EEG-based biometric system.

We call a parametric representation of an EEG-based biometric system the set of all
input parameters of methods ordered according to the processing sequence in the system.
Formally, we note the parametric representation of the system as follows:

P =
n⋃

i=1

(id, inputParam)i (1)

where n is the total number of methods used in the processing, id is the method name and
inputParam is the set of input parameters of method id.

The EEG-based biometric system presented in our previous work [30] is a person
identification system. The current study uses this system along with an update on the
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filtering step. We briefly present the selected methods to summarize later the parametric
representation of the designed system (in Section 3.2.1).

1. Channel selection: selection of a set of H channels (an H-channel EEG-based person
identification system is available).

2. Filtering: Signals are enhanced through two filters:

• Filter CAR: Common average referencing (CAR) spatial filtering, applied to
reduce artifacts related to unsuitable reference choices or unexpected reference
variations [33].

• Low-pass filter: Butterworth filter, used to filter a range of frequency pass bands
in EEG signals.

3. Segmentation: Static overlapped segmentation by dividing each EEG signal of dura-
tion V into segments of duration v, with an overlapping factor of α. The total number
of segments per class of subject N is calculated by N =

[
V−v

v∗(1−α)

]
+ 1.

4. Feature extraction: Burg’s coefficients of an auto-regressive model of order Q are used
as features. The coefficients extracted from each EEG channel are then concatenated to
form a single d-dimensional feature vector d = H ∗Q to represent the whole segment.
The autoregressive model is described by a linear difference equation as follows:

x(k) = Q +
Q

∑
i=1

a(i)x(t− i) + e(t) (2)

where Q is a constant, Q stands for the number of parameters of the AR model
and e(t) denotes a white noise input. Burg’s method is used to estimate the AR
model parameters.

5. Classification: A multi-classification problem of E classes using E ∗ N feature vectors
(ID vectors), where E is the total number of subjects used in learning and N is the total
number of feature vectors per subject class. The K-nearest neighbor classifier (KNN)
is used to train and test the model through cross-validation. The KNN classifier relies
on distance and similarity measures between training and test sets: a test input is
assigned to the most common label among the k most similar training inputs.

2.3. Identity Information Distribution

This section aims to generate different quality levels of identity information extracted
from EEG signals through processing techniques (called identity information distributions).
Changing the range of some target input parameters of the parametric representation is one
possible way to create different quality levels of identity information [30]. In the current
study, parameters related to frequency selection are the selected target parameters.

Indeed, EEG signals are composed of several waveforms, each associated with a
specific bandwidth. The study of the discriminative properties of each EEG sub-band
thus involves the selection of an appropriate sub-band with the most accurate identity
information. For this purpose, the Butterworth filter is used to band-pass EEG sub-bands.
The target input parameters are both “filter order” and “frequency sub-band”.

Let P be the parametric representation of the designed EEG-based biometric sys-
tem. Let S1 = {oi}m

i=1 be the range of filter orders and S2 =
{

f j
}r

j=1 be the range of
frequency sub-bands.

The set of identity information distributions D =
{

Dk
}m∗r

k=1
is obtained by processing

different filtering assays for the range S1 and S2, where for each assay the parametric
representation P is updated with the pair

〈
oi, f j

〉
, resulting in m ∗ r different configurations

of the system P.
The openness condition is thereafter carried on each Dk〈oi, f j

〉
in order to measure

the self-relative metrics for each identity information distribution.
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2.4. Openness Condition
2.4.1. Openness Simulation

The openness simulation consists of generating—from a fixed number of subjects,
labeled from 1 to E—several scenarios with an increasing number of subjects in steps. The
openness simulation includes two main components (see Figure 3):

• A size system component, which determines the number of subjects included in the
system at each step of openness.
Let R be the total number of steps and Tn the number of subjects at step n, 1 ≤ n ≤ R.
Formally, we note

Tn = T1 +
n

∑
k=2

Stepk , Tn ≤ TR (3)

Stepk includes random independent variables with a common distribution F. Stepk is
chosen to simulate a random number of subjects added in each step for a normally
increasing number of subjects. Simulation-Param in Figure 3 provides the necessary
parameters to generate Stepk in addition to the assigned values to T1 and TR.

• A subsystem component, which determines the set of subject labels included in the
system at each step of openness.
Let Ln be the set of subject labels in step n, where size(Ln) = Tn. Moreover, the
openness condition means Ln−1 ⊂ Ln according to Algorithm 1.

Simulation
Param

Size System 

SubSystem

Simulation
Model

Openness simulation

Figure 3. Main components of the openness simulation.

The main loop (Lines 2–5) illustrates the gradual enrollment of subject labels in steps to
create the subsystem component L. At each step n, Unknown is the remaining set of subject
labels that have not been included in the subsystem component yet. Line 3 randomly
selects one possible combination of (Tn − Tn−1) subject labels chosen from the set Unknown
to determine Add: the set of subjects’ labels to be enrolled at step n. Line 4 defines Ln: the
subject labels of the step n by the union of Ln−1 and Add (the subject labels of the previous
step n− 1 and the set of enrolled subjects at step n). Finally, Line 5 updates Unknown by
removing Add: the labels already enrolled in the system.

In order to ensure that results are independent from any given sequence, M possible
sequences of openness

{
Li}M

i=1 are generated. Moreover, for the sake of reducing the
probability of having two identical sequences, we choose TR < E, which gives M <<< CTR

E
where CTR

E = E!
(E−TR)!TR ! is the number of all possible TR-combinations chosen from a set of

E subjects.
Finally, the obtained simulation openness is S = {T, L}, where T determines the

number of subjects to be included in the system in steps and L determines the set of subject
labels to be included in the system in steps.
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Algorithm 1 Determination of subsystem labels
Input

T: size system component to determinate the number of subjects at each step (R steps).
U: label set for all subjects of the dataset labeled from 1 to E.

Output
L: subsystem component to determinate the set of labels at each step.

START
1: Unknown← U T0 ← 0 L0 ← ∅

2: for n = 1, ...R
3: Add← combination(Unknown, Tn − Tn−1)
4: Ln ← Ln−1 ∪ Add
5: Unknown← Unknown− Add
END

2.4.2. Class-Update Strategy

The gradual enrollment of subjects occurs according to class data in relation to the
openness simulation using a given class-update process strategy (see Figure 4). The
class-update can be ensured by many learning solutions, including, but not limited to,
incremental learning [34], cumulative learning [35] and online learning [36].

New  class-data

Training phase Test phase

Seen classes Unseen classes Seen classes Unseen classes

Instance-update
process

Class-update 
process Close set test Open set test

Figure 4. The different possible cases of gradual introduction of class-data in the system.

In this paper, the complete data are available at each step j of openness. Besides
this, the number of classes to be learned in each step is small. Therefore, the incremental
learning by repetitive batch learning is feasible and sufficient [37].

The openness condition of an openness simulation S using repetitive batch learning
for the class-update strategy is formally presented as follows:

Let D =
{

xi ∈ Rd
}E∗N

i=1
be the d-dimensional feature space related to all subjects

available in the dataset, labeled in Y = {y ∈ N|1 ≤ y ≤ E}, where E is the total number of
subjects and N is the number of feature vectors per subject class.

Let f j be the classification model learnt at step j of an openness simulation S = {T, L},
where Lj is the set of subject labels included in the system at step j and Tj is the number of
subjects included in the system at step j, 1 ≤ j ≤ R.

We denote by Dj the part of feature space D labeled in Lj (the update-data mentioned
in Figure 5). Dj represents the feature space used in learning at step j. Formally, we note

Dj =
{

xi ∈ D | yi ∈ Lj
}Tj∗N

i=1 (4)
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Through cross-validation (kfold=3), we define the following for every j:

• The set of training labeled instances Dtr =
{
(xtr

t , ytr
t ) ∈ Dj ∗ Lj

}Ntr
t=1, xtr

t is the instance
in the feature space, and ytr

t is the corresponding subject label.
• The set of testing instances Xte =

{
xte

t ∈ Dj
}Nte

t=1, where xte
t is a testing instance in the

feature space. Besides this, Yte =
{

yte
t ∈ Lj

}Nte
t=1 are the corresponding subject labels

for Xte to be predicted.
• Dtr is used to train the biometric system and learn the classification model f j (repetitive

batch learning).
• Through a close set test, YP is predicted from test instances Xte using the learned

model f j: YP = predict( f j, Xte).
• The classification accuracy accj is learned using the confusion matrix between Yte

and YP.

We note the vector of openness accuracy oa =
{

accj
}R

j=1 representing the accuracy of
the system at all steps of openness.

The openness condition is carried on M possible sequences of openness
{

Li}M
i=1 to

ensure that the results are independent of any given sequence, resulting in M vectors
of openness accuracy OA = {oai}M

i=1, where oai =
{

accj
}R

j=1 is the vector of openness

accuracy related to the sequence Li.

The mean vector of openness accuracy OAm =
{

accmj

}R

j=1
is defined as follows:

OAm =
1
M
∗

M

∑
i=1

oai (5)

The vector OAm is used to describe the system accuracy at each step of openness.
Therefore, the system processing under the openness condition is presented in Figure 5.

Reduced
Data

Channel
Selection

Filtered 
Data

Filtering

Sweeps

Segmentation

Feature
Matrix

Feature
Extraction

UpdateDate

Raw data

SimulationParam

Simulation

Data
Pipeline

 

Feature
Train

Feature
Test

Cross
Validation

Trained 
Model

Training

TestPerformance 

SegmetationParam FeatureParam

UpdateProcess / Classification 

Simulation
Model

ChannelParam FilterParamChannelParamChannelParam FilterParamChannelParam FilterParam SegmetationParamChannelParam FilterParam SegmetationParamChannelParam FilterParam SegmetationParam

UpdateParamClassificatinParam

Figure 5. Processing steps of the EEG-based biometric system under the openness condition.

The EEG signals from all subjects are processed through the designed EEG-based
biometric system. The feature space is then scheduled according to the simulated openness
to enroll subjects gradually in steps. The class-update process is then carried out according
to the selected model of learning to obtain the mean vector of the openness accuracy OAm.
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2.5. Performance Evaluation

In this section, we define the self-relative metrics under the openness condition for
each identity information distribution as described in Algorithm 2.

Line 1 presents the set of identity information distributions D =
{

Dk
}m∗r

k=1
obtained by

processing raw EEG signals through the designed EEG-based biometric system P for the
range of sets of target parameters S1 and S2. Line 3 indicates that the openness condition is
held for each identity information distribution Dk using the openness simulation model
S and the update strategy for learning update to return the mean vectors of openness
accuracy oamk . Finally, Line 4 estimates the self-relative metrics from the obtained mean
vectors of openness accuracy.

Algorithm 2 Self relative evaluation
Input

data: EEG signals of all subjects available in the dataset.
P: parametric representation of the designed EEG-based biometric system.
S1 = {Oi}m

i=1: range of filter orders.
S2 =

{
f j
}r

j=1: range of frequency sub-bands.
S: openness simulation model.
update: the class-update strategy.

Output
OAm =

{
oamk

}m∗r
k=1: The mean vector of openness accuracy per each distribution of

identity information.
metric = {mk}m∗r

k=1: The self-relative evaluation metrics.

START
1: D =

{
Dk
}m∗r

k=1
←identity-information-distribution (data, P, S1, S2)

2: For k=1, ...m*r
3: oamk ← openness-condition (Dk, S, update)
4: mk ← performance-evaluation (oamk )

END

The self-relative metrics measure the performance degradation when increasing the
number of enrolled subjects (openness condition) for each identity information distribution.
Therefore, we define two main metrics for the self-relative evaluation as follows:

Let OAm =
{

oamk

}m∗r
k=1 be the mean vectors of openness accuracy for each identity

information distribution where oamk =
{

accj
}R

j=1.

• Local relative loss (LRL): the mean degradation in performance between every two
successive steps of the openness condition compared to the moving reference step
accj−1.
The condition of performance degradation for local relative loss is accj−1 > accj.

LRLk = 100 ∗mean(
accj−1 − accj

accj−1
) , 2 ≤ j ≤ R (6)

• Global relative loss (GRL): the mean degradation in performance of each step j
regarding the first step of the openness condition (fixed reference step).
The condition of performance degradation for global relative loss is acc1 > accj.

GRLk = 100 ∗mean(
acc1 − accj

acc1
), 2 ≤ j ≤ R (7)
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3. Datasets and Experiments
3.1. Datasets

The online database PhysioNet BCI (archive.physionet.org/pn4/eegmmidb/ (ac-
cessed on 16 March 2021) ) [32] contains EEG signals from 109 healthy volunteers collected
using a 64-channel system (BCI2000 System). In total, 108 subjects from the 109 volunteers
were chosen in order to have the same signal time length for all subjects.

The baseline condition of a resting state with Closed Eyes (1 min EC resting state)
provided in this database was used in the current study. The participants were comfortably
seated in a dimly lit room on a reclining chair while recording EEG signals. Therefore, the
person identification became a multi-classification problem where every subject-class was
represented by 1 min EEG signals in an EC resting state processed through the designed
EEG-based person identification system.

Table 1 summarizes the description of the dataset used in the experiments.

Table 1. Description of the dataset used in the experiments.

Datasets Information

Mental task EC
Number of subjects 108
Number of channels 64
Sampling frequency 160 HZ
Signal time length 60 s

3.2. Experiments
3.2.1. Parametric Representation of the Designed System

The EEG signals were processed through the designed EEG-based person identifi-
cation system described in Section 2.2. The parametric representation of the designed
EEG-based person identification system is presented in Table 2.

Table 2. The parametric representation of the designed EEG-based person identification system.
CAR: common average referencing; AR: autoregressive; KNN: K-nearest neighbor.

Steps Method “ID” Input Parameters

Channel selection Set selection - Set of H channels (see Figure 6).

Filtering

Filter CAR - Number of selected channels (H = 19).

Butterworth
- Order of filter O.
- Sampling frequency ( fs = 160 HZ).
-The selected frequency sub-band f .

Segmentation Static overlapped
- Size of segment (v = 5).

segmentation
- Overlapping percentage (α = 0.4).
- Number of selected channels (H = 19).
- Sampling frequency ( fs = 160 HZ).

Feature Extraction AR features - Order of features (Q = 12).
- Coefficients’ estimation (Burg).

Classifier KNN
- Number of neighbors (k = 1).
- Type of distance (Euclidean).
- Cross-validation (Kfold = 3).

The description of the resulting feature space is presented in Table 3. Therefore, the
feature space is D =

{
xi ∈ R228}108∗19

i=1 labeled in Y = {y ∈ N|1 ≤ y ≤ 108}.

archive.physionet.org/pn4/eegmmidb/
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Table 3. Feature space description.

Feature Space Description Information

Number of classes, E 108
Number of feature vectors per class, N 19

Dimension of feature vector, d 228

Figure 6. International 10–10 System standards for sensor positioning (the 19 selected channels are
shown with red circles).

3.2.2. Identity Information Distribution

Different sets of feature space were created through several filtering assays where the in-
put parameter range was changed in order to generate different levels of identity information
distribution. In this paper, the filter order ranges were S1 = {1; 2; 3; 4; 5} and frequency sub-
band ranges were S2 = {[0.5, 4]; [4, 8]; [8, 13]; [13, 30]; [30, 50]; [8, 30]; [4, 30]; [0.5, 30]; [0.5, 40]}.
Therefore, 45 sets of different levels of identity information distributions were created

D =
{

Dk
}5∗9

k=1
where every Dk =

{
xi ∈ R228}108∗19

i=1 was a feature space labeled in Y =

{y ∈ N|1 ≤ y ≤ 108}.

3.2.3. Openness Condition

The openness simulation S = {T, L} was used, where T determined the number of
subjects included in the system through steps and L determined the set of subject labels
included in the system in steps. The growing number of subjects was simulated through
the binomial distribution (n = 100 and α = 0.04), where the number of subjects increased
from T1 = 5 to TR = 97 via R = 24 steps (see Figure 7).

The sequence of labels L was generated as defined in Section 2.4.1 with a total number
of subjects of E = 108, number of sequences M = 10, number of steps R = 24 and number
of subjects at the last step of TR = 97. Figure 8 shows a pairwise comparison between three
sequences of L. The spread of the label distribution refers to the variability of the generated
sequences (if sequences were identical, data would be distributed along the line y = x).
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Figure 7. The number of subjects at each step of the openness condition.

Figure 8. Pairwise comparison between sequences of generated labels.

Finally, the openness condition was implemented for each identity information distri-
bution Dk using the openness simulation model S. Through each step j of the openness
simulation, the person identification was carried out using the class-update strategy de-
scribed in Section 2.4.2 (repetitive batch learning). The resulting mean vector of openness
accuracy was used to describe the mean accuracy of the person identification at each step
of the openness simulation.

4. Results and Discussion
4.1. Framework General Evaluation

The openness condition was first implemented with the different identity information
distributions generated via the range of frequency sub-bands S2 (with a range of one
target parameter when the filter order was set to 5). Figure 9 presents the mean vectors
of openness accuracy for each frequency sub-band using a 1D digital Butterworth filter.
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The observed high accuracy indicates that the designed EEG-based person identification
was able to accurately distinguish between subjects. However, the results still show a
slight degradation of accuracy when the number of subjects was increased in steps. This
supports the hypothesis concerning the presence of this degradation and the possibility
for it to be used in the self-relative evaluation. Moreover, the velocity of this degradation
varies depending on the selected frequency sub-band. On the one hand, this supports the
assumption of generating several quality levels of identity information when changing the
input parameter range; On the other hand, it supports the hypothesis that more accurate
identity information may ensure a better stability of performance when increasing the
number of subjects enrolled in the system.

The openness condition was then implemented for the 45 sets of identity information
distributions generated with the range of both filter orders S1 and frequency sub-bands S2.
Figure 10 presents the resulting self-relative metrics using a 1D digital Butterworth filter: local
relative loss (Figure 10a) and global relative loss (Figure 10b).

Figure 9. Mean vectors of openness accuracy for each frequency sub-band when the filter order was
set to 5 using a 1D digital Butterworth filter.

Figure 10. Self-relative metrics: local relative loss (LRL, (a)) and global relative loss (GRL, (b)) using a 1D digital Butter-
worth filter.

The results confirm the dependency between the amount of identity information and
the presence of a degradation in performance under the openness condition, illustrated
through both the self-relative metrics of LRL and GRL. Besides, LRL and GRL have almost
similar shapes with a difference in scale (from 0.14% to 0.64% for LRL and from 1.07% to
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8.35% for GRL). This is explained by the fact that LRL refers to the mean degradation of
one step of openness in relation to a prior step (the gap between the number of subjects
at both steps is small). Regarding GRL, the mean degradation is between every step of
openness in relation to the first step (the gap between the number of subjects at both steps
is increasingly wide). This highlights the cumulative effect of openness: the degradation in
performance is more important when steps are increasingly spaced out. In the following
analysis, the GRL is used to consider the cumulative effect of the openness condition.

4.2. Diversity in Identity Information Distributions

This analysis allowed us to measure the power of each target parameter to create
diversity in sets of identity information distribution Dk observed through ranges of related
GRL. Two versions of the Butterworth filter were used to enrich the study, namely a 1D
digital filter with the “filter” MATLAB function (filter 1) and zero-phase digital filtering
with the “filtfilt” MATLAB function (filter 2).

We define the power of a target parameter by the ratio between the minimum and
maximum mean value of the GRL:

Power =
Max value o f the GRL
Min value o f the GRL

(8)

Table 4 shows the mean of GRL for each filter order for all combined frequency sub-
bands. The results show that the power of the target parameter “filter order” is greater with
filter 2 than filter 1 (6.3 for filter 2 compared to 1.9 for filter 1). In this case, the power of the
same target parameter depends on the selected filter method (i.e., it is method-dependent).

Table 4. The mean of GRL for each filter order for all combined frequency sub-bands.

Filter Order 1 2 3 4 5 Power

Filter 1 5.03 3.19 4.12 3.65 6.15 1.9
Filter 2 3.34 3.74 8.60 13.12 21.18 6.3

Table 5 shows the mean of GRL for each frequency sub-band for all combined filter
orders. The results show that the power of the target parameter “frequency sub-band” for
both filters is equivalent (2.1 for filter 2 compared to 2.6 for filter 1).

Table 5. The mean of GRL for each frequency sub-band for all combined filter orders.

Sub-Bands [0.5, 4] [4, 8] [8, 13] [13, 30] [30, 50] [8, 30] [4, 30] [0.5, 30] [0.5, 40] Power

Filter 1 4.73 4.63 4.54 5.01 1.94 4.83 4.97 4.49 4.70 2.6
Filter 2 8.70 8.55 11.99 12.12 5.77 11.22 12.10 10.39 9.13 2.1

Therefore, the input parameters allowed the generation of several quality levels
of identity information with diversity. This diversity varied according to the selected
parameters and methods.

4.3. Openness Condition: Comparison between Static and Self-Relative Evaluations

This analysis shows the effectiveness of using the openness condition in the self-
relative evaluation. In this context, we present a comparison between the static evaluation
and the self-relative evaluation (GRL). Table 6 shows the comparison between both evalua-
tions for the same designed EEG-based biometric system.
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Table 6. Comparison between the static and self-relative evaluations.

Parts Static Evaluation Self-Relative Evaluation

System Parametric representation P Parametric representation P
Condition Fixed number of labeled subjects Openness condition S = {T, L}, update

Identity information Fixed pair of parameters Parameters range in S1 and S2
Performance Maximal accuracy Minimal GRL

The static evaluation of the designed EEG-based person identification system P in-
volved the input target parameters being set to a fixed given pair

〈
oi, f j

〉
with a fixed

number of subjects. This showed that each step of the self-relative evaluation was a refer-
ence for a static evaluation and the self-relative evaluation was finally a series of R static
evaluations joined with a class-update strategy. Formally, we note the context of a static
evaluation at a given step n as follows:

Static evaluation (n) =
{

P,
〈
oi, f j

〉
, 〈Tn, Ln〉 |

〈
oi, f j

〉
∈ (S1 ∗ S2)

}
(9)

The self-relative evaluation {P, (S1, S2), 〈T, L〉, update} was therefore

Sel f Relative evaluation = {Static evaluation(n) , update}R
n=1 (10)

In the self-relative evaluation, the system was self-evaluated through the performance
degradation of the static evaluations along all steps of openness. This degradation was de-
scribed by the self-relative metrics including the GRL. Moreover, the criterion performance
for a static evaluation was the maximal accuracy of classification, whereas the self-relative
evaluation employed the minimal GRL (minimal degradation).

We thus chose the boundary steps of the first and last steps of the openness condition as
two references for the static evaluation to allow comparison with the self-relative evaluation
of the same designed system P.

4.3.1. Static Evaluation of the First Boundary Step

The static evaluation of the first step of the designed system P required the input
target parameters to be set to a fixed pair

〈
oi, f j

〉
with a fixed number of subjects T1 = 5:

static evaluation (1) =
{

P,
〈
oi, f j

〉
, 〈T1, L1〉 |

〈
oi, f j

〉
∈ (S1 ∗ S2)

}
. Let A1 =

{
acc1k

}5∗9
k=1 be

the accuracy set of the static evaluation of the first boundary step related to the 45 configu-
rations of the designed system P when

〈
oi, f j

〉
∈ (S1 ∗ S2).

The GRL regarding the first boundary step represents the future anticipated loss
resulting from the openness condition carried from the first boundary step. We plotted
the distribution of the first step accuracy A1 against the related GRL (see Figure 11). The
objective was to determine the supplementary information provided by GRL that may
not have been revealed by the accuracy in the first boundary step. For this purpose, we
selected the highest accuracies from A1 that were significantly equivalent and the set of the
related GRLs:

• When the accuracy ∈ [0.97, 0.999] for filter 1, the related GRL ∈ [1.07%, 8.3%] includ-
ing 38 configurations of the designed system in the first step.

• When the accuracy ∈ [0.96, 0.999] for filter 2, the related GRL ∈ [1.2%, 13.2%] includ-
ing 27 configurations of the designed system in the first step.

The gap between the indicated best accuracies was very small although the gap
between the related GRLs was large. This indicates that the openness condition allowed
the distinction between the different configurations related to the best accuracies that were
significantly equivalent at a given step (static evaluation). This distinction can be made by
selecting the configurations associated with the minimal GRL.

Moreover, a better accuracy led to a worse GRL (red circles in Figure 11a). This
emphasizes the importance of the self-relative evaluation sight where minimizing the GRL
becomes more relevant than the best accuracy at a given fixed step.



Sensors 2021, 21, 2097 15 of 19

Figure 11. The distribution of the accuracy of the first step against the related GRL.

4.3.2. Static Evaluation of the Last Boundary Step

The static evaluation of the last step of the designed system P allowed the input tar-
get parameters to be set to a fixed pair

〈
oi, f j

〉
with a fixed number of subjects TR = 97:

static evaluation (R) =
{

P,
〈
oi, f j

〉
, 〈TR, LR〉 |

〈
oi, f j

〉
∈ (S1 ∗ S2)

}
. Let AR =

{
accRk

}5∗9
k=1

be the accuracy set of the static evaluation of the last boundary step related to the 45
configurations of the designed system P when

〈
oi, f j

〉
∈ (S1 ∗ S2).

The GRL regarding the last boundary step represents the past obtained loss resulting
from carrying the openness condition to the last boundary step. We plotted the distribution
of the last step’s accuracy AR against the related GRL (see Figure 12). The results show
that some system configurations result in the same last step accuracy with a gap in the
associated GRL (this gap is illustrated by the two asymptotic lines in Figure 12). Therefore,
it is important to select the best last step accuracy associated with the minimum GRL.

Figure 12. The distribution of last step accuracy against the related GRL.

4.4. Framework Decision Making

The decision-making metric (DMMn = Accn ∗ 1
GRL ) is another possible self-relative

metric that can be deduced from the previous results. DMMn combines the static evaluation
of a given step n with the related GRL. The maximization of DMMn aims at reaching the
highest accuracy at step n of the openness condition with a minimum GRL.

Figure 13 presents the decision-making metric of the last step DMMR of the designed
EEG-based biometric system P. The results show that Gamma band [30, 50] outperformed
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the other sub-bands for both filter 1 and filter 2, making Gamma the most accurate source
of identity information compared to the other sub-bands. Furthermore, the power of the
target parameter “filter order” to generate a wide diversity of identity information is clearly
observed for filter 2 (showing a strong deterioration of identity information when filter
order increases).

The highest value of DMMRmax = 0.9 was obtained when filter order was set to 2 and
frequency sub-band was set to [30, 50]. Therefore, the best parametric representation of the
designed system P was for the pair of inputs (2, [30, 50]) with a mean GRL of 1.07% under
the openness condition (with an increasing number of subjects from T1 = 5 to TR = 97 via
R = 24 steps using a repetitive batch learning class-update strategy).

Figure 13. Decision-making metric for the designed EEG-based biometric system.

4.5. Separability of Classifiers

In previous results, the Gamma band supported the assumption that more accurate
identity information may ensure a better stability of performance when increasing the
number of subjects. Figure 14 presents the decision-making metric of the last step using the
Gamma band when the filter order was in the range of S1 for four different classifiers, K-
Nearest Neighbors (KNN), Naive Bayes (NB), Decision Tree (DT) and Linear Discriminant
Analysis (LDA). The results show that, with the same amount of identity information
(Gamma band), the stability of LDA and KNN outperforms Naive Bayes and Decision
Tree under the openness condition. Therefore, the ability of classifiers to set and extend
boundaries between classes is another factor that impacts the stability of performance
when increasing the number of subjects enrolled in the system.

Figure 14. Decision-making metric for the Gamma band and different filter orders for four different classifiers: KNN, Naive
Bayes, Decision Tree and Linear Discriminant Analysis (LDA).
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5. Conclusions

In this work, we propose a framework for a self-relative evaluation of an EEG-based
biometric system. The framework aims at selecting more accurate identity information
when the biometric system is open to the enrollment of novel subjects. Alongside the
openness condition, the framework simulates the enrollment of a growing number of
subjects through steps in order to track any performance degradation after each system
update. Moreover, the framework creates different quality levels of identity information
extracted from EEG signals through processing techniques. In this paper, different levels of
identity information were created through several assays of frequency selection. Finally,
the openness condition was implemented for each level of identity information in order to
select the identity information related to the minimal performance degradation observed
through openness.

The results presented for the self-relative evaluation of the designed EEG-based
biometric system allow us to make the following conclusions.

• Target input parameters of processing techniques allow the generation of several
quality levels of identity information with diversity. This diversity varies according to
the selected parameters and methods.

• The openness condition evaluated with a fixed reference step (first step) shows that
the degradation in performance is more important than moving reference steps, which
highlights the commutative effect of openness.

• The openness condition helps to distinguish between different identity information
levels that are significantly equivalent at a given fixed step. This distinction is made
by selecting the best associated self-relative evaluation.

• The Gamma band outperformed all the other frequency bands, and was thus a
potential source of identity information. This result is consistent with previous
works [12,38] in which the highest recognition rates were observed in the Gamma
band. In this paper, the additional result obtained through the self-relative evaluation
was that the Gamma band had the highest ability to carry the openness condition
(with an increasing number of subjects from T1 = 5 to TR = 97 via R = 24 steps using
a repetitive batch learning class-update strategy) with an optimum GRL of 1.07%.

• The openness condition depends on the ability of the chosen classifier to set and
extend boundaries between classes when increasing the number of subjects enrolled
in the system.

The self-relative evaluation presents the advantage of selecting more accurate identity
information through the openness condition. Besides, the tracking of the system perfor-
mance alongside the openness condition can be used in the future to carry out predictive
studies of system performance for a higher number of subjects. Nevertheless, the openness
condition depends on the ability of the chosen classifier to set and extend boundaries
between classes when increasing the number of subjects enrolled in the system. Therefore,
it is important to properly select the classifier of the designed EEG-based biometric system
in order to access more accurate identity information through the openness condition.
Moreover, the conducted experiments and the data visualization of the obtained results
illustrate one possible use case of the general philosophy of the designed framework. In
the future work, many other experiments could be conducted to validate this framework in
other contexts and scenarios, including other feature extraction methods (instead of AR fea-
tures), other mental tasks (instead of resting state with EC), other aspects that influence the
extracted identity information such as channel selection and signal segmentation (instead
of frequency selection), other distributions in openness simulation (instead of binomial
distribution) and other learning models for the class-update strategy (instead of repetitive
batch learning) to provide a more incremental and scalable update learning approach.
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