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Abstract: Background: Hosta plantaginea (Lam.) Aschers (HPA), a species in the family Liliaceae,
is an important landscaping plant and herbaceous ornamental flower. However, because the
flower has only two colors, white and purple, color matching applications are extremely limited.
To date, the mechanism underlying flower color regulation remains unclear. Methods: In this study,
the transcriptomes of three cultivars—H. plantaginea (HP, white flower), H. Cathayana (HC, purple
flower), and H. plantaginea ‘Summer Fragrance’ (HS, purple flower)—at three flowering stages (bud
stage, initial stage, and late flowering stage) were sequenced with the Illumina HiSeq 2000 (San Diego,
CA, USA). The RNA-Seq results were validated by qRT-PCR of eight differentially expressed genes
(DEGs). Then, we further analyzed the relationship between anthocyanidin synthase (ANS), chalcone
synthase (CHS), and P450 and the flower color regulation by Gene Ontology (GO), Kyoto Encyclopedia
of Genes and Genomes (KEGG), and Eukaryotic Orthologous Groups (KOG) network and pathway
enrichment analyses. The overexpression of CHS and ANS in transgenic tobacco petals was verified
using qRT-PCR, and the petal colors associated with the overexpression lines were confirmed using
absorbance values. Results: Over 434,349 transcripts were isolated, and 302,832 unigenes were
identified. Additionally, through transcriptome comparisons, 2098, 722, and 606 DEGs between the
different stages were found for HP, HC, and HS, respectively. Furthermore, GO and KEGG pathway
analyses showed that 84 color-related DEGs were enriched in 22 pathways. In particular, the flavonoid
biosynthetic pathway, regulated by CHS, ANS, and the cytochrome P450-type monooxygenase gene,
was upregulated in both purple flower varieties in the late flowering stage. In contrast, this gene was
hardly expressed in the white flower variety, which was verified in the CHS and ANS overexpression
transgenic tobacco petals. Conclusions: The results suggest that CHS, ANS, and the cytochrome
P450s-regulated flavonoid biosynthetic pathway might play key roles in the regulation of flower color
in HPA. These insights into the mechanism of flower color regulation could be used to guide artificial
breeding of polychrome varieties of ornamental flowers.

Keywords: Hosta plantaginea (Lam.) Aschers; transcriptome; flower colors; differentially expressed
genes (DEGs)

1. Introduction

Hosta plantaginea (Lam.) Aschers (HPA) is a perennial herb of the Liliaceae family and native
to Southeast China, Japan, the Korean Peninsula, and Far East Russia. HPA is an economically
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valuable herb: it has been cultured for more than 2000 years in China as an important landscaping
plant and herbal ornamental flower, and it is used as a traditional Chinese medicine, as recorded in
the “Compendium of Materia Medica” and other ancient medical books. It is mainly distributed in
the temperate and subtropical forest margins, under the forest, and on the waterside of East Asia.
It is a typical shade-tolerant mosaic. The genus Hosta includes 3 subgenera, 10 groups, 43 species,
and 35 varieties (or variants), of which H. plantaginea, H. ventricosa, H. ensata, and H. albofarinosa are
native to China [1].

Flower color, an important quality indicator of ornamental plants that directly determines
their ornamental value, is determined by pigment composition and content, pH value, petal
epidermal cellular shape, and external environmental factors, among others [2–4]. The anthocyanin
biosynthesis pathway can be divided into three stages (Supplementary Materials 1, Figure S1).
To date, four major compound types-flavonoids, chlorophyll, carotenoids, water-soluble alkaloids,
and their derivatives-that contribute to flower coloring have been separated and purified [5,6].
Flavonoid compounds play pivotal roles in flower color and produce a continuous spectrum from
light yellow to blue-violet. Flavonoids are known to be associated with the metabolism and synthesis
of anthocyanins and determine the final color of flowers [7–9]. Anthocyanins are water-soluble
pigments found in almost all vascular plants and can change the flower color into white, yellow,
orange, red, purple, blue, and other colors [5,8]. As reported by Tanaka [5,10], the biosynthetic
pathway of flavonoids has been well established, and the key genes (such as cytochrome P450 and
glucosyltransferase) have been determined in other flowers and plants [11–13].

However, wild-type HPA is found with only two flower colors (purple and white), and the
molecular mechanism that determines flower color remains unclear. In this study, we analyzed
the transcriptomes of different flowering stages of three species of HPA using Illumina HiSeq 2000
(San Diego, CA, USA) technology. Subsequently, the functions and pathways associated with
the differentially expressed genes (DEGs), as determined by RNA-Seq and validated by qRT-PCR,
were analyzed using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG),
and Eukaryotic Orthologous Groups (KOG) enrichment analyses. Chalcone synthase (CHS) and
ANS were overexpressed in transgenic tobacco petals, and the relationships between the expression
levels of ANS, CHS, and P450 and flower color were analyzed using qRT-PCR and absorbance values.
Our results provide a better understanding of the transcriptomic changes and the underlying molecular
mechanism of flower color in HPA.

2. Materials and Methods

2.1. Plant Materials and Growth Conditions

The experimental materials were H. plantaginea (HP), H. Cathayana (HC), and H. plantaginea
‘Summer Fragrance’ (HS), which were selected to represent different cultivars of HPA. The plants
were cultivated in the Botanical Garden of the Institute of Botany, Chinese Academy of Sciences
(east longitude 116◦13′9.4116”, north latitude 39◦59′55.8312”; 67 m above sea level). The cultivation
substrate was garden soil: yellow-sand soil: perlite = 3:1:1, which contained total nitrogen 0.012%,
including hydrolysable nitrogen 11.3 mg/kg, total phosphorus 12.2 mg/kg, total potassium 1.68%,
organic material 0.312%, pH = 8.2. These plants are mainly distributed in temperate and subtropical
forest margins, under the forest canopy and along the waterside of East Asia. They are typical shade
tolerant mosaics. During the flowering period (from June to September), the flowers were collected at
the bud stage, initial stage, and late flowering stage. The collected flowers were stored in an ultra-cold
storage freezer at −80 ◦C.

2.2. RNA Extraction and Sequencing

Total RNA from each sample, which had a 0.1 g sample weight from the three different flowering
stages of the three varieties HP, HS, HC, was extracted using TRIzol® Reagent (Life Technologies
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Corporation, Carlsbad, CA, USA) and treated with NEBNext® DNase I (New England Biolabs, Ipswich,
MA, USA) according to the manufacturer’s protocol. Poly(A) mRNA was enriched using oligo (dT)
beads and fragmented using fragmentation buffer. Finally, 100 ng of purified and enriched mRNA was
used to construct a cDNA library for each sample using NEBNext® Ultra™ RNA Library Prep Kit
for Illumina (New England Biolabs, Ipswich, MA, USA). cDNA fragments of 200 bp (±25 bp) were
selected and purified by gel electrophoresis and used as templates for amplification with PCR for
end-repair and poly(A) addition. The purified library products were evaluated using the Agilent
2200 Tape Station and Qubit 2.0 software (Life Technologies, Carlsbad, CA, USA). Trinity software was
used for transcriptome assembly using the default software parameters. RNA-Seq was performed at
Novogene Science and Technology Co. Ltd. (Beijing, China) using the HiSeq™ 2000 (Illumina, San
Diego, CA, USA). The experimental data were obtained from three independent experiments.

2.3. Transcriptome Assembly

All subsequent analyses were performed using clean data [14–18]. The clean reads were
assembled de novo into longer contigs on the basis of overlapping regions using the Trinity platform
(http://trinityrnaseq.sourceforge.net/). The gene expression levels were indicated as FPKM (Fragments
Per Kilobase of exon per Million fragments mapped). Genes in the three different samples with a q-value
≤0.05 and a fold change ≥2 were considered to be significantly differentially expressed genes [19].
The raw image files were obtained and analyzed to render sequenced reads by CASAVA base calling
using Illumina HiSeq™ after visual evaluation of the sequencing data by FastQC. The Phred quality
score (Q) is an integer mapping of the probability (P) of an incorrect base call, with a mapping relation
of Q = −10 log(P). The clean de novo data were assembled into transcripts using Trinity. The main
parameter was min_kmer_cov 2, and the rest of the parameter settings were set to the default values.

2.4. Validation of Gene Expression with qRT-PCR

The samples for PCR validation were selected from the same batch of petals used for sequencing,
and total RNA was used to synthesize cDNA with the PrimeScript™ RT reagent Kit (Perfect Real
Time, TaKaRa, Kusatsu, Japan). The HPA housekeeping gene actin3 was used as an internal control
for normalization. Primers for qRT-PCR of eight DEGs were designed with Premier 6.0 software
and are shown in Supplementary Materials 1, Table S1. qRT-PCR was performed using the SYBR
Green One-Step qRT-PCR kit (TransGen Biotech, Beijing, China). Three biological replicates of three
independent experiments were performed per sample.

2.5. Gene Ontology Annotation

All expressed genes in the obtained transcriptomes were annotated on the basis of BLAST
homology searches and searched against the Swiss-Prot and TrEMBL databases by double-direction
BLAST [20–22]. Functional annotation (GO terms) were downloaded from the UniProt database
(http://www.uniprot.org/uniprot). For GO enrichment analysis, the DEGs were mapped to GO terms
in the GO database (http://www.geneontology.org) to retrieve GO annotations for each DEG. For the
KEGG pathway analysis, KEGG orthology terms were assigned to DEGs from the KEGG pathway
database (http://www.genome.jp/kegg/). The functions of DEGs in different samples were further
explored by performing KEGG enrichment analyses (p < 0.01, FDR < 0.05) using hypergeometric tests
with Blastall software. Heatmaps were drawn using the Pheatmap package in R (https://cran.r-project.
org/package1/4pheatmap) [21–23].

2.6. Investigation of Flower Color Regulation by CHS and ANS Genes in Tobacco

To verify the importance of the CHS and ANS in the regulation of petal color, we prepared
transgenic tobacco by the Agrobacterium method and analyzed the color of transgenic tobacco leaves.
Seeds of wild-type tobacco NC89, Agrobacterium tumefaciens EHA105, and the expression vector
pCAMBIA3301 (Supplementary Materials 1, Figure S2) were provided by the Changbai Mountain
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Characteristic Plant Resources Research Laboratory of Jilin Agricultural University. The experiment
was performed as previously described [24,25]. Briefly, tobacco leaves with wounds of about 1 cm2

were infected with Agrobacterium solution containing recombinant EC2.3.1.74 (CHS) and EC1.14.11.19
(ANS) plant vectors and then incubated in co-culture medium for 3 days. After 30 days of screening
culture, the buds on the callus were cut, differentiated for 15 days, and then cultured in rooting medium
for 20 days. The well-rooted tobacco was transplanted to the soil and cultivated until the tobacco
blossomed and set seed. We had collected three independent transgenic tobacco petals to extract RNA.
The overexpression of CHS and ANS in transgenic tobacco petals was verified by qRT-PCR. The total
anthocyanin content in tobacco petals in 1% methanol hydrochloric acid extract was determined by
measuring the absorbance values at 530 and 657 nm using an ultraviolet spectrophotometer. The relative
content of total anthocyanins was calculated as (A530 − 0.25 × A657)/Sample Weight [26].

3. Results

3.1. Flower Colors of HPA at Different Developmental Stages

Three cultivars of the HPA species, HP (white flower), HC (purple flower), and HS (purple flower),
were selected as the experimental materials. The flowers of HC and HS were purple at the bud stage,
and the color gradually deepened during the initial stage and late flowering stage. In contrast, HP
exhibited a significant difference in flower color and remained white during all three stages (Figure 1).
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Figure 1. The development and anthocyanin accumulation in Hosta plantaginea (Lam.) Aschers.
The blue boxes in the images mark the different flowering stages to compare the colors of the three
varieties in the flower bud stage (HC-1, HP-1, and HS-1), the initial flowering stage (HC-2, HP-2,
and HS-2), and the late flowering stage (HC-3, HP-3, and HS-3).

3.2. Transcriptome Sequencing and Assembly

Table 1 shows the nine transcriptome libraries constructed for HC, HP, and HS at each of the three
stages. More than 98% high-quality clean reads were identified after the visual evaluation of sequencing
data by FastQC. In total, 302,832 unigenes and 434,349 transcripts were detected and assembled.
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Table 1. Summary of RNA-Seq data.

Sample Total Sequence %GC Sequence Length (bp)

HC-1 48,527,189 47.5 125
HC-2 48,085,043 48 125
HC-3 48,250,194 48.5 125
HP-1 44,116,660 47 125
HP-2 44,512,366 48 125
HP-3 42,504,784 48 125
HS-1 43,869,339 47 125
HS-2 44,195,154 47 125
HS-3 44,053,222 47 125

The transcriptomes of the samples were obtained after processing and assembly. The quantity and quality of the
sequencing data are shown in the table. HC: H. Cathayana; HP: H. plantaginea; HS: H. plantaginea ‘Summer Fragrance’.

3.3. Analyses of DEGs

From the Illumina data, we set p-value < 0.05 and |FoldChange| > 2 to identify DEGs from the
heatmaps of the three flower petal varieties of HPA (Figure 2A). Through multiple transcriptome
comparisons, 11,854 DEGs were obtained for the three flowering stages of the three varieties.
Furthermore, we discovered 2098 DEGs between the three stages of HP, 722 DEGs between the
three stages of HC and 606 DEGs between the three stages of HS. The DEG data in different
flowering phases were compared and analyzed to construct a histogram (Figure 2B), Venn diagram
(Figure 2C), and heatmap (Figure 2D). From volcano map (Supplementary Materials 1 Figure S3) and
heatmap analyses, 17,845 DEGs between HP-3 and HS-3 were obtained, with 5858 upregulated and
11,987 downregulated DEGs in HS-3. On the other side, 21,887 DEGs were obtained between HP-3 and
HC-3, with 9097 upregulated and 12,790 downregulated DEGs in HC-3. The results of all analyses
include the genes of interest: CHS, ANS, and P450-type monooxygenase. The Venn diagram further
showed that the samples in the initial flowering period and the flowering period have 450 DEGs in
common that include a higher number of flavonoid biosynthesis pathway genes, such as the CHS,
ANS, and P450-type monooxygenase genes.
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Figure 2. Three study regions in California.Figure 2. Analyses of differentially expressed genes (DEGs). (A) Heatmap of genes differentially
expressed in the same plant but at different flowering stages: HC (A1), HP (A2), and HS (A3).
(B) Comparison of the number of DEGs (B1) and differentially expressed proteins (B2) between the
initial period and the late flowering stages. (C) Venn diagram of DEGs for the initial period and the late
flowering stages of 450 common genes compared with the initial flowering period and the flowering
period. (D) Heatmap of genes differentially expressed between the initial flowering period and the
flowering period. p-value < 0.05 and |FoldChange| > 2.
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3.4. Validation of DEGs by qRT-PCR

The expression levels of eight DEGs were validated using qRT-PCR. The qRT-PCR results showed
that the DEG expression levels were consistent with those obtained using RNA-Seq, which confirms
that the transcriptome data were correct and that the RNA-Seq process was effective (Figure 3A).
Specifically, in the petal color regulation process, the expression levels of ANS, CHS, and P450 genes
were higher in the late flowering stage than in the bud stage and initial stage (Figure 3B), suggesting
that these genes play a key role in color regulation.
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Figure 3. Validation of DEGs by qRT-PCR. (A) Five DEGs were randomly selected to verify the accuracy
and reliability of the transcriptome sequencing results in the flower bud stage. (B) The expression of
CHS, ANS, and P450-c120890 in different flowering stages. The expression of actin was used as an
internal control. Data represent the mean ± SD of three independent experiments.

3.5. Pathway and Functional Analysis of DEGs

To analyze the DEGs in the flowering stage of the three samples (i.e., HP-3, HS-3, and HC-3),
we researched the distribution of the DEGs using GO, KEGG, and KOG annotations. Of the
434,349 transcripts identified between HP-3 vs. HC-3 and HS-3, we obtained annotations for
32,556 DEGs and information for 3210 proteins. In the ‘Molecular Function GO category, we obtained
13,997 DEGs for HP-3 vs. HC-3 (205 DEGs were enriched in enzyme regulator activity (GO: 0030234);
6515 DEGs were enriched in catalytic activity (GO: 0003824)), and 16,440 DEGs for HP-3 vs. HS-3
(164 DEGs were enriched in GO: 0030234; 5498 DEGs were enriched in GO: 0003824). The KEGG
enrichment analysis from the obtained GO data showed 19 KEGG Orthology Identifiers (KO IDs)
for HP-3 vs. HC-3 (Figure 4A1) and 20 KO IDs for HP-3 vs. HS-3 (Figure 4A2). In the scatter maps,
the smaller the q-value, the closer the color is to red, and the size of the points represent the number of
DEGs enriched in the corresponding function. The functional interaction network from the KEGG
enrichment results was used to identify the functional sites of xenobiotics metabolism by cytochrome
P450 in HP-3 vs. HC-3 (Figure 4B1). Six sites were associated with cytochrome P450 metabolism in
HP-3 vs. HS-3 (Figure 4B2). The color of the nodes represents the enrichment degree of the function
(as the q-value). The higher the enrichment degree, the lower the p-value and the darker the color.

After annotating the functions of DEGs, the metabolic pathways involving the DEGs were obtained
by the statistical analysis of the GO, KEGG, and KOG enrichment results (Supplementary Materials
1-Table S2). The pathway map in Figure 5A shows the pathway for the metabolism of xenobiotics by
cytochrome P450, which involves CHS, ANS, and the cytochrome P450 protein, which plays a key role
in the regulation of color expression. The top five GO terms were analyzed using the Directed Acyclic
Graph (DAG) of biological processes (Figure 5B) and molecular function (Figure 5C).
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A1 B1

A2 B2

Figure 3. Three study regions in California.Figure 4. Pathway and functional analysis of DEGs: (A) a scatter map of significantly enriched Kyoto
Encyclopedia of Genes and Genomes (KEGG) functional terms using clusterProfiler (the color of the
nodes represents the enrichment degree of the function (as the p-value); the higher the enrichment
degree, the lower the p-value and the darker the color): (A1) DEGs for HP-3 vs. HC-3; (A2) DEGs
for HP-3 vs. HS-3. (B) Functional interaction network of KEGG enrichment terms using the igraph
package in R (the metabolism of xenobiotics by cytochrome P450 is marked in red): (B1) DEGs for
HP-3 vs. HC-3; (B2) DEGs for HP-3 vs. HS-3. Green represents downregulation, and red represents
upregulation; p-value < 0.05 and |FoldChange| > 2.
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Figure 1. Three study regions in California.Figure 5. Pathway and functional analysis of the P450 gene. (A) The pathway map for the metabolism of
xenobiotics by cytochrome P450 was obtained from the statistical analysis of DEG metabolic pathways
from KEGG database comparison; (B,C) the Directed Acyclic Graph (DAG) of the biological process and
molecular function for P450-related differential genes was obtained by GO enrichment analysis using
topGO. The depth of the color represents the degree of enrichment, with a darker color representing a
higher degree of enrichment.

3.6. Study on Flower Color Regulation of CHS and ANS Genes in Tobacco

The flowers of tobacco plants that were positive for the overexpression of CHS and ANS genes
were examined, and the results revealed that the flower color of the overexpressing transgenic tobacco
plants was deepened compared with wild-type tobacco flowers (Figure 6A,B). qRT-PCR confirmed that
the expression levels of the CHS and ANS genes in transgenic tobacco petals were six-fold higher than
those of the wild type (Figure 6C,D). As determined by the absorbance values of a 1% hydrochloric acid
and methanol extraction of tobacco flowers, the total anthocyanin content in the CHS-overexpressing
tobacco was about three-fold higher than that of the wild type, and the total anthocyanin content in the
ANS-overexpressing tobacco was two times that of the wild type (Figure 6E,F). Thus, the overexpression
of the CHS and ANS genes significantly increased the expression of flower color.
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Figure 6. The regulation of flower color by the CHS and anthocyanidin synthase (ANS) genes in tobacco:
(A,B) the color of the transgenic positive CHS or ANS overexpression of tobacco petals was more
deepened than CK (the natural color of tobacco petals); (C,D) the relative expression of the CHS and
ANS genes was confirmed to be significantly higher in the overexpressing tobacco flowers compared
with wild-type tobacco (CHS gene p-value = 0.00194, ANS gene p-value = 0.00324); (E,F) the contents
of anthocyanins and flavonoids in flowers of transgenic tobacco overexpressing CHS or ANS increased
compared with those in the flowers of wild-type tobacco (anthocyanin p-value = 0.00214; flavonoid
p-value = 0.00414). The relative mRNA expression of CHS and ANS and the increases in anthocyanin
and flavonoid content were statistically different compared with wild-type tobacco. The data represent
the mean ± SD of three independent experiments. ** p < 0.01 vs WT, by One-way ANOVA of GraphPad
Prism 7.

4. Discussions

HPA has been cultured for 2000 years in China as an important landscaping plant and ornamental
herbal flower. Furthermore, according to “Compendium of Materia Medica”, its medicinal functions
include detumescence, detoxification, and hemostasis. Flower color is an important quality index
of ornamental plants, and it directly determines the visual value of plants. The narrow definition of
flower color refers to the color of petals, and the broad definition includes not only the color of petals of
flowering plants but also the color of their reproductive organs, such as the pistil and stamen. To date,
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four major leaf lines (green, blue-gray, yellow, and polychrome) and more than 5000 internationally
registered varieties have been bred after long-term cultivation and cross-breeding. However, HPA
flowers are only found in two colors, white and purple, and only a few varieties have any color.
Therefore, the garden and ornamental applications of HPA are limited [1].

Forkmann [6] divided flower-color-related proteins into seven categories: (1) involved in a single
step in the biosynthesis of flavonoids, (2) modify related genes after flavonoid synthesis, (3) regulatory
genes that open or close a whole synthetic pathway or part of it, (4) genes and factors that affect the
flavonoid concentration, (5) proteins and factors related to flower structure, (6) proteins and factors
that affect color, and (7) control flower morphology. Since the middle of the 19th century, according
to their chemical structure, cell location, and biochemical synthesis pathway, pigments have been
classified as carotenoids, alkaloids, and flavonoids [5,27]. In terms of chemical structure, flavonoids are
secondary plant metabolites and represent a series of compounds whose primary chemical structure is
2-phenyl chromogenic ketone. Anthocyanins are water-soluble pigments found in almost all vascular
plants, and they can produce white, yellow, orange, red, purple, blue, and other colors in flowers [5,28].
The basic structure of flower color is 3,5, 7-trihydroxy-2-phenyl benzopyran, and the main structure of
anthocyanin components in Hosta spp. contains a glucoside; however, researchers have suggested that
the single color of Hosta spp. is decided by the dominant synthesis of malvidin 3,5-diglucoside and
malvidin 3-coumaroyl glucoside 7-glucoside [29–31].

In this study, we investigated the changes in flower color of three native, cultivated varieties of
HPA in China. HP, with white flowers, and HC and HS, both with purple flowers, were found to
be significantly different in color. Transcriptome analysis was performed using Illumina HiSeq 2000
(San Diego, CA, USA) to identify the DEGs and explain the mechanism that controls flower color.
We obtained 302,832 unigenes, and 434,349 transcripts were assembled from samples collected during
the bud stage, initial stage, and late flowering stage. In total, 11,854 DEGs were obtained, and the
greatest number of DEGs were found in HP (2098), followed by HC (722) and then HS (606) (Figure 2A).
Furthermore, 84 color-related DEGs between purple and white samples were identified, and they are
associated with anthocyanins, flavonoids, and flavonols, which contribute to the ranges of flower color
from red to purple and determine the final flower colors [4,7].

Gene enrichment analysis was performed to analyze the association of the expression levels of the
DEGs with KOG, GO, and KEGG results. More than 32,556 DEGs were annotated, and information
was obtained for 3210 proteins. They were determined to belong to more than 1687 GO terms and
enriched in 1551 GO terms (Chromatin structure and protein interactions, General function prediction
only, and Signal transduction mechanisms) (Figure 4A). Moreover, the KEGG and KOG analysis
found 7902 genes that encode enzymes (Figure 4) and were enriched in 11 pathways: the metabolism
pathway of flavonoids by cytochrome P450s, metabolic pathways, the biosynthesis of secondary
metabolites, microbial metabolism in diverse environments, the biosynthesis of antibiotics, carbon
metabolism, plant hormone signal transduction, phenylalanine metabolism, arginine and proline
metabolism, glycerophospholipid metabolism, and steroid hormone biosynthesis. The P450 gene
of c120890 suggests that direct regulation of downstream anthocyanin-related genes occurs via the
metabolic pathway of flavonoids by cytochrome P450s.

Flavonoids, a major class of plant secondary metabolites, are found in most plants and involved
in plant growth, development, and protection. Our study showed that the metabolism of xenobiotics
by the cytochrome P450 pathway and flavonoid biosynthesis were enriched in the metabolic
pathway of flavonoids by CHS, ANS, and cytochrome P450s. ANS is an α-ketoglutarate-dependent
dioxygenase that is located downstream of the anthocyanin biosynthesis pathway and catalyzes
the color anthocyanin formation by α-ketoglutaric acid and Fe2+ [32]. In plants, cytochrome P450s
mediate hydroxylation processes, such as the formation of heteroatoms, dealkylation, deamination,
dehalogenation, and epoxidation at nitrogen and sulfur sites [33,34]. Moreover, cytochrome
P450 enzymes induce the hydroxylation of dihydroflavonols at the 3′ and 5′ positions, which is an
important step that determines whether purple-blue or red anthocyanins are formed. The cytochrome
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P450 enzyme in petunia has flavonoid 3′-hydroxylase (F3′H) activity and affects anthocyanins at the 3′

and the 5′ positions (F3′5′H), resulting in purple or blue flowers [35,36]. In contrast, plants such as
roses and carnations, which lack F3′5′H activity, cannot produce purple or blue flowers. We analyzed
the expression of differentially expressed genes in three varieties of HPA at three flowering stages.
We found that a significant number of genes (such as CHS, ANS, and cytochrome P450s) in the two
purple varieties were upregulated during flowering stages, but these genes also showed the same
expression trend in white flower varieties or were downregulated in the late flowering stage of purple
varieties. Furthermore, we found that a significantly differentially expressed gene, the P450 gene
of c120890—which encodes cytochrome P450 monooxygenases, a large group of heme-containing
enzymes, and can catalyze NADPH- or NADH-dependent hydroxylation reactions—was significantly
upregulated. The P450 gene of c120890 was significantly upregulated (by more than 100 times) in both
HC (purple flower) and HS (purple flower) and was barely expressed in HP (white flower) (Figure 2B),
indicating that it might be a key regulatory gene of HPA flower color.

The biosynthesis pathway of anthocyanins in plants is well understood [37]. The key enzyme in
the bud stage of the whole process is phenylalaninammo-nialyase. Its counterparts in the last two
stages are CHS, chalcone isomerase, flavanone-3-hydroxylase, and UFGT, which are the main catalytic
enzymes in the conversion of colored but unstable anthocyanins into stable anthocyanins [28]. In our
study, the overexpression vectors pCAMBIA3301-CHS and pCAMBIA3301-ANS were transformed
into tobacco by using the Agrobacterium-mediated method, and the results showed that the flower color
of transgenic tobacco deepened, and the contents of anthocyanin and flavonoids increased (Figure 6).

In summary, we detected significant differences in flower color between HPA varieties, and nine
transcriptome libraries for the flower color of HPA were constructed. Over 434,349 transcripts
were isolated, 302,832 unigenes were identified, and 2098 DEGs were obtained and annotated.
Furthermore, color-related DEGs were enriched in 11 pathways, especially in the flavonoid biosynthetic
pathway, which is regulated by the cytochrome P450-type monooxygenase gene, which might play a
key role in the regulation of the flower color of HPA. RNA-Seq analyses identified 101 gene fragments
that were P450 family proteins (29 fragments of P450 family proteins were upregulated, 36 fragments
of P450 family proteins were downregulated) (Supplementary Materials-2). However, the specific
regulatory roles of CHS and ANS and the specific proteins in the P450 family that contribute to this
process remain to be seen.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/1/31/s1,
Supplementary Materials 1: Figure S1. Anthocyanin biosynthesis pathway, Figure S2. The expression vector
pCAMBIA3301is preserved by Changbai mountain characteristic plant resources research laboratory of jilin
agricultural university, Figure S3. Transcript_volcano of HP3_vs_HC3&HP3_vs_HS3, Table S1. Primers for
qRT-PCR, Table S2. GO, KEGG, and KOG enrichment. Supplementary Materials-2: Functional fragments of
P450-type monooxygenase gene of the three varieties.
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Abbreviations

HPA Hosta plantaginea (Lam.) Aschers or H. plantaginea (Lam.) A.
HC Hosta Cathayana or H. Cathayana
HP Hosta plantaginea or H. plantaginea
HS Hosta plantaginea ‘Summer Fragrance’ or H. plantaginea ‘Summer Fragrance’
DEGs differentially expressed genes
CHS Chalcone synthase
ANS Anthocyanidin synthase
GO Gene Ontology
KEGG Kyoto Encyclopedia of Genes and Genomes
KOG Eukaryotic Orthologous Groups of protein
qRT-PCR quantitative real-time PCR
UFGT UDP-glucose:flavonoid-3-o-glucosyltransferase
DAG Directed Acyclic Graph
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