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Our laboratory previously reported an individual-level signature consisting

of nine gene pairs, named 9-GPS. This signature was developed by training

on microarray expression data and validated using three independent inte-

grated microarray data sets, with samples of stage I non-small-cell lung

cancer after complete surgical resection. In this study, we first validated the

cross-platform robustness of 9-GPS by demonstrating that 9-GPS could

significantly stratify the overall survival of 213 stage I lung adenocarci-

noma (LUAD) patients detected with RNA-sequencing platform in The

Cancer Genome Atlas (TCGA; log-rank P = 0.0318, C-index = 0.55).

Applying 9-GPS to all the 423 stage I-IV LUAD samples in TCGA, the

predicted high-risk samples were significantly enriched with clinically diag-

nosed metastatic samples (Fisher’s exact test, P = 0.0015). We further mod-

ified the voting rule of 9-GPS and found that the modified 9-GPS had a

better performance in predicting metastasis states (Fisher’s exact test,

P < 0.0001). With the aid of the modified 9-GPS for reclassifying the

metastasis states of patients with LUAD, the reclassified metastatic samples

presented clearer transcriptional and genomic characteristics compared to

the reclassified nonmetastatic samples. Finally, regulator network analysis

identified TP53 and IRF1 with frequent genomic aberrations in the reclassi-

fied metastatic samples, indicating their key roles in driving tumor metasta-

sis. In conclusion, 9-GPS is a robust signature for identifying early-stage

LUAD patients with potential occult metastasis. This occult metastasis pre-

diction was associated with clear transcriptional and genomic characteris-

tics as well as the clinical diagnoses.

1. Introduction

Among patients with non-small-cell lung cancer

(NSCLC), which accounts for approximately 85% of

all lung cancer cases, nearly 50% are lung adenocarci-

nomas (LUAD) (Chansky et al., 2009). For stage I

LUAD patients with complete surgical resection,

nearly 35–50% will relapse with poor prognoses (Siegel

et al., 2015), which might be partially due to the high

false-negative rate of tiny distant metastases detection

with current preoperative imaging techniques (Li et al.,

2016; Pieterman et al., 2000). The problem of the high
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false-negative rate also greatly limits the study on

tumor metastasis mechanism because it will obscure

the boundary between the primary tumors with metas-

tasis and nonmetastasis and lead to very weak and

irreproducible differential gene expression signals

between the primary tumors with metastasis and

nonmetastasis (Li et al., 2016). Therefore, many

researches have been devoted to identifying metastasis

prediction signatures based on gene expression profiles

of primary NSCLC tissues (Choi et al., 2006; DiMeo

et al., 2009; Xi et al., 2005). These signatures tend to

show low accuracies in predicting nonmetastasis

because clinically diagnosed nonmetastatic patients

might harbor occult metastases (Li et al., 2016; Pieter-

man et al., 2000). Many other researches have been

devoted to identifying prognostic gene signatures based

on gene expression profiles of primary NSCLC tissues

for auxiliary diagnosis of occult metastasis (Chen

et al., 2011; Der et al., 2014; Lu et al., 2013; Ringner

et al., 2016). However, most of the reported signatures

are based on risk scores summarized from weighted

expression levels of the signature genes, which are

highly sensitive to measurement batch effects. It means

that the analysis of a single sample requires the data

of this sample to be normalized with a set of samples

measured together, whereas the risk prediction of an

individual sample will rely on the risk composition of

other samples adopted for normalization together (Qi

et al., 2016). Additionally, the gene expression mea-

surements would also be greatly affected by sampling

locations of the same tumor (Xu et al., 2015) and par-

tial RNA degradation during sample preparation

(Freidin et al., 2012), introducing further uncertainty

for the risk score and risk classification of a patient.

Recently, we have reported a prognostic signature

for stage I NSCLC based on the within-sample relative

expression orderings (REOs) of nine gene pairs (de-

noted as 9-GPS) with the majority rule, which is

highly robust in data measured by different microarray

platforms (Qi et al., 2016). We have validated that 9-

GPS can be directly applied to individual samples

measured by different laboratories with different

microarray platforms, obviating the requirement of

data normalization. Our previous studies have demon-

strated that the within-sample REOs are also rather

robust against the differences in measurement princi-

ples of different platforms (Wang et al., 2015), tumor

sampling locations (Xu et al., 2015), and partial RNA

degradation during tumor sample preparation (Chen

et al., 2017). In this study, using RNA-sequencing data

of LUAD samples derived from The Cancer Genome

Atlas (TCGA), we firstly intended to validate the

cross-platform robustness of 9-GPS previously trained

and validated in microarray data. Then, we analyzed

the association of high-risk samples predicted by 9-

GPS with clinically diagnosed metastasis states and

found that 9-GPS based on the majority voting rule

used in our original work (Qi et al., 2016) had subop-

timum power in the identification of patients with

metastases based on the gene expression of primary

tissues.

Therefore, we reset a strict voting criterion for low-

risk identification requiring that at least seven gene

pairs of 9-GPS vote for low risk (denoted as 7/9-GPS),

and validated that 7/9-GPS performed better in terms

of sensitivity of metastasis detection, overall survival

(OS), and 5-year recurrence rate in both the TCGA

RNA-sequencing data and another two independent

test data sets measured by two different microarray

platforms. Then, we focused on providing evidences

that 7/9-GPS can aid in the identification of genomic

and transcriptional characteristics of primary tumor

tissues of patients with metastases by reclassifying the

metastasis states of all patients with LUAD in TCGA.

The high-risk stage I patients predicted by 7/9-GPS,

compared with the low-risk stage I patients, were also

characterized by these genome lesions, greatly increas-

ing the confidence of 7/9-GPS for identifying occult

metastasis of stage I patients in the clinical application

(Liotta and Petricoin, 2012; Subramanian and Simon,

2010). Furthermore, the regulator network analysis

identified TP53 and IGF1 with frequent genomic

lesions in reclassified metastatic samples, which might

play key roles in driving tumor metastasis.

2. Materials and methods

2.1. Data and preprocessing

The multiomics data of primary LUAD were down-

loaded from the TCGA data portal website (http://ca

ncergenome.nih.gov/). For the 277 samples of stage I

patients with recorded OS data, 64 samples with

records of receiving adjuvant chemotherapy, radiother-

apy, and/or target treatments were excluded from sur-

vival analysis. Of the remaining 213 samples of stage I

patients (Table 1), 139 samples had records of recur-

rence data, which were used for recurrence risk analy-

sis. Notably, of these 213 samples, only 21 samples

were annotated with ‘None’ for any postoperative

adjuvant treatments, while the other 192 samples were

annotated with ‘Not available’ or ‘Unknown’, which

were also used for survival analysis although a certain

proportion of these patients might have received adju-

vant therapies. This would be unlikely to result in false

significant results because only if significantly more
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samples of the stage I patients who had received adju-

vant therapies while simultaneously had occult metas-

tases would be predicted to be at low risk, which

would be unlikely to be the case. On the contrary, if

some patients correctly predicted to be at high risk

would actually have received adjuvant therapies with

survival benefits, the significant prognostic difference

between the high-risk and low-risk groups would be

reduced or even lost, which may lead to false-negative

result for the signature validation. The clinical infor-

mation of all the selected stage I samples is displayed

in Table S1. Besides, all 423 stage I–IV primary sam-

ples of patients with LUAD (Table S2), including 266

samples of patients without metastases, 134 samples of

patients with lymph node metastases, and 23 samples

of patients with distal metastases, were used for meta-

static and genomic analyses that did not need the sur-

vival data possibly confounded by various adjuvant

therapies. As a high proportion of stage II–IV patients

might be treated with adjuvant therapies, we did not

perform survival analysis for these samples.

For transcriptional data derived from HiSeq 2000

sequencing platform (Illumina, San Diego, CA, USA),

the normalized count values processed by RSEM

method were extracted and log 2-transformed as the

gene expression measurements. For gene mutation

data of the 423 stage I–IV samples derived from the

Illumina Genome Analyzer DNA Sequencing GAIIx

platform, only the nonsynonymous mutations were

included, and a discrete mutation profile including

17 821 genes was generated. Copy number aberrations

(CNAs) of the 423 stage I–IV samples were down-

loaded from TCGA Firehose (http://gdac.broadinsti

tute.org/), which were processed with the GISTIC

algorithm (Mermel et al., 2011) using the thresholds of

0.3 for copy number-amplified regions and �0.3 for

copy number-deleted regions.

Six gene expression data sets of primary LUAD

detected by microarray platforms, originally used for

9-GPS validation in our previous study, were down-

loaded from the Gene Expression Omnibus (GEO,

http://www.ncbi.nlm.nih.gov/geo/). Two tests were

performed using the six data sets produced by two

microarray platforms, including 301 stage I LUAD

samples in test 1 (GSE31210, GSE50081, GSE37745,

GSE31546, and GSE29013) generated by Affymetrix

Plus 2.0 and 28 samples in test 2 (GSE29016) gener-

ated by Illumina HT-12 V3.0. The two test data sets

both had recorded OS data, while test 1 also had

recorded recurrence data. The microarray data sets

produced by Affymetrix U133A were not analyzed as

only six gene pairs were measured in this platform.

Additionally, GSE50081 data also include 33 primary

tumor samples of LUAD patients with lymph node

metastases and 94 primary tumor samples of LUAD

patients without metastases. The raw mRNA expres-

sion data set was preprocessed using the Robust

Multi-array Average algorithm (Irizarry et al., 2003).

Gene IDs were mapped to genes using the correspond-

ing platform files. For each sample, the expression

measurements of all probes corresponding to the same

Gene ID were averaged to obtain a single measure-

ment. Probes that did not match any Gene ID or

matched multiple Gene IDs were deleted. All the sam-

ples used in this study were extracted from the pri-

mary tumors of LUAD patients with or without

metastases.

The regulatory network data were integrated from

the Pathway Commons (Cerami et al., 2011), SPIKE

(Paz et al., 2011), SignaLink (Fazekas et al., 2013)

databases, including 5800 regulators and 6695 targets

(Babur et al., 2015). The functional pathways for

enrichment analysis were downloaded from Gene

Ontology (GO) (Ashburner et al., 2000) in November

2016.

2.2. Prognostic gene pair signature and survival

analysis

The prognostic 9-GPS signature consisting of nine

gene pairs (Qi et al., 2016) is briefly described in

Fig. 1A. Based on the majority voting rule, a cancer

sample was determined to be at high (or low) risk if

more than half of the REOs of the nine gene pairs in

9-GPS voted for high (or low) risk. For each of the

nine gene pairs, Ga and Gb, the REO pattern of

Ea > Eb (or Ea < Eb) votes for high (or low) risk,

where Ea and Eb represent the expression levels of Ga

and Gb, respectively. In this study, we also evaluated

the performance of 9-GPS based on a strict voting cri-

terion for low-risk identification.

Table 1. The stage I LUAD samples used in this study.

Data set

Stage I

samples Platforms

TCGA 213 Illumina HiSeq*

Test 1 301 Affymetrix Plus 2.0

GSE31210 (Okayama et al., 2012) 162

GSE50081 (Der et al., 2014) 90

GSE37745 (Botling et al., 2013) 29

GSE31546 13

GSE29013 (Xie et al., 2011) 7

Test 2 28 Illumina HT-12 V3.0

GSE29016 (Staaf et al., 2012) 28

*HiSeq 2000 sequencing platform (Illumina).
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The OS was defined as the time from surgery to death

or the final documented date (censored). The recur-

rence-free survival (RFS) was defined as the time from

surgery to recurrence or the final documented date (cen-

sored). Here, the 5-year recurrence rate of patients was

also used for survival analysis, which should be a better

end point for prognosis study of early-stage lung cancer

due to high comorbidity during the usually long survival

time. Survival curve was estimated using the Kaplan–
Meier method and compared using the log-rank test

(Bland and Altman, 2004). We adopted the concordance

index (C-index) (Harrell et al., 1996) to estimate the pre-

dictive performance of a signature for patient survival.

The multivariate Cox proportional hazards regression

model was used to evaluate the independent prognostic

value of the signature after adjusting for clinical factors

including age, gender, and stage. Hazard ratios (HRs)

and 95% confidence intervals (CIs) were generated

using the Cox proportional hazards model.

2.3. Differential expression and functional

enrichment analyses

Here, 11 642 genes with coefficient of variance > 0.10

were selected for differential expression analysis. Stu-

dent’s t-test was conducted to extract significantly dif-

ferentially expressed (DE) genes between two groups

of samples. We used the GO function algorithm

(Wang et al., 2012) to select GO pathways that signifi-

cantly enriched with DE genes.

Fig. 1. Prognostic 9-GPS for risk classification and survival analyses for stage I lung adenocarcinoma samples in TCGA. (A) 9-GPS for risk

classification based on the within-sample relative expression orderings (REOs) of the nine gene pairs with the majority voting rule. A sample

is predicted to be at high risk if more than half of the nine gene pairs with the specific REOs (Ea > Eb); otherwise, it is predicted to be at

low risk. The sample exemplar (pink) is predicted to be at high risk because the count of the specific REOs (Ea > Eb) in the individual is

seven based on the majority voting rule. (B) The Kaplan–Meier curves of overall survival (OS) for stage I LUAD patients. Hazard ratio (HR)

and 95% confidence interval (CI) were generated using univariate Cox regression models. (C) Multivariate Cox analyses for 9-GPS with the

majority voting rule, age, gender, and stage. Solid circles represent the HR for risk of death, and the open-ended horizontal lines represent

the 95% CI. The P-value, HR, and CI were generated using multivariate Cox regression models.
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2.4. The genomic data analyses

Fisher’s exact test was used to detect genes or genomic

regions that had significantly different mutation or

CNA frequencies between two subtypes. Here, we

restricted the genomic analyses to the genes or geno-

mic regions altered in more than 5% cancer samples.

Spearman’s rank correlation analysis was used to esti-

mate the correlation of gene expression levels with

gene mutations or CNAs.

The P-values were adjusted using the Benjamini–
Hochberg procedure for multiple testing to control the

false discovery rate (FDR) (Benjamini and Hochberg,

1995). Significance was defined as P < 0.05 or

FDR < 0.05 for multiple testing. All statistical analy-

ses were performed using the R 2.15.3 (http://www.

r-project.org/).

3. Result

3.1. Prognostic performance of 9-GPS in RNA-

sequencing data

9-GPS for prognostic prediction of early-stage NSCLC

patients after complete surgical resection, as described

in Fig. 1A, was previously trained and validated in

multiple data sets measured by different laboratories

with different microarray platforms (Qi et al., 2016).

Here, we applied 9-GPS to 213 stage I LUAD samples

with RNA-sequencing data in TCGA. Based on the

within-sample REOs of 9-GPS, with the majority

voting rule, 66 and 147 patients were classified into

high- and low-risk groups, respectively, with signifi-

cantly different OS (log-rank P = 0.0318, HR = 1.88,

95% CI: 1.05–3.37, C-index = 0.55, Fig. 1B). The

multivariate Cox analysis showed that the 9-GPS

remained significantly associated with patient OS

(P = 0.0244, HR = 2.03, 95% CI: 1.09–3.75, Fig. 1C)
after adjusting for age (> 65 vs. ≤ 65), gender (male vs.

female), and stage (IB vs. IA). The results validated that

9-GPS extracted from microarray data could perform

robustly in independent data assessed with the RNA-

sequencing platform, supporting the cross-platform

robustness of 9-GPS for predicting OS of stage I LUAD.

3.2. Metastasis association of 9-GPS in RNA-

sequencing data

To study the association of the risk classifications of

samples predicted by 9-GPS with clinically diagnosed

metastasis states, 9-GPS was applied to all the gene

expression of 423 stage I–IV primary tumor samples in

TCGA. Based on the majority voting rule, 175 and

248 patients were stratified into high-risk and low-risk

groups, respectively. In the clinically diagnosed meta-

static group, the proportion of samples identified as

high risk was 51.59%, which was significantly higher

than the corresponding proportion (35.34%) in the

clinically diagnosed nonmetastatic group (Fisher’s

exact test, two-sided P = 0.0015, Fig. 2A). However, it

is worth noting that quite a number of clinically diag-

nosed metastatic samples were classified as low-risk

samples, suggesting that the majority voting rule pro-

vided in our previous study (Qi et al., 2016) may have

insufficient power to identify metastases.

3.3. Performance of 7/9-GPS with a strict rule for

low-risk identification

Considering a signature as an auxiliary tool for clinical

decisions, it should be reasonable to increase the sensi-

tivity of metastasis identification while making conser-

vative decisions on the identification of low-risk

patients who would be suggested to be treated with

surgery only. Therefore, we tried to reset a strict crite-

rion to identify low-risk patients who are clinically

diagnosed as nonmetastasis: A patient is determined to

Fig. 2. The association of high-risk samples predicted by 9-GPS

with the primary tumor samples of patients with clinically

diagnosed metastases. (A) The Confusion Matrix for the

metastases prediction of 9-GPS based on the majority rule in

TCGA data. (B) The Confusion Matrix for the metastases prediction

of 7/9-GPS in TCGA data. (C) The Confusion Matrix for the

metastases prediction of 7/9-GPS in an independent data set

(GSE50081). Fisher’s exact test was used to compare the

association.
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be at low risk only if all or significant more gene pairs

vote for low risk; otherwise, high risk. When requiring

that at least seven gene pairs of 9-GPS vote for low-

risk determination, 56% of stage I LUAD samples

were determined to be at high risk, which was closest

to the clinically observed relapse rate of 35–50% for

the stage I LUAD patients treated with curative sur-

gery only (Siegel et al., 2015). Thus, we adopted this

strict voting rule for low-risk identification, denoted as

7/9-GPS.

As expected, the sensitivity of metastasis detection

based on the new voting rule of 7/9-GPS increased

greatly. Of the 157 primary tumor samples of patients

with metastases in TCGA, 78.98% were identified as

high-risk samples, which was significantly higher than

the corresponding frequency of 59.40% in the 266 pri-

mary tumor samples of patients without metastases

(Fisher’s exact test, two-sided P < 0.0001, Fig. 2B).

The result was validated in an independent data set

(GSE50081): 84.85% of the 33 primary tumor samples

of patients with metastases were identified as high-risk

samples by 7/9-GPS, which was significantly higher

than the corresponding frequency of 68.09% in the 94

primary tumor samples of patients without metastases

(Fisher’s exact test, one-sided P = 0.0480, Fig. 2C).

Then, applying 7/9-GPS to the 213 stage I samples in

TCGA, we identified 120 high-risk samples that had

significantly shorter OS than the 93 samples identified

as low-risk samples (log-rank P = 0.0144, HR = 2.19,

95% CI, 1.15–4.17, C-index = 0.58, Fig. 3A). Of these

213 stage I samples, 139 samples had records of recur-

rence information; thus, we also tested the prognostic

performance of 7/9-GPS for 5-year recurrence rate of

the patients. The result showed that the 5-year recur-

rence rate for the 73 identified high-risk samples was

0.33, which was significantly higher than the corre-

sponding rate of 0.11 for the 66 samples identified as

low-risk samples (log-rank P = 0.0315, HR = 2.92,

95% CI = 1.05–8.12, C-index = 0.62, Fig. 3B). When

9-GPS based on the majority voting rule was applied,

the 5-year recurrence rate of the 36 samples predicted

to be the high-risk group was 0.37, which was higher,

but not significantly, than the corresponding rate of

0.17 for the 103 low-risk samples (log-rank

P = 0.4962, HR = 1.40, 95% CI = 0.53–3.68, C-

index = 0.51, Fig. S1). Additionally, we found that the

5-year recurrence rate of 54 high-risk stage I patients

identified by 7/9-GPS but not by 9-GPS was

significantly higher than the corresponding rate of the

93 low-risk stage I patients identified concordantly by

7/9-GPS and 9-GPS (log-rank P = 0.0252, Fig. S2A),

while it was not significantly different from the 5-year

recurrence rate of the 66 high-risk stage I patients

identified concordantly by 7/9-GPS and 9-GPS (log-

rank P = 0.5547, Fig. S2B). These results indicated

that 7/9-GPS performed better than 9-GPS in identify-

ing LUAD patients with occult metastases. The prog-

nostic performance of 7/9-GPS was also tested in the

two test data sets used in our previous study (Qi et al.,

2016), which were integrated from data detected by

different laboratories with different microarray plat-

forms. In the first test with 301 stage I LUAD samples

integrated from five data sets generated by Affymetrix

Plus 2.0, 7/9-GPS identified 164 samples as high-risk

samples, which had significantly shorter OS than the

137 samples classified as low-risk samples (log-rank

P < 0.0001, HR = 3.14, 95% CI = 1.73–5.68, C-

index = 0.64, Fig. 3C). The 5-year recurrence rate of

the 164 high-risk samples was 0.37, which was signifi-

cantly higher than the corresponding rate of 0.15 for

the 137 low-risk samples (log-rank P < 0.0001,

HR = 2.85, 95% CI = 1.69–4.81, C-index = 0.62,

Fig. 3D). In the second test with 28 stage I LUAD

samples measured by Illumina HT-12 V3.0, 15 high-

risk samples identified by 7/9-GPS had significantly

shorter OS than the 13 low-risk samples (log-rank

P = 0.0128, HR = 2.85, 95% CI = 1.69–4.81, C-

index = 0.62, Fig. 3E). 7/9-GPS performed comparable

with 9-GPS in the first test (Fig. S3A,B), but better in

the second test (Fig. S3C).

In general, 7/9-GPS performed better than 9-GPS in

terms of sensitivity of metastasis detection, OS, and 5-

year recurrence rate.

3.4. Transcriptional characteristics of the

reclassified metastatic samples revealed with the

aid of 7/9-GPS

Using Student’s t-test with 5% FDR control, we found

only 512 DE genes between the primary tumor sam-

ples of patients with metastases and without metas-

tases. With the aid of 7/9-GPS, 108 primary tumor

samples of patients without metastases, which were

predicted as low-risk samples by 7/9-GPS, were kept

as nonmetastatic samples, and the other 315 primary

tumor samples that have happened metastases or were

Fig. 3. Prognostic performance of 7/9-GPS with a strict rule for low-risk identification. (A) The Kaplan–Meier curves of OS for 213 stage I

LUAD samples in TCGA. (B) The Kaplan–Meier curves of recurrence-free survival (RFS) for 139 stage I LUAD samples in TCGA. (C) The

Kaplan–Meier curves of OS for 301 stage I LUAD samples in test 1. (D) The Kaplan–Meier curves of RFS for 301 stage I LUAD samples in

test 1. (E) The Kaplan–Meier curves of OS for 28 stage I LUAD samples in test 2.
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predicted as high-risk samples by 7/9-GPS were rede-

fined as metastatic samples. Using Student’s t-test with

5% FDR control, we found that 5042 DE genes were

detected between the redefined metastatic and nonme-

tastatic groups (Student’s t-test, FDR < 0.05). When

compared the two DE gene lists (Fig. 4A), we found

that 468 (91.41%) of the 512 DE genes between the

clinically diagnosed two groups were also included in

the DE genes identified after sample reclassification,

and the dysregulation directions of the overlapped

genes reached up to 100% (binomial test, P < 0.0001).

The clearer transcriptional differences between the two

reclassified groups indicated that the reclassification of

metastasis states of LUAD patients with the aid of 7/

9-GPS could capture more DE genes by reducing the

influence of the samples with occult metastases. Func-

tional enrichment analysis showed that the 5042 DE

genes (denoted as metastasis-related DE genes) identi-

fied after sample reclassification were significantly

enriched in several pathways associated with tumor

metastasis (hypergeometric distribution model,

FDR < 0.05, Table S3), including ‘cell proliferation’

(Muller-Tidow et al., 2001), ‘cell adhesion’ (Bremnes

et al., 2002; Sin et al., 2011), ‘cell migration’ (Kim

et al., 2009; Zheng et al., 2004), and ‘angiogenesis’

(Macchiarini et al., 1992).

Additionally, we used a proliferation signature con-

sisting of 44 genes (Whitfield et al., 2006; Wu et al.,

2013) to calculate a proliferation score for each sample

that is the average expression of the 44 genes in that

sample. The results showed that the reclassified meta-

static samples identified by 7/9-GPS had a significantly

higher average proliferation score than the reclassified

nonmetastatic samples (Student’s t-test, P < 0.0001,

Fig. 4B), which was concordant with the knowledge

that high cell proliferation is closely related to tumor

metastasis (Muller-Tidow et al., 2001). Through unsu-

pervised clustering analysis of primary LUAD gene

expression profiles, reported by Wilkerson et al.

(2012), the 423 stage I–IV LUAD samples were classi-

fied into three transcriptional subtypes: the bronchioid,

the squamoid, and the magnoid subtypes. We found

that the reclassified metastatic samples were signifi-

cantly enriched in the squamoid and the magnoid sub-

types, and the reclassified nonmetastatic samples were

significantly enriched in the bronchioid subtype (chi-

square test, P < 0.0001, Fig. 4C), which is character-

ized by low grade and the least invasion of tumor cells

(Wilkerson et al., 2012). Similar result was observed in

stage I samples in which the high-risk samples identi-

fied by 7/9-GPS were characterized by high prolifera-

tive capacities (Student’s t-test, P < 0.0001, Fig. S4)

and enriched in the squamoid and the magnoid sub-

types (Fig. S5).

3.5. Genomics characteristics of the reclassified

metastatic samples revealed with the aid of 9-

GPS

Using Fisher’s exact test with 5% FDR control, we

found no gene with significantly different mutation fre-

quencies but only one chromosome region (7p11.2)

with significantly different amplification frequencies

between the 157 primary tumor samples of patients

with metastases and 266 primary tumor samples of

patients without metastases in TCGA (Fisher’s exact

test, FDR < 0.05). In contrast, we were able to find 21

genes with significantly different mutation frequencies

and 27 genomic regions with significantly different

CNA frequencies between the redefined metastatic and

nonmetastatic groups (Fisher’s exact test,

FDR < 0.05). All the 48 genomic lesions are displayed

in Table S4, while some are demonstrated in Fig. 4C.

Impressively, 46 of the 48 genomic lesions had signifi-

cantly higher frequencies of mutation or CNA in the

reclassified metastatic group than in the reclassified

nonmetastatic group (binomial distribution,

P < 0.0001). Additionally, we found that the median

of the mutation count per sample for the reclassified

metastatic samples was 80, which was significantly

more than the corresponding median count (44) for

the reclassified nonmetastatic samples (Student’s t-test,

Fig. 4. The transcriptional and genomic characteristics of the reclassified metastatic samples with the aid of 7/9-GPS. (A) The overlap of the

transcriptional differences between the primary tumor samples in the clinically diagnosed two metastatic groups and the reclassified two

metastatic groups with the aid of 7/9-GPS. The blue and pink circles represent the DE genes identified by the clinically diagnosed two

metastatic groups and DE genes identified by the reclassified two metastatic groups, respectively. All the overlapped DE genes had the

same dysregulated direction. (B) The boxplot of proliferation scores of the reclassified metastatic and nonmetastatic samples, respectively.

(C) The genomic characteristics between the reclassified metastatic and nonmetastatic groups with the aid of 7/9-GPS. Some genomic

lesions between the two reclassified groups including ten gene mutations and ten chromosome regions with the most significant difference

(Fisher’s exact test, FDR < 0.05) are displayed. The frequencies of the two reclassified groups with lesions are shown at the left, and the

significance of the frequency differences between the two groups is shown at the right. All the 48 genomic lesions that had different

aberration frequencies between two reclassified groups are displayed in Table S4. The clinical information for clinically diagnosed metastasis

states (yes/no), stage, gender, and smoking, and the total genomic lesions count, including mutation count and CNA count, mutation base

substitution patterns, transcriptional subtypes for 423 stage I–IV samples, are also demonstrated.
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P < 0.0001, Fig. 4C). Similarly, the median of the

CNA count per sample for the reclassified metastatic

samples was 18, significantly more than the corre-

sponding median count (12) for the reclassified non-

metastatic samples (Student’s t-test, P < 0.0001,

Fig. 4C). Taken together, these results clearly showed

that the reclassified metastatic samples suffered serious

genomic instability. Many mutation genes are known

to be related to tumor metastasis. For example, TP53,

mutated in 63.81% of the 315 reclassified metastatic
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samples but only in 20.37% of the 108 reclassified

nonmetastatic samples, could induce genomic instabil-

ity (Negrini et al., 2010), aggravate tumor progression,

and promote tumor metastasis (Marchetti et al., 1993;

Reichel et al., 1994). For another example, a neural

cell adhesion protein CNTN1, mutated in 8.57% of

the reclassified metastatic samples but in none of the

reclassified metastatic samples, could promote cancer

cell invasion and metastasis (Shi et al., 2015; Yan

et al., 2016). The expression levels of 608 genes within

the 21 genomic regions with copy number gains or

losses were positively correlated with their CNAs

(Spearman’s rank correlation, FDR < 0.05). Many

genes in these chromosome lesions, such as EGFR

(amp 7p11.2) (Eichler et al., 2010), MET (amp 7q31.2)

(Breindel et al., 2013; Lutterbach et al., 2007), KRAS

(amp 12p12.1) (Schmid et al., 2009), and CACNA2D2

(del 3p21.31) (Warnier et al., 2015), are known to be

related to tumor invasion and metastasis.

Notably, we found that 45 of the 48 genomic lesions

characterizing the difference between the reclassified

metastatic samples and nonmetastatic samples also

had significantly different mutation or CNA frequen-

cies between the stage I high-risk and low-risk samples

identified by 7/9-GPS (Fisher’s exact test, FDR < 0.05,

Fig. S5, Table S5), as shown in Fig. 4C. On the other

hand, we found no genes or chromosome regions with

significantly different mutation or CNA frequencies

between the stage I high-risk samples and primary

tumor samples of patients with clinically diagnosed

metastases. These results together supported that the

stage I high-risk samples identified by 7/9-GPS might

potentially carry occult metastases, which might

obscure the differential genomic lesions between the

clinically diagnosed metastatic and nonmetastatic

samples.

Taken together, the reclassified metastatic samples

are characterized by several genomic lesions related to

LUAD metastasis.

3.6. Network analysis of ‘drivers’ for LUAD

metastasis

Here, based on the regulatory relations among pro-

teins documented in the integrated network, as briefly

described in Materials and methods, we constructed a

directed regulatory network by linking the 46 potential

‘drivers’ genomic lesions, which had significantly

higher altered frequencies in the reclassified metastatic

group, with the metastasis-related DE genes between

reclassified metastatic and nonmetastatic groups.

The regulatory network included 85 ‘drivers’ (three

mutated genes, 17 amplified genes, and 64 deleted

genes) and 332 downstream metastasis-related DE

genes that were directly linked to the ‘driver’ genes.

As shown in Fig. 5, two ‘driver’ genes, TP53 and

IRF1, appeared to regulate many metastasis-related

DE genes in the network. The 50 metastasis-related

DE genes regulated by TP53 were significantly

enriched in biological pathways related to metastasis

(hypergeometric distribution model, FDR < 0.05,

Table S6), including ‘apoptotic process’ (Moon et al.,

2007), ‘cell growth’ (Muller-Tidow et al., 2001), and

‘cell migration’ (Kim et al., 2009; Zheng et al., 2004).

Another ‘driver’ gene, IRF1, was found to be deleted

in 15.14% of the reclassified metastatic samples but

only in 6.40% of the reclassified nonmetastatic sam-

ples. The 146 metastasis-related DE genes regulated

by IRF1 were significantly enriched in several func-

tional pathways (hypergeometric distribution model,

FDR < 0.05, Table S6), such as ‘cell cycle’ (Muller-

Tidow et al., 2001), ‘activation of MAPK activity’

(Santarpia et al., 2012), and several pathways, includ-

ing ‘cell–matrix adhesion’ (Sin et al., 2011) and ‘an-

giogenesis’ (Macchiarini et al., 1992), involved in

tumor microenvironment, which were also related to

cell migration and metastasis. The other metastasis-

related DE genes regulated by several ‘driver’ genes

were also significantly enriched in several functional

pathways related to tumor metastasis (hypergeometric

distribution model, FDR < 0.05, Table S6). Notably,

a signature gene CACNA2D2 located in ‘3p21.31’ was

deleted in 21.13% of the reclassified metastatic sam-

ples, but only in 5.56% of the reclassified non-

metastatic samples. The 18 metastasis-related DE

genes regulated by CACNA2D2 were significantly

enriched in several metastasis-related pathways such

as ‘MAPK signaling pathway’ (Santarpia et al., 2012).

Three other signature genes (PRC1, CCND2, and

BUB1B) could be directly regulated by some genomic

lesions (Fig. 5), and another two signature genes

(KIF11 and POC1A) could be regulated by some

genomic lesions indirectly (Fig. 5). The remained sig-

nature genes were not annotated in the regulatory

network.

Taking together, the above regulatory network anal-

yses indicated that TP53 (Marchetti et al., 1993;

Reichel et al., 1994), IRF1 (Yuan et al., 2015). and

some other genes such as EGFR (Eichler et al., 2010),

MET (Breindel et al., 2013), KRAS (Schmid et al.,

2009). and CACNA2D2 (Warnier et al., 2015) with

genomic lesions might play key roles in driving tumor

metastasis. The results also suggested that the signa-

ture genes of 9-GPS tended to be targets of molecular

lesions in specific biological pathways for tumor cell

proliferation, infiltration, and metastasis.
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4. Discussion

In this study, we confirmed that the prognostic 9-GPS

extracted from microarray data for stage I LUAD

patients could perform robustly for samples measured

with the RNA-sequencing platform. This result demon-

strates the unique advantage of the cross-platform

robustness of the REO-based signature. We proposed

a hypothesis that the stage I LUAD patients with poor

prognosis after complete surgical resection might har-

bor occult metastases, which was supported by the evi-

dence that the predicted high-risk samples were

significantly enriched with the primary tumor samples

of patients with metastases. However, we found that

the majority voting rule provided in our previous

study (Qi et al., 2016) might have insufficient power to

Fig. 5. The regulatory network of ‘drivers’ for LUAD metastasis. The regulatory network includes ‘drivers’ for reclassified metastatic

samples and metastasis-related DE genes directly linked to the ‘drivers’. The nodes represent genes with genomic or transcriptional

aberrations, and the edges represent the regulatory relations between ‘drivers’ and metastasis-related DE genes. Three signature genes

(PRC1, CCND2, and BUB1B) could be directly regulated by some genomic lesions, and another two signature genes (KIF11 and POC1A)

could be regulated by some genomic lesions indirectly. The remained signature genes were not annotated in the regulatory network. The

functional pathways enriched with the metastasis-related DE genes regulated by each of the ‘drivers’ in the regulatory network are

displayed in Table S5.
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predict metastasis states based on the gene expression

of primary tumor samples. Considering the clinical

actual needs, we proposed 7/9-GPS based on a strict

voting criterion for low-risk identification and proved

that 7/9-GPS performed better than 9-GPS originally

based on the majority voting rule, in terms of sensitivity

of metastasis detection, OS time, and 5-year recurrence

rate. With the aid of 7/9-GPS, the primary tumor sam-

ples in the reclassified metastatic and nonmetastatic

groups showed significantly different transcriptional

and genomic characteristics related to tumor metastasis.

Notably, most genomic lesions could not be detected

between the primary tumor samples of LUAD patients

with and without clinically diagnosed metastases, which

should be due to some obscure clinical diagnosis for

LUAD metastasis states. These results suggested that 7/

9-GPS could identify stage I LUAD patients who poten-

tially have occult metastasis risk. However, the differ-

ences in some genomic lesions were still modest between

the reclassified metastatic and nonmetastatic groups,

which could be attributable to the heterogeneous of ‘dri-

ver’ genes in tumor samples, and different combinations

of ‘driver’ genes might be more important (Ciriello

et al., 2012). Finally, the regulatory network analysis

revealed that genomic lesions of TP53 and IRF1 might

play key roles in driving the metastasis of LUAD.

Whether these findings can provide clues to new thera-

peutic targets merits further study.

Notably, about 20% of primary tumor samples of

LUAD patients with clinically diagnosed metastases

were identified as low-risk samples by the signature.

Although a certain percentage of metastatic samples

could be false positives of clinical diagnosis (Pieterman

et al., 2000), it also indicated that 7/9-GPS might have

insufficient power in metastasis identification. There-

fore, 7/9-GPS is intended to be an auxiliary tool for clin-

ical metastasis diagnosis. Another limitation of this

study is that some publicly available data sets were not

used in this study because the patients in these data sets,

such as GSE8894 (Lee et al., 2008) and GSE3141 (Bild

et al., 2006), had not provided clear description on

whether the patients had been treated with adjuvant

treatment or not.

The qualitative nature of the within-sample REOs

makes the REO-based signatures being highly robust

against experimental batch effects and differences in

probe designs used in different platforms (Guan et al.,

2016). Consequently, the application of 9-GPS to sam-

ples measured by different laboratories does not

require data normalization, and thus, 9-GPS can be

applied at the individual level. It has been recognized

that the subtle quantitative gene expression levels mea-

sured by current biotechnologies are quite error-prone

due to various factors such as the differences in

reagents, reaction conditions, and operators (Leek

et al., 2010), and data normalization methods, such as

Combat (Johnson et al., 2007), DWD (Benito et al.,

2004), and XPN (Shabalin et al., 2008), could distort

real biological signals (Lazar et al., 2013). Therefore,

qualitative REO-based signatures would provide more

reliable patient-specific information for clinical appli-

cation than quantitative signatures, as demonstrated in

our previous study through comparing with the 15-

gene signature reported by Zhu et al. (2010). Here, we

additionally evaluated two recently published quantita-

tive prognostic signatures for NSCLC, including the

malignancy risk gene signature reported by Chen et al.

(2011) and the 16-gene signature reported by Lu et al.

(2013), both of which provided the risk scoring models

and risk thresholds (see Supporting information). The

malignancy risk gene signature classified all samples

into high-risk group when no Z-score normalization

was performed. The 16-gene signature also could not

predict prognosis of individual samples when no other

samples were analyzed together for comparison. The

requirement of between-sample data normalization

needs precollection of a set of samples for data nor-

malization, and the risk prediction of an individual

sample will rely on the risk composition of other sam-

ples adopted for normalization together (Qi et al.,

2016; Xu et al., 2013). This provided further evidence

that the type of quantitative signatures would be unfit

to direct clinical settings, as reported in our previous

study (Qi et al., 2016). Even when data normalization

was performed, the two signatures also failed to pre-

dict OS of the 213 stage I samples with RNA-sequen-

cing data in TCGA (Fig. S6A,B), suggesting that this

type of signatures could not perform robustly in data

assessed with different platforms.

5. Conclusion

The REO-based 7/9-GPS is a true individual-level

prognostic signature, which is applicable for robustly

identifying the stage I LUAD patients with potential

occult metastases who should receive adjuvant drug

treatments. It can also aid in the identification of

genomic and transcriptional characteristics of patients

with metastases.
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Fig. S1. The Kaplan–Meier curves of recurrence-free

survival (RFS) for 139 stage I LUAD samples strati-

fied by 9-GPS based on the majority voting rule in

TCGA.

Fig. S2. The survival analyses of the high-risk samples

identified by 7/9-GPS but not by 9-GPS and the risk

samples concordantly by 7/9-GPS and 9-GPS in

TCGA.

Fig. S3. Prognostic performance of 9-GPS based on

the majority voting rule in two test data sets.

Fig. S4. The boxplot of proliferation scores in the

high-risk and low-risk samples identified by 7/9-GPS,

respectively.
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Fig. S5. The genomic characteristics between the

high- and low-risk groups predicted by 7/9-GPS in

stage I LUAD patients.

Fig. S6. Prognostic performance of quantitative gene

expression signatures in 213 stage I lung adenocarci-

noma samples in TCGA.

Table S1. The clinical information of stage I LUAD

samples in TCGA.

Table S2. The 423 stage I-IV LUAD samples

detected with multiple omic-data in TCGA.

Table S3. The functional pathways enriched with

metastasis-related DE genes.

Table S4. The genomic characteristics between the

reclassified metastatic and nonmetastatic groups with

aid of 7/9-GPS.

Table S5. The genomic characteristics between the

stage I high-risk and low-risk samples identified by 7/

9-GPS.

Table S6. The functional pathways enriched with dif-

ferentially expressed genes regulated by each ‘driver’

for reclassified metastatic samples.
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