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Abstract: This study aimed to analyze the genetic and evolutionary characteristics of the influenza
A/H3N2 viruses circulating in Myanmar from 2015 to 2019. Whole genomes from 79 virus isolates
were amplified using real-time polymerase chain reaction and successfully sequenced using the
Illumina iSeq100 platforms. Eight individual phylogenetic trees were retrieved for each segment
along with those of the World Health Organization (WHO)-recommended Southern Hemisphere
vaccine strains for the respective years. Based on the WHO clades classification, the A/H3N2 strains
in Myanmar from 2015 to 2019 collectively belonged to clade 3c.2. These strains were further de-
fined based on hemagglutinin substitutions as follows: clade 3C.2a (n = 39), 3C.2a1 (n = 2), and
3C.2a1b (n = 38). Genetic analysis revealed that the Myanmar strains differed from the Southern
Hemisphere vaccine strains each year, indicating that the vaccine strains did not match the cir-
culating strains. The highest rates of nucleotide substitution were estimated for hemagglutinin
(3.37 × 10−3 substitutions/site/year) and neuraminidase (2.89 × 10−3 substitutions/site/year). The
lowest rate was for non-structural protein segments (4.19 × 10−5 substitutions/site/year). The
substantial genetic diversity that was revealed improved phylogenetic classification. This information
will be particularly relevant for improving vaccine strain selection.

Keywords: seasonal influenza; A/H3N2; next-generation sequencing; evolution; whole-genome
sequencing; mutation; variant viruses; genetic reassortment

1. Introduction

Influenza viruses cause acute respiratory illnesses that can affect people of all ages [1].
Every year, 5–20% of the human population is infected with influenza viruses. Globally,
these infections are a major cause of human morbidity, with an estimated 3–5 million cases
of severe illness each year and mortality of approximately 290,000 to 650,000 deaths each
year [2]. Data were collected before the COVID-19 pandemic. In industrialized countries,
most deaths associated with influenza occur in people aged ≥65 years [3]. Nearly 99% of
deaths in children under 5 years of age owing to influenza-related lower respiratory
infections occur in developing countries [4].

Influenza viruses are negative-sense, single-stranded, enveloped RNA viruses that be-
long to the Orthomyxoviridae family. Their genome comprises eight gene segments: RNA
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polymerase subunits polymerase basic 2 (PB2), polymerase basic 1 (PB1), and polymerase
acidic (PA), which encode viral RNA-dependent RNA polymerase and other proteins that
have been proposed to induce cell death (e.g., PB1–F2) and modulate viral pathogenic-
ity (e.g., PA-X9), hemagglutinin (HA), nucleoprotein (NP), neuraminidase (NA), matrix
(M), and non-structural protein (NS) [5]. There are four types of Influenza viruses: A,
B, C, and D [2]. Influenza A and B viruses circulate and cause seasonal epidemics [2].
Influenza A viruses are further classified into 18 HA subtypes (H1–H8) and 11 NA subtypes
(N1–N11) based on the reactivity of their surface HA and NA glycoproteins, with a total
of 144 subtypes possible. In contrast, the influenza B virus has no subtypes [5–8]. The
influenza A viruses currently circulating in humans are subtypes A/H1N1 and A/H3N2.

There was a large outbreak of influenza A/H3N2 during the 2010–2015 season in
Myanmar [9]. Multiple influenza types/subtypes usually circulate during each season in
Myanmar; for example, A/H1N1pdm was predominant in 2010 and 2015, A/H3N2 was
the predominant circulating virus in 2011, and influenza B viruses were the predominant
viruses in 2012 and 2014 [9]. The first case of an oseltamivir-resistant strain was detected in
influenza A/H1N1pdm viruses circulating in Myanmar in 2017 [10].

Influenza A viruses evolve rapidly through both mutation and reassortment. Within
each virus subtype, the gradual accumulation of nucleotides and amino acid substitutions
in HA and NA surface glycoproteins periodically results in the emergence of new antigenic
variants, a phenomenon called antigenic drift [11]. New antigenic variants of A/H3N2
viruses appear every 3–5 years, whereas new antigenic variants of A/H1N1 and influenza
B viruses appear less frequently (3–5 years for A/H3N2 viruses compared to 3-8 years for
A/H1N1 and influenza B viruses) [11–13]. Influenza A/H3N2 viruses are thought to have
evolved faster than other subtypes [14,15]. Recent studies have revealed extensive clade
diversity and increased morbidity and mortality rates [16,17]. During influenza epidemics
from 2016 to 2017 and 2017 to 2018, the majority of the predominant influenza viruses
in the Southern Hemisphere were A/H3N2 viruses in clade 3C.2 [18,19]. The segmented
nature of the genome allows genetic reassortment when a cell is coinfected by two or more
strains resulting in rapid antigenic drift. Inter-subtype reassortment gives rise to viruses
with pandemic potential [20].

Next-generation sequencing (NGS) technologies are increasingly used for molecular
surveillance of influenza viruses in many countries [21–23]. As the role of intra-subtype
reassortment becomes increasingly clear, identifying reassortments with whole-genome-
based surveillance is the gold standard tool, especially in the case of recombinogenic
viruses, such as influenza.

Influenza vaccine effectiveness can vary depending on the antigenic match between
circulating virus strains and vaccine components, the time since vaccination because of
waning immunity, and host factors such as age, immune function, earlier exposure to
influenza viruses, and vaccination history [24–26]. Vaccine effectiveness might also be
reduced by molecular changes arising from egg adaption for vaccines that use viruses
grown in embryonated eggs, such as the influenza A/H3N2 vaccine component [27].

We previously reported multiple influenza types/subtypes circulating during the
2010–2015 season in Myanmar and performed a genetic analysis of HA to assess the
transmission pathway of influenza viruses between Myanmar and other countries [9].
However, data on the whole genome of the influenza virus are generally sparse in Myanmar.
Therefore, we aimed to study the whole-genome sequences of influenza A/H3N2 viruses
circulating in Myanmar spanning the seasons from 2015 to 2019 in comparison with the
World Health Organization (WHO)-recommended Southern Hemisphere vaccine strains of
the respective years to detect the emergence of new variants of the influenza virus. A better
understanding of whole-genome sequences can assist in the exploration of inter- and intra-
seasonal evolutionary dynamics and the identification of mutations located anywhere in
the genome. This knowledge will improve the classification and detection of reassortments.
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2. Materials and Methods
2.1. Sample Collection

Sudden onset of symptoms, including fever and respiratory symptoms such as cough,
and rhinorrhea, define influenza-like illness (ILI). Nasopharyngeal swabs were collected
from outpatients with ILI who visited the Thinganguyn Sanpya General Hospital in Yangon
and the 200-bed General Hospital in Pyinmana, Myanmar, from January 2015 to December
2019. Patient information, including sex, age, and clinical symptoms, was also recorded.
Samples were collected after obtaining written informed consent from the patients or
guardians of all study participants. Two samples were collected for each participant. The
first sample was screened for influenza using the Quick-Navi Flu+RSV rapid diagnostic
test (Denka Seiken, Tokyo, Japan) at the sample collection sites. The second sample was
placed in a viral transport medium and frozen at −20 ◦C at the study sites. Within a few
months of sample collection, the samples were transported by an international courier
to the Division of International Health (Public Health), Graduate School of Medical and
Dental Sciences, Niigata University, Niigata, Japan, for laboratory examination. This study
was approved by the Niigata University Ethical Committee (2015-2533) and the Ethical
Review Committee of the Department of Medical Research, Ministry of Health and Sports,
Myanmar (No. 016516).

2.2. Cells

Madin–Darby Canine Kidney (MDCK) cells were maintained in minimum essen-
tial medium (MEM; Sigma-Aldrich, St. Louis, MO, USA), supplemented with 10% fetal
bovine serum (FBS; Nichirei Biosciences Inc., Tokyo, Japan), 100 U/mL penicillin, and
100 µg/mL streptomycin (Gibco, Cambridge, MD, USA). MDCK cells stably expressing
human 2,6-sialyltransferase (MDCK-SIAT1) were maintained in Dulbecco’s modified Ea-
gle’s medium (DMEM; Sigma) supplemented with 10% FBS (Nichirei Biosciences Inc.),
2 mM L-glutamine (Wako, Osaka, Japan), and 1.0 mg/mL G418 (Promega, Madison, WI,
USA) [28]. All cell lines were cultured at 37 ◦C in a 5% CO2 humidified incubator.

2.3. Viral Isolation

For viral isolation using MDCK cells, the clinical specimens from nasal swabs were
diluted to 1.5 times in MEM containing 35 µg/mL trypsin (Sigma), 1 × MEM vitamin
solution (Gibco), D-glucose (Sigma), 100 U/mL penicillin and 100 µg/mL streptomycin
(Gibco). For viral isolation using MDCK-SIAT1 cells, clinical specimens from nasal swabs
were diluted 1.5 times in DMEM containing 2 mM L-glutamine (Wako), 0.1% bovine serum
albumin (Sigma), 1 µg/mL TPCK trypsin (Sigma), 100 U/mL penicillin and 100 µg/mL
streptomycin (Gibco) [28]. Starting in 2018, we began to use MDCK-SIAT1 cells instead
of MDCK cells for virus isolation; MDCK-SIAT1 cells showed improved isolation rates
for more recent influenza viruses, including H3N2, compared to conventional MDCK
cells [29]. MDCK and MDCK-SIAT1 cells were seeded into 48-well plates and incubated
at 37 ◦C and 5% CO2. The next day, the cells were inoculated with the diluted clinical
specimens and incubated at 34 ◦C and 5% CO2. After inoculation, cells were monitored
for cytopathic effects for 3–10 days [30]. The samples underwent a second passage using
the same cells if no cytopathic effects were observed during the first inoculation. After
3–10 days of incubation, the culture supernatants and cells were collected and stored at
−80 ◦C. A mixture of the culture supernatants and cells was used for RNA extraction. The
presence of the influenza virus in the supernatant was confirmed by quantitative real-time
polymerase chain reaction (qPCR) [28].

2.4. Sample Selection

For genetic characterization of the whole-genome sequences of influenza, 79 A/H3N2
amplified polymerase chain reaction (PCR) products were selected from archived viruses,
with a cycle threshold (Ct) value ≤ 32, as detected by qPCR, and sampling was performed
on different months and dates of sample collection.



Viruses 2022, 14, 2414 4 of 16

2.5. RNA Extraction and PCR Amplification for NGS

Viral nucleic acids were extracted using a High Pure Viral RNA Kit (Roche Diagnostics,
Mannheim, Germany) according to the manufacturer’s instructions. Sequencing amplicons
were generated using one-step reverse transcription PCR (PrimeScript II High Fidelity;
TaKaRa Bio, Shiga, Japan). A 20-µL reaction mixture containing 1 µL eluted RNA and
final concentrations of 2 × Primescript II one-step High Fidelity buffer, 0.4 µL Prime-
Script II High Fidelity Enzyme Mix, and 1.6 µL PrimeSTAR GXL was prepared. Reverse
transcription–qPCR amplification was performed using three primers: 5 µM common-uni
12R (5′-GCCGGAGCTCTGCAGATATCAGCRAAAGCAGG-3′), 5 µM common-uni 12G
(5′-GCCGGAGCTCTGCAGATATCAGCGAAAGCAGG-3′), and 0.4 µM common-uni13
(5′-CAGGAAACAGCTATGACAGTAGAAACAAGG-3′), allowing reverse transcription
and amplification of each segment. This established protocol [31] uses modified primers
containing a mixture of common-uni 12R and common-uni 12G primers, as well as 0.4 µM
common-uni13 primers. The thermal cycling conditions were: reverse transcription at
45 ◦C for 10 min; initial denaturation/enzyme activation of 94 ◦C for 2 min; 35 cycles of
98 ◦C for 10 s, 60 ◦C for 15 s; and final extension of 68 ◦C for 30 s, followed by storage
at 4 ◦C.

2.6. Library Preparation and Sequence Runs for NGS

Amplified products were purified using a Wizard SV Gel and PCR Purification
Kit (Promega, Madison, WI, USA), according to the manufacturer’s instructions. Puri-
fied products were examined with an Agilent 4200 TapeStation (Agilent Technologies,
San Diego, CA, USA) using a D 1000 ScreenTape system. The concentration of each pu-
rified product was quantified with a Qubit Flex Fluorometer (Thermo Fisher Scientific,
Waltham, MA, USA) using a Qubit-iT 1×dsDNA HS assay (Thermo Fisher Scientific). Each
sample was diluted to a DNA concentration of 50 ng/µL, and the purified RT-PCR products
were used to prepare sequencing libraries using a Nextera Flex DNA sample preparation
kit (Illumina, San Diego, CA, USA) before sequencing. All libraries were sequenced on
an iSeq 100 platform (Illumina, San Diego, CA, USA). The amplicons were sheared to
lengths between 200 and 400 bp, and Illumina sequencing adapters were ligated to the
sheared DNA using Nextera Flex (Illumina). The libraries were multiplexed, clustered, and
sequenced using a 300-cycle (2 × 150 bp paired-end) ISeq v2 reagent kit (Illumina on the
iSeq 100 platform according to the manufacturer’s protocols. NGS was used to obtain the
nucleotide sequences of all eight viral segments.

2.7. NGS Data Analysis

Raw sequences (paired-end) approximately 250 bp in length were trimmed. Con-
tigs for individual gene segments from influenza viruses were generated using the de
novo assembly module of CLC Genomics Workbench bio software v.20.0.2 (CLC bio,
Cambridge, MA, USA).

2.8. Subclade Classification by Amino Acid Substitutions in HA

All sequence reads were mapped to the selected reference strains after retrieval using
the CLC biosoftware v.20.0.2. As reference strains, the WHO-recommended Southern
Hemisphere vaccine strains from 2014 to 2020 were downloaded from the influenza re-
search database (https://www.fludb.org/brc/home.spg?decorator=influenza; accessed on
12 June 2021). The subclades of the 79 A/H3N2 in this study were determined by the key
amino acid substitutions in HA that define the subclades of A/H3N2 as proposed by the
WHO (https://www.crick.ac.uk/research/platforms-and-facilities/worldwide-influenza-
centre/annual-and-interim-reports; accessed on 28 April 2022). Key amino acid substitu-
tions based on A/Texas/50/2012, a Southern Hemisphere vaccine strain in 2014, were used
to classify the HA 3C.2a group comprising 3C.2a1, 3C.2a1b, and 3C.2a2. Subclassification
of the vaccine strains for each year was performed based on the HA substitutions. Genetic

https://www.fludb.org/brc/home.spg?decorator=influenza
https://www.crick.ac.uk/research/platforms-and-facilities/worldwide-influenza-centre/annual-and-interim-reports
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analysis of the amino acid substitutions was performed using the MEGA software v.7.0.26
(https://www.megasoftware.net/; accessed on 12 June 2021).

To better understand the clade classification and group clustering of the viruses, a
phylogenetic tree was constructed using 12 strains from India and Thailand after comparing
them with the Southern Hemisphere vaccine strains of known clades recommended by
the WHO. Moreover, to understand the genetic relationship between the Myanmar strains
and globally circulating strains, we also performed a BLAST search for the HA gene of
79 A/H3N2 sequences from this study and constructed a phylogenetic tree.

2.9. Evaluation of Genetic Match with Vaccine Strains

Whole genomes of the viruses circulating each year were mapped against the South-
ern Hemisphere vaccine strain for the respective year, and variant analysis was con-
ducted using the CLC Genomics Workbench. Viruses collected in 2015 were mapped
to A/Switzerland/9715393/2013 (EPI_ISL_166310), those collected in 2016 and 2017 were
mapped to A/Hong Kong/4801/2014 (EPI_ISL_270160), those collected in 2018 were
mapped to A/Singapore/INFIMH-16-0019/2016 (EPI_ISL_330262), and those collected in
2019 were mapped to A/Switzerland/8060/2017 (EPI_ISL_332305). In addition, viruses in
2019 were further mapped to the 2020 Southern Hemisphere vaccine strain, A/South Aus-
tralia/ 34/2019 (EPI_ISL_413291). Mutational analysis was performed on the six longest
virus genes (PB2, PB1, PA, HA, NP, and NA) of eight segments to determine the difference
in amino acid substitutions between each year’s vaccine strain and circulating strains.

2.10. Subclade Classification and Reassortment Analysis Using Phylogenetic Trees

Subclade classification for the rest of the seven segments other than HA, PB2, PB1, PA,
NP, NA, MP, and NS was implemented by phylogenetic tree analysis using the vaccine
strains as reference strains for their respective subclades. MEGA software v.7.0.26 (https:
//www.megasoftware.net/; accessed on 12 January 2022) was used to construct maximum-
likelihood trees of eight individual segments, using HKY + G, Tamura’s three-parameter,
and Kimura’s two-parameter distance model (with the gamma distribution of among-site
rate variation with five categories estimated from the empirical data), with 1000 bootstrap
replicates. To detect reassortment, we compared the topologies of all trees of the eight
segments that matched the phylogeny of the HA segment with those of other segments to
identify inconsistencies arising from intra-subgroup reassortment.

2.11. Evolutionary Analysis and Estimation of Nucleotide Substitutions Rates

To compare the molecular evolutionary rate of each gene within a host and to deter-
mine how the rate of evolution acts on the HA gene, which evolves more rapidly than other
segments, the overall rates of evolutionary change (number of nucleotide substitutions
rates per site per year) were estimated using the Bayesian statistical inference approach
implemented in BEAST version 1.8.4 [32]. BEAST was run for 10 million MCMC chains
with sampling every 1000 generations. We used the molecular-clock method to estimate
the evolutionary rates of each gene. A relaxed molecular clock (uncorrelated lognormal)
and HKY + G for the HA gene and Tamura 3 parameter for the NA gene were used
after the selection of the best-fitting nucleotide substitution model in MEGA software
v.7.0.26 (https://www.megasoftware.net/; accessed on 12 March 2022). Convergence was
assessed based on an effective sample size value > 200 for each parameter in every run
using Tracer version 1.7 (https://github.com/beast-dev/tracer/releases/tag/v1.7.2; ac-
cessed on 12 March 2022). To calibrate the molecular clock, prior evolutionary rates of
4.84 × 10−3 substitutions/site/year (95% highest posterior density (HPD), 5.38 × 10−3 to
4.32 × 10−3) were used for the HA segment as well as the other segments [33] except for
NS. For NS, data from a previously published paper [34] were used in this analysis. This
value was used as the estimation method in the previous study and was similar to that
used in our analysis, especially for the whole-genome analysis of the influenza A/H3N2
virus. For the whole-genome dataset in Myanmar, the mean rate of nucleotide substitution

https://www.megasoftware.net/
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was estimated using a coalescent reassortant constant population model implemented in
BEAST software v.1.8.4 [32] with the following parameters: GRT + G + I substitution model,
strict clock, and exponential prior reassortment rate with a mean of 0.00254 [35].

3. Results
3.1. Characterization of Influenza Virus Isolates

A total of 2058 nasal swabs were collected from outpatients with ILI from Myanmar
between 2015 and 2019. Of the 1303 samples that tested positive in the rapid diagnostic
test, 803 (61.6%) tested positive for influenza using qPCR. Of these 803 samples, 444 (55.3%)
were classified as influenza A, with 129 (29.1%) classified as A/H3N2 and 315 (70.9%)
classified as A/H1N1. The remaining 359 (44.7%) samples were classified as influenza
B. These findings indicate that influenza A viruses were slightly more predominant in
Myanmar during the study period.

Seventy-nine influenza A/H3N2 viral isolates were subjected to NGS molecular ge-
netic analysis. All 79A/H3N2 consensus genomes were successfully sequenced, and those
with >95% coverage were analyzed. Segment coverage generally declined as the seg-
ment size increased. However, an average mean depth of 1000 to 3000 was achieved for
all segments.

3.2. Subclade Analysis by Amino Acid Substitutions and Phylogenetic Tree Analysis of HA

All 79 Myanmar isolates contained amino acid substitutions at L3I, N144S, N145S,
F159Y, K160T, N225D, and Q311H in HA1 compared with the 2014 A/Texas/50/2012
vaccine strain. The findings indicated that 79/79 A/H3N2 viruses in Myanmar collected
between 2015 and 2019 belonged to clade 3C.2a. Of the 79 isolates, analysis of amino acid
substitutions in HA showed that all strains in 2015, the majority of strains in 2016, and one
strain in 2018 belonged to subclade 3C.2a (n = 39.49%). Two strains in 2016 were in subclade
3C.2a1 (n = 2.3%), and all strains except one from 2017 to 2019 were in subclade 3C.2a1b
(n = 38.48%). Notably, one 2018 isolate (18M141) belonged to subclade 3C.2a. Precise amino
acid mutations in HA1, which define subclades compared to the 2014 A/Texas/50/2012, a
Southern Hemisphere vaccine strain, are summarized in Table S1.

Phylogenetic analysis of HA verified that all Myanmar sequences, including vaccine
strains, belonged to clade 3c.2a (Figure 1A) and its subclades according to the amino acid
defined in HA by the WHO (https://www.crick.ac.uk/research/platforms-and-facilities/
worldwide-influenza-centre/annual-and-interim-reports; accessed on 28 April 2022).

To understand the genetic relationship between the Myanmar strains and the globally
circulating strains, we performed a BLAST search for the HA gene of 79 A/H3N2 sequences
and constructed a phylogenetic tree. The HA gene in Myanmar was most closely related to
the strains isolated in China, Thailand, India, the USA, Australia, and Canada from 2015
to 2019 (Figure S1). To better understand the clade classification and group clustering of
the viruses, a phylogenetic tree was constructed using 12 strains from India and Thailand
after comparing them with the Southern Hemisphere vaccine strains of known clades
recommended by the WHO. We noted that the 2015 and 2016 A/H3N2 viruses in Myanmar
belonging to clades 3C.2a and 3C.2a1, respectively, were closely related to the 3C.2a clades
of the 2017 Indian viruses. Subsequently, the viruses isolated from 2017 to 2019 in Myanmar
clustered together with the 2017 viruses from India and the 2018 and 2019 viruses from
Thailand, which belonged to clade 3C.2a1b (Figure S1).

https://www.crick.ac.uk/research/platforms-and-facilities/worldwide-influenza-centre/annual-and-interim-reports
https://www.crick.ac.uk/research/platforms-and-facilities/worldwide-influenza-centre/annual-and-interim-reports
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Figure 1. Maximum-likelihood phylogenetic trees of all eight segments of influenza A/H3N2 viruses 
circulating in Myanmar and comparison of sequences from 79 strains isolated in Myanmar between 
2015 and 2019 and to the Southern Hemisphere vaccine strains of known clades recommended by 
the WHO. Southern Hemisphere vaccine strains from 2015 to 2019 are indicated by bold letters ac-
cording to clade classification by the WHO. (A) HA, (B) PB2, (C) PB1, (D) PA, (E) NP, (F) NA, (G) 
MP, and (H) NS segments. Amino acid substitutions compared to A/Texas/50/2012 were indicated 
in HA. The two strains that belonged to 3c.2a1 are highlighted in pink and denoted by pink triangles 
to clarify the topologies concerning 3c.2a and 3c.2a1b viruses. One revival strain, A/Yan-
gon/18M141/2018, is marked with blue circles. The phylogenetic tree was inferred by the maximum-

Figure 1. Maximum-likelihood phylogenetic trees of all eight segments of influenza A/H3N2 viruses
circulating in Myanmar and comparison of sequences from 79 strains isolated in Myanmar between
2015 and 2019 and to the Southern Hemisphere vaccine strains of known clades recommended by the
WHO. Southern Hemisphere vaccine strains from 2015 to 2019 are indicated by bold letters according
to clade classification by the WHO. (A) HA, (B) PB2, (C) PB1, (D) PA, (E) NP, (F) NA, (G) MP, and
(H) NS segments. Amino acid substitutions compared to A/Texas/50/2012 were indicated in HA.
The two strains that belonged to 3c.2a1 are highlighted in pink and denoted by pink triangles to clarify
the topologies concerning 3c.2a and 3c.2a1b viruses. One revival strain, A/Yangon/18M141/2018, is
marked with blue circles. The phylogenetic tree was inferred by the maximum-likelihood method
using 1000 bootstrap replicates implemented in MEGA v.7.0.26. Branch values > 70% are indicated at
the nodes.
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3.3. Analysis of Comparison of Amino Acid Substitutions between Circulating Strains and
A/Texas/50/2012 Vaccine Strain in HA

Compared with the 2014–2015 vaccine strain A/Texas/50/2012, mutations L3I, N144S,
N145S, F159Y, K160T, and Q311H were detected in most samples (2015–2019) (Table S1).
Among these mutations, the prominent mutations N121K and N171K in HA1 in 2016 and
E62G, N121K, T135K, K160T, and N171K between 2017 and 2019 (Table S1) resulted in the
evolution of viruses and the generation of the new clades 3C.2a1 and 3C.2a1b, respectively.

3.4. Comparison of Amino Acid Substitutions between Circulating Strains and Vaccine Strains in
HA and Five Other Segments

We compared amino acid substitutions in HA between circulating A/H3N2 viruses
isolated from 2015 to 2019 and Southern Hemisphere vaccine strains from the relevant
years. A total of 13 common amino acid substitutions (L19I, S130T, A144T, S154A, G158R,
N160S, S175Y, K176T, N241D, Q327H, R342K, K466R, and D505N) were observed in the
HA of all the 2015 isolates in Myanmar when compared with HA gene sequences of
the 2015 vaccine strain A/Switzerland/9715293/2013. Seven sporadic mutations (G21R,
D69N, S140R, P185S, K280R, G395R, and G495R) were detected in HA in some of the 2015
isolates (Table 1).

Table 1. List of mutation differences in HA gene between Southern Hemisphere vaccine strains and
Myanmar 2015–2019 viruses.

Representative Strain Clade Amino Acid Mutations in Each Nucleotide Position

2015 19 21 69 130 140 144 154 158 160 175 176 185 241 280 327 342 395 466 495 505

A/Switzerland/9715293/
2013 a 3C.3a L G D S S A S G N S K P N K Q R G K G D

2015 Myanmar viruses 3C.2a I R N T R T A R S Y T S D R H K R R R N

2016 49 112 137 158 160 174 176 187 210 258 422 500

A/Hong Kong/4801/
2014 b 3C.2a R S N R S N K N P I I G

2016 Myanmar viruses
3C.2a
and

3C.2a1
Q N K G G H T K L M V E

2017 78 94 108 112 137 151 158 176 187 210 287 305 327 372 422 500

A/Hong Kong/4801/
2014 b 3C.2a E G K S N T R K N P D P H Q I G

2017 Myanmar viruses 3C.2a1b G D R N K K G T K L N S Q L V E

2018 64 78 108 140 144 151 160 174 176 187 213 223 235 277 325 327 363 422 495 546

A/Singapore/
INFIMH-16-0019/ 2016 c 3C.2a1 I E K S T T S N T K Q K S R V H V V E A

2018 Myanmar viruses
3C.2a
and

3C.2a1b
R G R R A K K H R N R R F Q I Q M I G V

2019 16 49 78 99 108 110 112 137 144 147 151 153 154 158 187 205 209 277 327 363

A/Switzerland/8060/
2017 d 3C.2a2 A R E K K Y S N T K T S A K N K F Q H V

2019 Myanmar viruses 3C.2a1b T Q G E R N N K A T K F S G K R S R Q M
422 500 517 538 545 546
I G Q I V A
V E R M I V

a Vaccine strain for 2015, b vaccine strain for 2016 and 2017, c vaccine strain for 2018, and d vaccine strain for 2019.
Amino acid substitutions in bold represent common mutations for all isolates in each season, whereas those in
normal font represent additional sporadic mutations observed in some of the relevant season strains.

HA sequences were compared with the 2016 and 2017 vaccine strain A/Hong Kong/4801/2014
for the 2016 and 2017 isolates in Myanmar. Six common amino acid substitutions (S112N,
K176T, N187K, P210L, I422V, and G500E) and six additional sporadic mutations (R49Q,
N137K, S160G, R158G, N174H, and I258M) were observed in some of the2016 isolates. A
total of 12 common amino acid substitutions (E78G, K108R, S112N, N137K, T151K, R158G,
K176T, N187K, P210L, H327Q, I422V, and G500E) and an additional four sporadic mutations
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(G94D, D287N, P305S, and Q372L) were detected in the HA of some of the 2017 isolates in
Myanmar (Table 1).

Similarly, the 2018 Myanmar isolates were compared to the 2018 vaccine strain of South-
ern Hemisphere A/Singapore/ INFIMH-16-0019/2016. Eight common amino acid substi-
tutions (I64R, E78G, K108R, T144A, T151K, V325I, H327Q, and E495G) were detected in all
Myanmar isolates in 2018. Twelve additional sporadic mutations (T176R, S140R, N174H,
S160K, K187N, R277Q, V422I, A546V, Q213R, K223R, S235F, and V363M) were found in
some of the 2018 isolates. Compared with the 2019 vaccine strain A/Switzerland/8060/2017,
a total of 19 common amino acid substitutions (A16T, R49Q, E78G, K108R, S112N, N137K,
T144A, K147T, T151K, S153F, A154S, K158G, N187K, F209S, Q277R, H327Q, I422V, G500E,
and Q517R) were observed. Seven additional sporadic mutations (K99E, Y110N, K205R,
V363M, I538M, V545I, and A546V) were detected in the HA of some of the Myanmar iso-
lates in 2019 (Table 1). In general, the number of amino acid mutations observed between
the circulating strains and the following year’s vaccine strains was lower, indicating that
the circulating strains were similar to the vaccine strains in the following year.

We limited our mutation analysis to the six longest viral genes (PB2, PB1, PA, HA, NP,
and NA; Tables S1–S6) because the two shortest influenza genes (MP and NS) have alterna-
tively spliced and partially overlapping reading frames that complicate the annotation of
mutations. Among the detected mutations, the isolates of the 3C.2a1b clade also contained
specific amino acid mutations at P126L, K220N, and V303I in the NA (Table S2), S107N in
PB2 (Table S3), and K158R in the PA (Table S5) of H3N2 viruses in Myanmar between 2017
and 2019.

3.5. Analysis of Whole-Genome Sequence Data and Identification of Reassortments

The maximum-likelihood phylogenetic reconstruction of HA revealed the presence
of three distinct subclades (3C.2a, 3C2a1, and 3C.2a1b) within the A/H3N2 subtype in
Myanmar (Figure 1A). To determine the evolutionary relationship between gene segments,
phylogenetic trees for the other seven segments were generated, and the positions of the
subclades were compared among the eight segments (Figure 1A–H). The HA segment
(Figure 1A) of subclade 3C.2a1 viruses that appeared in 2016 (pink in Figure 1) was closer
to the newer subclade 3C.2a1b viruses (orange letters) that appeared from 2017 to 2019.
The HA segment revealed a topology that was generally consistent with that of the phy-
logenetic tree generated using the PA, MP, and (despite the low resolution) NS segments
(Figure 1D,G,H). In contrast, in four of the eight gene segments (PB2, PB1, NP, and NA)
(Figure 1B,C,E,F), subclade 3C.2a1 viruses (colored pink) were closer to the older 3C.2a
clade viruses (green letters) from 2015 to 2016. These findings suggest that the 3C.2a1
subclade viruses were minor reassortants between 3C.2a and 3C.2a1b.

Notably, one strain (18M 141; blue circled) collected in 2018 belonged to subclade
3C.2a, which circulated mainly from 2015 to 2016. This differs from other 2018 strain
clusters. This finding suggests that this strain was a holdover from the previous 3C.2a clade
viruses, which appeared a few years later.

3.6. Nucleotide Substitution Rates Using the Bayesian MCMC Method

Nucleotide substitutions in the whole-genome of Myanmar H3N2 viruses evolved
at mean rates of 1.95 × 10−3 mutations/site/year (95% highest posterior density,
1.68 × 10−3 to 2.24 × 10−3) across eight genes. The mean rates of nucleotide substi-
tution of the individual segments varied from 1.64 × 10−3 to 3.37 × 10−3 nucleotide
substitutions/site/year, with the highest rates of nucleotide substitution for the major
glycoproteins HA (3.37 × 10−3 substitutions/site/year) and NA (2.89 × 10−3 substi-
tutions/site/year) and the lowest rate for the NS segment. Multiple evolutionary rates
carried by other segments showed different rates of nucleotide substitution. The PB2 and
the PB1 segments were evolving at similar rates of 1.95 × 10−3 substitutions/site/year
and 1.64 × 10−3 substitutions/site/year. However, the corresponding rates of change of the
other proteins varied considerably; the PA segment (2.20 × 10−3 substitutions/site/year)
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displayed a higher rate than that of PB1, NP (1.84 × 10−3 substitutions/site/year), MP
(1.80× 10−3 substitutions/site/year), and NS1 (4.19× 10−5 substitutions/site/year) (Table 2).

Table 2. Mean rates of nucleotide substitutions for all segments of A/H3N2 viruses circulating in
Myanmar between 2015 and 2019.

Segment Mean Rate of Substitution (Substitution/Site/Year)

Mean 95% Highest Posterior Density

PB2 1.95 × 10−3 1.42 × 10−3 to 2.50 × 10−3

PB1 1.64 × 10−3 1.11 × 10−3 to 2.18 × 10−3

PA 2.20 × 10−3 1.57 × 10−3 to 2.79 × 10−3

HA 3.37 × 10−3 2.52 × 10−3 to 4.21 × 10−3

NP 1.84 × 10−3 1.31 × 10−3 to 2.44 × 10−3

NA 2.89 × 10−3 2.13 × 10−3 to 3.71 × 10−3

MP 1.80 × 10−3 1.06 × 10−3 to 2.67 × 10−3

NS 4.19 × 10−5 3.25 × 10−5 to 5.16 × 10−5

4. Discussion

To our knowledge, this is the first comprehensive whole-genome sequencing study
of influenza A/H3N2 viruses in Myanmar. We compared genetic differences between
circulating strains and each season’s Southern Hemisphere vaccine strains using the whole
genome sequences. The ladder-like phylogenies in Myanmar represent the antigenic drift
of H3N2, as the viruses differed from the vaccine strain in each season. This finding
indicated that the vaccine strains did not match those of the circulating strains in Myanmar.
Subclade 3C.2a1 viruses evolved and displayed minor reassortants in 2016. The viruses
completely changed into the newer 3c.2a1b subclades from 2017 to 2019. Additionally, we
calculated the average genetic evolution rate between the eight segments of the A/H3N2
viruses. The number of mutations and the rate of nucleotide substitution were the highest
in the HA gene, whereas parallel evolution varied considerably between other segments,
with distinct relationships forming in different H3N2 virus subclades arising from unique
evolutionary paths.

All eight segments of H3N2 viruses in Myanmar from 2015 to 2019 were different
from the vaccine strains of the respective years but were similar to those detected in the
following season. Thus, the vaccine strains were selected one year before the circulating
virus [36]. Weekly surveillance data from 10 Asia countries from 2006 to 2011 indicated
that most tropical and subtropical countries in Southeast Asia were associated with discrete
seasonality, with peak periods of influenza activity between June/July and October; thus,
they exhibited earlier influenza activity peaks than temperate climate countries [37]. The
current vaccination schedules used for the Northern Hemisphere vaccines were subop-
timal, and conducting vaccination from April to June each year that complies with the
Southern Hemisphere vaccines (i.e., prior to the peak circulation of influenza viruses) may
be beneficial for most tropical countries in Southeast Asia [37].

Among the eight segments, the highest number of mutations was found in HA, with a
range of 20, 20, and 27 detected in the 2015, 2018, and 2019 isolates, respectively. The lowest
number of mutations was found in HA, with a range of 12 to 16 that were detected in the
2016 and 2017 isolates in Myanmar, respectively. A similar finding revealed that circulating
strains diverged from the WHO-recommended season vaccine strains, which were reported
in the HA sequences in Kenya during the 2007–2013 seasons [38], all eight sequences in
Thailand during the 2018–2019 seasons [39], and HA sequences in India during the 2017
season [40].

To determine the evolutionary relationship between the gene segments, eight individ-
ual phylogenetic trees of the whole genome were generated. The full genome phylogeny
in Myanmar suggested the presence of minor reassortant viruses in the 3C.2a1 subclade
during the 2016 season. In the HA, PA, and MP segments, these 3C.2a1 subclade viruses
were closer to the newer subclade 3C.2a1b viruses that appeared from 2017 to 2019. In the
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PB2, PB1, NP, and NA segments, these viruses were closer to the older 3C.2a clade viruses
that appeared from 2015 to 2016. Similar reassortant viruses, but in a different subclade
(3C.2a2), were reported in the USA in the 2017–2018 season, in which reassortment events
occurred in both HA and PB1 segments [41]. One strain (18M141) in the 2018 season was
very similar to the old subclade (3C.2a) in the 2015 season, presumably indicating that this
strain orignated from the old ancestor strain, having survived from 2015 to 2018.

The HA protein plays a key role in determining the virulence of influenza viruses
and is closely related to the prevalence of influenza. This protein is the molecular basis for
the antigenic variation of influenza viruses [42]. To compare the HA genome sequences
of 3C.2a virus detected in Myanmar from 2015 to 2019 with those observed in foreign
countries, we performed a BLAST search. The HA genome sequences of the Myanmar
isolate clustered with isolates from other areas, including strains from China, Thailand,
India, the USA, Australia, and Canada during the same period [39,40]. In our previous
study, influenza A/H3N2 viruses were the predominant viruses circulating in Myanmar in
2010 and 2015. Phylogeographic analysis revealed that these viruses originated in Europe
and disseminated to various countries via Australia [9], presumably indicating that even
now, the influenza virus in Myanmar is closely related to those in neighboring Asian
countries and Australia and remotely to those in Europe or the Americas.

Compared with the 2014–2015 vaccine strain A/Texas/50/2012, L3I, N144S, N145S,
F159Y, K160T, and Q311H mutations were detected in most of the samples (2015–2019)
(Table S1). Among these mutations, the prominent mutations N121K and N171K in HA1
in 2016 and E62G, N121K, T135K, K160T, and N171K between 2017 and 2019 resulted in
the evolution of the viruses and the generation of the new clades 3C.2a1 and 3C.2a1b,
respectively. Similar findings have been reported globally, where phylogenetic analysis
of HA genes from viruses showed diversity and sequences belonging to clades 3C.2a and
3C.3a. Moreover, 3C.2a viruses with similar mutations predominated in the 2016 isolates in
Greece [43], 2017 isolates in India [40], and 2018–2019 isolates in Thailand [39]. Among the
detected mutations, T135K and N171K substitutions were located within antigenic sites.
Thus, they potentially affected viral antigenicity as they resulted in the loss of N-linked
glycosylation sites, which can affect the antigenic and other properties of viruses [43].
Furthermore, Yu et al. and Zost et al. also found that the generation of protective antibody
responses against an H3N2 vaccine strain occurred during the 2016–2017 H3N2 influenza
season owing to the substitutions of K160T, resulting in a new glycosylation site in the
HA protein, which affected antigenicity [27,44]. The K160T mutation was found in all
Myanmar isolates, indicating that this mutation is related to antigenicity, which may affect
the binding ability of antibodies. These substitutions most likely resulted in antigenic
drift and the emergence of variant viruses. Furthermore, these data suggest that HA
has powerful mutation potential, possibly as a consequence of this history of strong and
repeated selection for antigenic escape.

For the NA sequences of H3N2 viruses in Myanmar between 2017 and 2019, V303I
(observed in 2017, 2018, and 2019 Myanmar isolates clade 3C.2a1b) has been reported in
A/H3N2 viruses with a low resistance to neuraminidase inhibitors [45]. Unfortunately, a
susceptibility assay for neuraminidase inhibitors was not performed in this study. More-
over, we did not detect mutations conferring resistance to neuraminidase inhibitors, such
as E119V, D151E, I222V, R224K, E276D, N249S, R292K, and R371K [46] in the NA gene
segments of the Myanmar isolates. This finding indicates that the viruses circulating in
Myanmar between 2015 and 2019 had difficulty acquiring resistance to neuraminidase
inhibitor drugs. This may be owing to the limited access to antiviral drug prescriptions
of clinicians in Myanmar. Similarly, no community-circulating strains resistant to neu-
raminidase inhibitors were reported in Thailand [39] and Canada [46] during the same
period. Simon et al. [47] demonstrated that the two most significant mutations (V263I in the
NA sequence and K196E in the NS sequence) were associated with severity and co-occurred
only in viruses from the 3C.2a1 clade. We did not detect any of these mutations in the
present study. Thus, the isolated samples collected between 2015 and 2019 in Myanmar
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may not have been associated with severe infection. We also found additional mutations
in the NA segment, such as K75R, I212V, and 176I. However, the contribution of these
mutations to resistance to neuraminidase inhibitors and their impact on viral fitness has
not been reported.

In this study, the amino acid substitutions of K158R in the PA segment and S107N in the
PB2 segment were observed in Myanmar isolates, similar to those in Thailand [39]. These
substitutions may influence the virulence of the influenza virus. There are no documented
reports, and further investigations on the transmission of these variants are needed.

We used a molecular clock approach to calculate the evolutionary rates of all the
influenza A/H3N2 virus isolates in Myanmar. A comparison of HA with PB2, PB1, PA,
NP, MP, and NS revealed that HA showed the highest rate of amino acid substitution.
The evolutionary rates of PB2, PB1, PA, HA, and NA were higher than those of other
segments in H3N2 viruses. One might expect PB2, PB1, PA, and NP to co-evolve because
of the functions of the proteins they encode. The polymerase subunits PB2, PB1, and PA
form a supramolecular complex around each NP [48]. The demonstration that the NA
segment preferentially colocalizes with the viral RNA of one viral ribonucleic protein
component supports the possibility that parallel evolution of NA with PB2, PB1, PA,
and NP could also be driven by RNA–RNA interactions, as they are involved in gene
transcription and replication [49]. Moreover, the NA and PA segments displayed higher
evolutionary rates than the other segments. Our findings are similar to those of other
studies [33,50,51]. Although the differences were minimal, PA had the highest rate of amino
acid substitutions in the polymerase complex proteins. The differences between NS1 and
the other segments were even larger, showing the lowest rate of amino acid substitutions
in the NS1 segment. The full genome of Myanmar H3N2 viruses evolved at a mean rate
of 1.95 × 10−3 mutations/site/year, indicating a slower evolution than viruses isolated in
Uganda (2.76 × 10−3 mutations/site/year; 95% HPD, 2.54 × 10−3 to 2.99 × 10−3) across
eight genes in African viruses between 2010 and 2018 [35].

The present study has some limitations. First, the samples were collected from only
two regions in Myanmar. The sequenced viruses reflected half of all A/H3N2 isolates in
this study, which may not represent the genetic diversity of influenza viruses for the entire
country. Second, some laboratory investigations of the HA assay and antiviral sensitivity
test results were waived. Furthermore, structural modeling of the H3N2 protein structure
was not possible. Third, we were not able to compare the evolutionary rates with rates
from previous studies because this study provides the first evolutionary data from the
whole genomes of influenza circulating in Myanmar. Fourth, there are limited data in this
study regarding risk factors associated with disease severity because we only included
outpatients who visited the hospitals in our study and did not conduct a population-based
study. Further studies are needed to investigate the possible mechanisms underlying
the genetic variants in the Myanmar isolates and viral replication or the role of the host
response in infections with mutant viruses.

Influenza A/H3N2 viruses undergo continuous evolution, and different lineages
have appeared [34]. The genome-wide relationship was examined by investigating the
influenza A/H3N2 virus, which continuously changes across varying times and locations
owing to drift in its phylogeny. To the best of our knowledge, this is the first molecular
study of whole-genome influenza sequences in Myanmar that focuses on the evolutionary
pattern of the genes and the relationship between genetic evolution and different seg-
ments. Whole-genome sequencing enables the use of powerful phylogenetic methods that
substantially improve phylogenetic classification. This study provides more information
for national influenza prevention and control programs regarding the timing, circulation
patterns, and transmission of seasonal epidemics.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14112414/s1: Figure S1: Phylogenetic relationship of the (HA
gene segment) 125 sequences that comprise 79 A/H3N2 isolates from Myanmar (2015–2019) and the
closest BLAST hits from different regions worldwide. The maximum likelihood tree was inferred
from 125 HA gene sequences in comparison with the Southern Hemisphere vaccine strains of known
clades recommended by the WHO (denoted in bold). Those in different colors represent Myanmar
strains. Those in black represent the global strains. Branch values > 70% are indicated at the nodes.;
Table S1: List of mutation differences in the HA gene between Myanmar 2015–2019 viruses and the
A/Texas/50/2012 vaccine strain; Table S2: List of mutation differences in the NA gene between
Myanmar 2015–2019 viruses and the vaccine strains in respective seasons; Table S3: List of mutation
differences in the PB2 gene between Myanmar 2015–2019 viruses and the vaccine strains in respective
seasons; Table S4: List of mutation differences in the PB1 gene between Myanmar 2015–2019 viruses
and the vaccine strains in respective seasons; Table S5: List of mutation differences in the PA gene
between Myanmar 2015–2019 viruses and the vaccine strains in respective seasons; Table S6: List of
mutation differences in the NP gene between Myanmar 2015–2019 viruses and the vaccine strains in
respective seasons.
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