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Abstract
Innate immune responses in general, and type I interferons (T1IFNs) in particular, play an

important and often essential role during primary viral infections, by directly combatting the

virus and by maximizing the primary adaptive immune response. Several studies have sug-

gested that T1IFNs also contribute very substantially to the secondary (recall) response;

they are thought (i) to be required to drive the early attrition of memory T cells, (ii) to support

the subsequent expansion of surviving virus-specific memory cells, and (iii) to assist in the

suppression and clearance of the infectious agent. However, many of these observations

were predicated upon models in which T1IFN signaling was interrupted prior to a primary

immune response, raising the possibility that the resulting memory cells might be intrinsi-

cally abnormal. We have directly addressed this by using an inducible-Cre model system in

which the host remains genetically-intact during the primary response to infection, and in

which T1IFN signaling can be effectively ablated prior to secondary viral challenge. We

report that, in stark contrast to primary infection, T1IFN signaling is not required during the

recall response. IFNαβR-deficient memory CD8+ and CD4+ memory T cells undergo attri-

tion and expansion with kinetics that are indistinguishable from those of receptor-sufficient

cells. Moreover, even in the absence of functional T1IFN signaling, the host’s immune

capacity to rapidly suppress, and then to eradicate, a secondary infection remains intact.

Thus, this study shows that T1IFN signaling is dispensable during the recall response to a

virus infection. Moreover, two broader implications may be drawn. First, a T cell’s require-

ment for a cytokine is highly dependent on the cell’s maturation / differentiation status. Con-

sequently, second, these data underscore the importance of evaluating a gene’s impact by

modulating its expression or function in a temporally-controllable manner.

Author Summary

Type I interferons (T1IFNs) are key pleiotropic anti-viral cytokines, necessary to effec-
tively promote and coordinate immune responses and control a number of primary viral
infections. In their absence, the expansion and later memory formation of anti-viral T cells
is severely curtailed. T1IFNs are also thought to perform a similar role during a recall
response, although whether this signaling axis is truly required is obscured by the fact that
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initial immune responses, and by extension any memory cells subsequently generated, in
the absence of these cytokines are potentially defective. Here we have employed an induc-
ible-deletion model, wherein normal responses to primary infections proceed unhindered,
and only after the successful establishment of long-term memory T cells is the common
receptor for T1IFNs, IFNαβR, deleted. We demonstrate that, unlike during primary infec-
tion, both the recall immune response and control of virus is independent of functional
T1IFN signaling. Importantly, our results highlight a need to re-evaluate the critical and
requisite determinants of a successful recall response in a temporally-controlled manner.

Introduction
The recognition of pathogen associated molecular patterns (PAMPs), including single stranded
endosomal RNA, by pattern recognition receptors such as TLR7 within virally infected cells
and/or specialized secreting cells (e.g. plasmacytoid dendritic cells) induces the production of
pro-inflammatory cytokines, including the type I interferons (T1IFNs), IFNα and IFNβ
[reviewed, 1]. Signaling through their common receptor IFNαβR to activate the Jak/Stat intra-
cellular signaling cascade [reviewed, 2], type I IFNs occupy an often critical lynchpin of pro-
ductive anti-viral responses: (i) inducing a local anti-viral state through the upregulation of
interferon stimulatory genes (ISGs) capable of limiting the replication of a broad range of
viruses within infected and neighboring cells [3] and (ii) activating and, in general, promoting
both innate and adaptive arms of the immune system [reviewed, 4,5]. The inability of IFNαβR-
deficient mice to control a myriad of viral infections, including lymphocytic choriomeningitis
virus (LCMV) [6–8], highlights the importance of an intact type I IFN signaling system in vivo.

T1IFNs directly promote dendritic cell maturation, antigen processing, and costimulation
expression [9–12], leading to greater and more potent in vitro [10,13] and in vivo [12,14] T cell
expansion and effector function. In addition, during certain viral infections T1IFN can provide a
potent “signal 3,” aiding in the activation of CD8+ T cells, even in the absence of CD4+ T cell help
[15]. Further, T1IFN also directly regulates T lymphocyte expansion and differentiation during
viral infection, as antigen-specific CD8+ T cells lacking T1IFN receptor fail to appropriately
expand in vivo during certain primary viral infections, including LCMV [16–19], in part, due to
their inability to upregulate NK cell regulatory molecules (e.g. MHC Class I, Qa-1, NCR1) and
escape NK cell dependent lysis [20,21], thereby greatly limiting (up to 100-fold) the number of
memory T cells generated. Notably, during other primary viral or intracellular bacterial infec-
tions, including vaccinia, VSV, or Listeria monocytogenes [18,22], the requirement for functional
IFNα/β signaling upon CD8+ T cells is not nearly as severe, although T1IFN still, broadly speak-
ing, promotes CD8+ T cell expansion. Whether memory CD8+ T cell function in vivo is similarly
predicated upon T1IFN signaling is not clear. Resting IFNαβR-deficient memory CD8+ T cells
are capable of degranulation and cytokine production following in vitro restimulation [19,22].
Secondary expansion and in vivo effector function of IFNαβR-deficient memory CD8+ T cells
has been shown to be curtailed during secondary infection with recombinant Vaccinia or LCMV
[20,22], whereas an additional study by Oexnius and colleagues detailed no similar deficits in sec-
ondary expansion during recombinant Vaccinia virus infection [19].

T1IFN can also prove to be detrimental towards the host or the immune system in general.
For example, IFNα/β potentiates leukopenia [23,24], and, more specifically, is a mediator of
CD8+ T cell attrition [25,26] during viral infection. Pre-exposure to IFN limits CD8+ T cell
expansion and proliferation [27], and prolonged and aberrant IFN expression has been impli-
cated in the dysregulated anti-viral responses observed during chronic, persistent viral
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infection [28,29]. Finally, T1IFN is also key to the development of immunopathology following
influenza and SARS-CoV infection [30,31] and during models of viral-induced hemorrhage
[32,33].

Since T1IFN exerts disparate and pleiotropic influences on both the immune system and
most somatic cells, conventional methods including germline and/or conditional knockout
models that would limit requisite IFN signaling during primary infection are inappropriate
means to assess whether memory responses to virus are similarly dependent upon IFNα/β-sig-
naling, since it would be impossible to separate whether an observed deficiency in secondary
immune function was the consequence of an inherent and preexisting deficit or a true reflec-
tion for concurrent IFN signaling during secondary viral infection. Here we have utilized an
inducible-Cre system to temporally delete IFNαβR from both total immune and parenchymal
cells prior to secondary viral infection. Importantly, prior to gene deletion, maturation of naïve
T cells, and their responses during and following primary viral infection, are allowed to proceed
unhindered. Thus we are able to accurately, and without bias, simultaneously evaluate whether
T1IFN influences immune responses and/or viral control during secondary viral infection.

We demonstrate that immediately following secondary viral infection both type I and II
IFNs are transiently produced, manifesting both type I and II IFN inducible gene expression
within the spleen. Surprisingly, inducible, tamoxifen-mediated deletion of T1IFN receptor sig-
naling during secondary viral infection did not affect the attrition, expansion, quality, or rees-
tablishment of virus-specific memory CD8+ T cells. Furthermore, viral control was not
abrogated in either the spleen or the liver, demonstrating that a functional T1IFN system is not
required for either secondary immune responses or containment of viral replication.

Results

Functional type I and II interferons are expressed in response to
secondary viral infection
We evaluated the production, and biological activities, of interferons in the hours immediately
following secondary viral infection. Long-term LCMV immune mice (>6 weeks post primary
LCMV-Arm) were rechallenged with LCMV, and plasma was collected prior to, and at the indi-
cated times following, the secondary infection; IFNα and IFNγ levels were assessed via ELISA or
multiplex assay. Within 12 hours of secondary viral infection, both IFNα and IFNγ became read-
ily detectable within the plasma of infected mice. Thereafter, the expression of both of these cyto-
kines waned dramatically, and within 48–60 hours of infection IFNγ and IFNα were
undetectable within the plasma (Fig 1A and 1B). We were unable to detect any IFNβ throughout
the course of secondary viral infection. We next determined whether these transient pulses of
type I & II IFNs triggered the expression of interferon-inducible genes. Spleens were taken from
sham infected LCMV-immune mice, and from LCMV-infected mice at 12 hours p.i., the peak of
peripheral IFNα and IFNγ expression. RNA was extracted and subjected to PCR array analysis.
Both type I (e.g. MX1, IFIT1-3, Oas1a, & IRF7) and type II (e.g. CXCL10 & IRF1) interferon-
inducible genes were significantly upregulated within 12 hours of secondary LCMV infection
(Fig 1C). Therefore, during secondary viral infection, type I and II interferons are rapidly but
transiently induced, and upregulate the expression of their target genes.

Tamoxifen-treated naïve Cre+IFNαβRf/f mount primary responses that
are similar to those reported for conventional IFNαβR knockout animals
T1IFN signaling is required to control many primary viral infections in vivo [6,7], and the
absence of IFNαβR from virus-specific T cells compromises their in vivo expansion; this is true
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for both naive and memory T cells during a number of viral infections [16,17,20,21]. However,
the reported defects in memory cell expansion could have resulted from their having developed
(i) from receptor-deficient naïve / primary cells and (ii) in an environment lacking T1IFN sig-
naling. To better determine the impact of T1IFN signaling upon recall responses, we developed
a model in which IFNαβR ablation could be induced in vivo at any time selected by the

Fig 1. Functional type I and II interferons are expressed in response to secondary viral infection.
LCMV-immune mice were rechallenged with 2x106 PFU LCMV-Arm and (A) IFNα and (B) IFNγ levels in the
plasma were assessed via ELISA or multiplex, respectively (n = 5 per time point). (C) Type I and type II ISG
expression was quantified by PCR array in the spleens of LCMV-immune mice at 12 hours p.i., and the data
were normalized to equivalent analyses of sham infected mice (sham n = 6, 12 hrs n = 4).

doi:10.1371/journal.ppat.1005861.g001
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investigator. Using this approach, the mice are genetically intact prior to, and during, primary
infection, ensuring that the resulting memory T cells are developmentally normal; then,
IFNαβR ablation can be induced prior to secondary challenge. To this end, UBC-Cre-ERT2
mice, expressing a tamoxifen sensitive variant of cre recombinase under the control of the
human ubiquitin C promoter, were bred with IFNαβRfl/fl mice, generating UBC-Cre-ERT2+-

IFNαβRfl/fl and control littermate UBC-Cre-ERT2-IFNαβRfl/fl mice. We considered it impor-
tant to first test the validity of the model, and did so by evaluating the outcome of primary
virus infection in naïve mice that had been treated with tamoxifen. In Cre+ recipients, tamoxi-
fen exposure should ablate IFNαβR expression, and these mice should recapitulate the pub-
lished findings with conventional germline IFNαβR knockout mice [6,7,16,17,20,21], which
are unable to control primary viral infection, and in which the expansion of virus-specific T
cells is severely compromised. Therefore (Fig 2A), naïve UBC-Cre-ERT2+IFNαβRfl/fl mice, and
their Cre- littermates, were treated with tamoxifen and, several weeks later, were challenged
with LCMV-Arm. Seven days p.i., LCMV-specific T cells were enumerated by standard intra-
cellular cytokine staining. UBC-Cre-ERT2+ mice were found to have markedly-diminished
CD8+ T cell responses compared to their tamoxifen-treated Cre- counterparts. Representative
responses to the viral GP33 epitope in individual Cre- and Cre+ mice are shown, demonstrating
a marked reduction in the proportion of CD8+ T cells that have responded to this epitope (Fig
2B), and cumulative data for this, and two other, LCMV CD8+ T cell epitopes revealed
>10-fold lower numbers of cells in Cre+ animals (Fig 2C). Similar data were observed for
GP61-80 specific CD4

+ T cells (Fig 2D and 2E). Finally, these reductions in T cell responses
were accompanied by greatly elevated (~100 fold) levels of viral RNA in the spleens of tamoxi-
fen-pretreated Cre+ mice, when compared to drug-treated Cre- littermates (Fig 2F).

Widespread and efficient deletion of IFNαβR in vivo following tamoxifen
activation of Cre-ERT2
The above data indicate that tamoxifen-driven IFNαβR deletion is sufficiently effective to func-
tionally recapitulate the impact of a complete genetic knockout during primary viral infection.
Thus, we began our evaluation of drug-induced IFNαβR deletion in long-term immune mice.
As indicated in Fig 3A, genetically intact Cre+ and Cre- IFNαβRf/f mice were infected with
LCMV, and were allowed to develop a normal T cell memory pool; then, these long-term
LCMV-immune animals were injected with tamoxifen. Several weeks later we assessed the
overall in vivo efficiency of tamoxifen-induced deletion of IFNαβR, by various criteria. First,
genomic DNA was isolated from purified splenocytes, lymph nodes, liver, heart, kidney, lung,
and brain. The status of the IFNαβRf/f locus was assessed using PCR primers that flank the
loxP sites and, in all of the tissues analyzed, near-complete (brain) or complete (other tissues)
deletion of IFNαβR was observed (Fig 3B). Next we determined the efficacy of tamoxifen-
mediated Cre activation in T lymphocytes. Cre+ and Cre- IFNαβRf/fzsGreen+/wt mice, gener-
ated as described in materials and methods, were infected with LCMV and allowed to develop
into long-term immune mice. Tamoxifen was administered and, two weeks later, CD4+ and
CD8+ T cells were evaluated for zsGreen expression. In Cre- mice, as expected, CD8+ memory
T cells specific for each of the three indicated epitopes were identified, and the cells did not
express zsGreen (Fig 3C, left column). In contrast, in Cre+ animals (right column)>90% of
CD8+ T cells expressed zsGreen, demonstrating that Cre activity is widespread in that cell pop-
ulation (the percentage of zsGreen+ cells in each population is shown as a red numeral). More-
over, the ability of tamoxifen to drive Cre enzymatic activity on cellular DNA was not affected
by the immunological status of the T cell. The proportion of reporter-expressing cells among
all CD8+ T cells in the long-term immune Cre+ mice (“no peptide”, which will include CD8+ T
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Fig 2. Tamoxifen-treated naïve Cre+IFNαβRf/f mount primary responses that are similar to those reported for conventional
IFNαβR knockout animals. (A) LCMV naive UBC-Cre-ERT2+IFNαβRfl/fl and UBC-Cre-ERT2-IFNαβRfl/fl mice were injected with
tamoxifen and ~9 weeks later were given a primary infection with LCMV. Seven days p.i., virus specific CD8+ (B & C) and CD4+ (D &
E) T cells were identified and quantified via standard intracellular staining. For each cell type, representative contour plots from
individual mice are shown (B & D), followed by cumulative data from all animals (C & E). (F) LCMV vRNA was quantified within the
spleens of Cre+ and Cre- mice (n = 2).

doi:10.1371/journal.ppat.1005861.g002
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Fig 3. Widespread and efficient deletion of IFNαβR in vivo following tamoxifen activation of Cre-ERT2. (A)
LCMV immune UBC-Cre-ERT2+IFNαβRfl/fl and UBC-Cre-ERT2-IFNαβRfl/fl mice were injected with tamoxifen,
and the indicated analyses were carried out. (B) The efficiency of deletion at the DNA level was assessed by PCR
analysis of genomic DNA extracted from the indicated tissues; M = markers; Splns = splenocytes; LN = lymph
nodes; x = empty lane. 1144bp = floxed allele, 309bp = deleted allele. (C & D) The efficiency of Cre activation in T
cells of LCMV-immune mice was determined. Cre+ or Cre- IFNαβRf/fzsGreen+/wt mice were injected with
tamoxifen and, two weeks later, splenocytes were harvested and incubated with each of the four indicated
peptides, and virus-specific T cells were identified using standard intracellular cytokine staining for IFNγ. zsGreen
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cells that are not LCMV-specific) was ~95.3% [94.8/(4.65 + 94.8)], and a very similar propor-
tion of epitope-specific CD8+ T cells were reporter-positive: e.g., 93.7% of GP33-responsive
(IFNγ+) cells [6.19/(0.417 + 6.19)] expressed zsGreen. CD4+ T cells presented a similar picture
(Fig 3D); in Cre+ mice, the vast majority of cells expressed zsGreen, in both total cells (96.9%),
and in cells specific for the LCMV GP61-80 MHC class II epitope (94.8%). Finally, and most
importantly, we determined whether Cre activity, and deletion at the level of genomic DNA,
resulted in the functional ablation of T1IFN signaling. Splenocytes were isolated, and stimu-
lated in vitro with rIFNβ. As shown in Fig 3E, almost all CD8+ T cells from tamoxifen-treated
Cre- mice responded to IFNβ stimulation, as judged by increased levels of phosphorylated
Stat1. In contrast, zsGreen-expressing CD8+ T cells from Cre+ mice failed to upregulate phos-
pho-Stat1 following IFNβ exposure. In summary, tamoxifen treatment of UBC-Cre-ERT2
+ mice results in the widespread deletion of IFNαβR, both within peripheral organs and
LCMV-specific memory T cells. Moreover, the Cre-mediated removal of IFNαβR quickly ren-
ders the memory T cells incapable of responding to T1IFN.

IFNαβR deletion prior to secondary viral infection does not limit LCMV-
specific T cell attrition or the expression of MHC Class I & Qa-1 in vivo
In the absence of T1IFN signaling, CD8+ T cells fail to sufficiently upregulate NK inhibitory
receptors, such as MHC Class I and Qa-1, during primary viral infections, and therefore
become subject to NK cell mediated lysis, limiting their in vivo expansion [20,21]. In addition,
T1IFN has been shown to promote the attrition of memory CD8+ T cells, in particular, during
either viral infection or poly IC injection [26,34]. To determine whether the deletion of
IFNαβR from normal memory T cells prior to secondary viral infection would limit T cell attri-
tion and/or abrogate MHC class I or Qa-1 expression, LCMV-immune UBC-Cre-ERT2+ and
UBC-Cre-ERT2- IFNαβRfl/fl mice were treated with tamoxifen, then rechallenged with
LCMV-Arm, as outlined in Fig 4A, or given a sham infection. Splenocytes were harvested at
the indicated hours p.i., and LCMV specific CD8+ and CD4+ T cells were identified and enu-
merated using standard intracellular cytokine staining (Fig 4B and 4C) or Class I tetramers
(Fig 4D–4G). As we have previously observed [35], immediately following viral infection the
absolute number of LCMV specific CD8+ and CD4+ memory T cells within the spleen rapidly
declines; after 24 hours, virus specific T cells were reduced approximately 4- to 10-fold in Cre-
mice (Fig 4B and 4C, white bars). Contrary to the predictions based on published studies using
conventional KO mice, cells lacking the IFNαβR (Cre+/black bars) contracted to very similar
extents, indicating that memory T cell attrition does not depend upon T1IFN signaling. We
next assessed whether the absence of IFNαβR limited MHC Class I and/or Qa-1 expression
upon virus specific CD8+ T cells during the first 24 hours of secondary viral infection. Resting
IFNαβR sufficient (Cre-) and IFNαβR deficient (Cre+) DbGP33-41

+ or DbNP396-404
+ specific

memory CD8+ T cells expressed limited Qa-1 (Fig 4D and 4E, 0 time point). Immediately fol-
lowing viral infection, at 12 and 24 hours p.i., Qa-1 was significantly upregulated upon both
LCMV specific memory CD8+ T cell populations, and, additionally, Qa-1 expression was not
reliant upon IFNαβR signaling; both Cre- (white bars) and Cre+ (black bars) CD8+ T cells
expressed similar levels of Qa-1 throughout the first 24 hours of infection (Fig 4D & 4E).

expression also was evaluated. The red numbers indicate zsGreen+ cells as a percentage of all CD8+ T cells (No
Peptide groups) or of virus-specific (i.e, IFNγ+) cells (peptide-stimulated groups). (C) Gated on CD8+ T cells and
(D) gated on CD4+ T cells. (E) The efficiency with which Cre activation resulted in ablation of IFNαβR biological
function was determined, by measuring Stat 1 phosphorylation after in vitro incubation with IFNβ. ZsGreen+CD8+

T cells from Cre+ mice were compared to CD8+ T cells from Cre- animals. Grey histograms = isotype control
antibody. Mouse numbers: C & D, n = 6–7; E, n = 4.

doi:10.1371/journal.ppat.1005861.g003
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Fig 4. IFNαβR deletion prior to secondary viral infection does not limit LCMV-specific T cell attrition or the expression of
MHC Class I & Qa-1 in vivo. (A) LCMV immune UBC-CreERT2+ and UBC-Cre-ERT2-IFNαβRfl/fl mice were tamoxifen injected
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Similarly, MHC Class I (H2-Kb) expression was also comparably increased upon both Cre+ and
Cre- DbGP33-41

+ and Db
NP396-404

+ specific memory CD8+ T cells in the hours following viral
infection (Fig 4F & 4G). Therefore, deletion of IFNαβR from previously-normal virus specific
memory T cells does not spare them from attrition during secondary viral infection, and the
cells remain capable of upregulating Qa-1 and MHC Class I.

Secondary expansion, long term maintenance, and qualitative changes
of memory CD8+ and CD4+ T cells are not reliant upon T1IFN signaling
Previous reports, using conventional IFNαβR knockout mice or adoptively-transferred
IFNαβR-deficient CD8+ T cells, have documented severe deficits in the ability of IFNαβR defi-
cient memory CD8+ T cells to undergo secondary expansion [20,22], and this was attributed to
their failure to escape NK cell mediated attenuation [20]. Since we observed no deficit in MHC
Class I or Qa-1 expression on memory CD8+ T cells following secondary viral infection in our
inducible model, we next evaluated the secondary expansion of these IFNαβR-deficient cells,
determined their capacity to establish secondary memory T cells. LCMV immune Cre+ and
Cre- IFNαβRf/f were generated, treated with tamoxifen, and exposed to secondary LCMV infec-
tion as in Fig 4A, and five timepoints thereafter, immunodominant virus-specific CD8+ (Fig
5A–5C) and CD4+ (Fig 5D) T cells were enumerated. At each time point, mice were sacrificed
(4–11 per group per time point), and virus-specific cells were enumerated. No difference in
attrition (day 2 p.i.), secondary expansion (days 5 & 10 p.i.) or the establishment of long-term
2° memory (days 14 & 23 p.i.) was observed, for either CD8+ or CD4+ memory T cells (Fig 5).
Although we observed no deficit in the total numbers of virus-specific T cells across the course
of the secondary response, we reasoned that the quality of the virus specific T cells might never-
theless have been impacted in the absence of T1IFN signaling. We therefore assessed the pro-
portion of LCMV-specific CD8+ and CD4+ T cells capable of producing IFNγ, TNF, and/or IL-
2 following in vitro peptide stimulation. We have previously shown that virus specific memory
T cells become predominantly monofunctional (capable of producing only one cytokine) soon
after secondary viral infection, and their multifunctionality (i.e., their ability to rapidly produce
2–3 cytokines) is restored over the following 2–3 weeks [35,36]. As expected, these findings are
recapitulated, for both CD8+ and CD4+ T cells, in the genetically-intact mice in this study (Cre-

mice in Fig 5E and 5F). The increased monofunctionality at days 2 & 5 p.i. is demonstrated by
the increasing size of the black segment, and the concomitant shrinkage of the grey and white
areas; and the opposite occurs at days 14 and 23 p.i., indicating the gradual reappearance of
multifunctionality. More importantly, these qualitative changes were almost identical, both in
kinetics and in extent, in the absence of functional IFNαβR (Cre+ mice in Fig 5E and 5F). Thus,
the overall kinetics and relative quality of memory T cell responses to secondary viral reactiva-
tion appear to be independent of T1IFN signaling.

Reporter-negative (IFNαβR-intact) CD8+ or CD4+ memory T cells do not
preferentially expand during the recall response
The above data show conclusively that, over the entire course of the recall response, the num-
bers and quality of virus-specific T cells present in Cre+ and Cre- mice are almost identical.

and rechallenged with LCMV or given a sham injection. LCMV-specific (B) CD8+ and (C) CD4+ T cells were quantified via
standard intracellular cytokine staining at the indicated times p.i. (D & E) Qa-1 and (F & G) MHC Class I expression was
measured upon DbGP33-41

+ (left column) and DbNP396-404
+ (right column). Shown in panels D & F are representative histograms

(gated on DbGP33-41
+ CD8+ T cells). Data in B, C, E, & G are summations of 2 independent experiments (n = 4–7). Significance

was determined via two-way ANOVA with Sidak correction (**** p<0.0001, *** p<0.001, ** p<0.01, * p<0.05).

doi:10.1371/journal.ppat.1005861.g004
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Fig 5. Secondary expansion, long termmaintenance, and qualitative changes of memory CD8+ and
CD4+ T cells are not reliant upon T1IFN signaling. LCMV-immune UBC-Cre-ERT2+ and UBC-Cre-
ERT2-IFNαβRfl/fl mice were injected with tamoxifen and later rechallenged with LCMV. (A-C) CD8+ and (D)
CD4+ T cells specific for the indicated LCMV immunodominant epitope were identified and quantified within
the spleen at the indicated times post infection, using standard intracellular cytokine staining. Data are a
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However, it is formally possible that this outcome could have resulted from the selective expan-
sion, in Cre+ mice, of the small proportion of virus-specific memory T cells (~5%, see Fig 3C
and 3D) that had escaped tamoxifen-driven Cre activity. In this scenario, these putative
IFNαβR-expressing cells in Cre+ mice would, over time, come to predominate the pool of the
virus-specific T cells. To assess this, we again exploited Cre reporter (zsGreen) mice. LCMV-
immune Cre+ IFNαβRf/f mice were generated, treated with tamoxifen, and subjected to second-
ary LCMV infection (as described in Fig 3A) and, at the indicated time points p.i., mice were
sacrificed and zsGreen-positive and -negative virus-specific CD8+ and CD4+ T cells were enu-
merated using intracellular cytokine staining (Fig 6). Representative contour plots from day 23
p.i. data for CD8+ and for CD4+ T cells are shown (Fig 6A and 6B respectively). For all epi-
topes,>90% of the responding (i.e., IFNγ+) cells were zsGreen+, suggesting that zsGreen-nega-
tive cells (which should presumably express functional IFNαβR) did not have a marked
selective advantage over the course of the recall response. This conclusion is strengthened by
cumulative data, from multiple mice at various time points throughout secondary infection
(C-F); all of the responding CD8+ and CD4+ populations maintained a high, and stable, pro-
portion of zsGreen-expressing cells. Finally, we further considered the possibility that, in indi-
vidual T cells, Cre-reporter activation may not always be accompanied by the deletion of
IFNαβR. In that case, zsGreen expression would not invariably reflect the IFNαβR status of the
T cell, which would complicate the interpretation of the data in panels A-F. However, if this
were the case, and if IFNαβR provided a selective advantage, one would expect to see increasing
numbers of zsGreen-positive T cells that remained functionally receptive to T1IFNs. We evalu-
ated this over the course of the recall response (Fig 6G), and saw no significant increase in the
IFNβ-responsiveness of zsGreen+ T cells. Together, the data in Fig 5 and Fig 6 provide strong
support for our assertion that T1IFN signaling plays little or no role in supporting the attrition,
secondary expansion, or stable secondary memory formation of memory T cells.

Reduced T1IFN-inducible gene expression does not limit viral control
within the spleen or liver during secondary viral infection
Lastly, we determined the ability of tamoxifen-treated Cre+ mice to control the secondary
LCMV challenge. Published data suggest that their ability to do so may be compromised, for at
least two reasons. First, T1IFNs are a key component of the innate response, and act by trigger-
ing the expression of a large number of interferon-stimulated genes (ISGs), many of which are
antiviral. However, in our model, tamoxifen-induced Cre activation of LCMV-immune mice
leads to widespread ablation of IFNαβR (Fig 3), which should limit the capacity of these innate
cytokines to stimulate ISG expression. Second, the IFNαβR-deficient memory cells–although
exhibiting normal kinetics of attrition, expansion, and secondary memory formation (Fig 5)–
may themselves be dysfunctional: previous work has indicated that adoptively-transferred
memory CD8+ T cells derived from naïve IFNαβR-deficient TCR transgenic cells were unable
to control secondary LCMV infection [22]. We first compared the extent of ISG expression at
day 1 following secondary infection of tamoxifen-treated LCMV-immune Cre+ and Cre-

IFNαβRf/f mice (Fig 7A). Type I dependent ISGs known to be capable of directly limiting viral
replication [3,37] were significantly elevated in the spleens of Cre- mice, relative to Cre+ mice,

summation of five independent experiments; each dot represents an individual mouse (at each time point,
n = 4–11 per group). (E & F) The ability of CD8+ (E) and CD4+ (F) memory T cells to produce IFNγ, TNF, and
IL-2 was examined using a standard ICCS assay at days 2, 5, 14, and 23 following secondary challenge. The
loss of multifunctionality in memory cells soon after secondary infection, and its gradual restoration, are
shown by the relative proportion, at each time point, of cells that are capable of producing one, two or three
cytokines (black, grey and white segments, respectively).

doi:10.1371/journal.ppat.1005861.g005
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Fig 6. Reporter-negative (IFNαβR-intact) CD8+ or CD4+memory T cells do not preferentially expand during the recall
response. As described in Fig 3A, LCMV-immune Cre reporter (zsGreen) mice were generated, treated with tamoxifen, and
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with very high levels of statistical significance; type II interferon associated ISG expression–
with the exception of Ifi35 –were similar in Cre+ and Cre- infected mice. To determine the
impact of IFNαβR ablation on viral control, we used qPCR to quantitate LCMV viral RNA in
the spleens (Fig 7B) and livers (Fig 7C) of LCMV infected Cre+ and Cre- mice at the indicated
time points following secondary challenge. Regardless of IFNαβR status, LCMV vRNA was
cleared from both organs at near-equivalent rates. Strikingly, no statistically-significant differ-
ences were observed even at early (0.5 and 1 day p.i.) times, when T1IFNs would be expected to
exert the greatest anti-viral effect. Moreover, complete viral clearance appeared to be achieved
in the Cre+ mice; no viral recrudescence was observed as late as>3 weeks after secondary chal-
lenge. Thus, antigen-specific CD8+ and CD4+ T cells can mount protective antiviral recall
responses that are independent of IFNα/β signaling; this is consistent with their similar kinetics
of expansion (Fig 5) and their ability to escape NK cell mediated lysis through the upregulation
of MHC class I and Qa-1 (Fig 4).

Discussion
T1IFN is a well-established mediator of anti-viral immunity during primary infection, directly
limiting viral replication by upregulating ISGs in many somatic cells, and activating and regu-
lating the innate and adaptive arms of the immune system [1–5]. The role of these cytokines
during the recall response is far less well-characterized, but extant studies have proposed that
T1IFNs also influence the responses of memory T cells [reviewed, 38]. However, those studies
relied on memory cells that had been generated during a primary infection of T1IFN-deficient
mice, or from receptor-deficient precursor T cells, and one can conceive of at least two ways in
which these techniques might have affected the memory cells’ development: first, directly–the
cells will not receive direct T1IFN signals; and, second, indirectly–virus and antigen load will
be abnormally high, and prolonged, during primary infection in T1IFN-deficient animals,
potentially modulating the maturation of virus-specific cells. Herein, we have employed an
inducible deletion model in which both of these potential confounders are nullified. The pri-
mary viral infection, and the corresponding immune response, are entirely normal; only after
memory cells are established (>6 weeks following the primary infection) is IFNαβR inducibly
deleted.

During secondary LCMV infection, IFNα and IFNγ are transiently produced during the
first 24 hours of infection (Fig 1). We [35,39] and others [40] have previously reported the
transient burst of IFNγ by CD8+ T cells in response to homologous and heterologous second-
ary viral infection; the focus of the present study was on T1IFN. Relative to primary LCMV
infection [28], peak levels of IFNα during secondary LCMV infection are substantially reduced
but remain sufficient to drive the significant upregulation of a number of T1IFN dependent
ISGs in the spleen at 12 hours p.i. (Fig 1C); these findings validated our investigation of the
impact of these cytokines on memory T cells. We developed a tamoxifen-sensitive inducible
system to delete IFNαβR from all cells and demonstrated that, during primary viral infection

subjected to secondary LCMV infection. Mice were sacrificed, and virus-specific CD8+ and CD4+ T cells were enumerated using
intracellular cytokine staining, and evaluated for zsGreen expression, days 0, 2, 5 & 23 following the secondary infection.
Representative epitope-specific responses in individual mice are shown. Cells were harvested at day 23 following secondary
infection, and are gated on (A) CD8+ T cells or (B) CD4+ T cells. Numbers represent the proportion of the gated cells in each
quadrant. (C-F) Cumulative data showing the proportion of zsGreen-positive cells at the indicated time points over the course of the
recall response, in each of the four epitope-specific T cell populations. (G) At the indicated time points, splenocytes from Cre+ mice
were exposed in vitro to IFNβ, and levels of pSTAT expression were evaluated. Representative plots are shown, gated on CD8 and
zsGreen. The rightmost panel is a positive control, showing the responsiveness to IFNβ of day 23 post-secondary CD8+ T cells from
Cre- animals. Grey histograms = isotype control antibody.

doi:10.1371/journal.ppat.1005861.g006
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(Fig 2), T cells in mice that had been pre-treated with tamoxifen failed to appropriately expand,
and the mice were unable to control the viral infection. These data largely recapitulated pub-
lished studies using either conventional IFNαβR knockout mice, or recipients of transferred
IFNαβR knockout CD8+ T cells [6,7,16,17,20,21], providing additional validation for our
model. The profound biological impact of tamoxifen administration also indicated not only
that in vivo Cre-mediated deletion of floxed IFNαβR DNAmust be efficient, but also that it
must have led to the rapid and widespread loss of any existing functional IFNαβR. These obser-
vations were confirmed by our analyses of tamoxifen-treated LCMV-immune mice (Fig 3), in
which IFNαβR deletion was near-complete in genomic DNA extracted from all tested tissues,
and in which Cre activity was demonstrable in the vast majority of CD8+ and CD4+ T cells as

Fig 7. Reduced T1IFN-inducible gene expression does not limit viral control within the spleen or liver during secondary viral
infection. (A) Type I and II ISG expression at 1 day post-secondary LCMV infection was assessed via PCR array, in LCMV-immune
tamoxifen-treated Cre+ and Cre- IFNαβRf/f mice (Cre+ n = 5, Cre- n = 6). Relative expression (Cre- /Cre+) is shown for each ISG, together
with statistical significance. (B & C) LCMVRNA was quantified by qPCR in the spleens (B) and livers (C) of Cre+ and Cre-IFNαβRfl/fl

mice at the indicated times following secondary challenge. Data are summations of two (A & C) and five (B) independent experiments.
Each dot in panel B & C represents an individual mouse.

doi:10.1371/journal.ppat.1005861.g007
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shown by the use of a zsGreen reporter line. Most importantly, we confirmed that the genetic
disruption of IFNαβR was accompanied by the rapid cessation of receptor function; Cre
reporter+ CD8+ T cells were unable to phosphorylate Stat1 in response to in vitro IFNβ stimu-
lation (Fig 3E).

Several studies have shown that T1IFNs can cause a loss of antigen-specific and nonspecific
memory (and to a lesser extent naïve) CD8+ T cells during viral infection in vivo, in a process
termed attrition [25,26,34]. We have previously confirmed that attrition occurs [35], and Fig
4B shows that a large proportion of LCMV-specific memory CD8+ T cells are, indeed, lost
from the spleen within the first 24 hours of secondary LCMV infection. However, and to our
surprise, the ablation of IFNαβR from normal memory T cells prior to the secondary viral
infection did not prevent this attrition, indicating that an alternative pathway(s) must be con-
tribute to the process; we speculate that this may be driven by CD8+ T cell derived IFNγ, which
is produced in the hours immediately following secondary viral infection (Fig 1) [35]. In addi-
tion to being involved in attrition, direct IFNα/β signaling leads to the specific upregulation of
MHC Class I and Qa-1 on CD8+ T cells during in vitro stimulation and/or primary viral infec-
tion in vivo, and the failure to appropriately upregulate these and other inhibitory molecules
allows the cells to be attacked by NK cells, limiting the expansion of the virus-specific CD8+ T
cells [21]. Qa-1, the mouse analog of human HLA-E, acts as an external readout for intracellu-
lar MHC class I processing [41], binding to the inhibitory receptor NKG2a [42] and suppress-
ing NK cell activation [43]. LCMV-specific IFNαβR-deficient memory CD8+ T cells
upregulated both MHC class I and Qa-1 in vivo (Fig 4D–4G), suggesting that NK-mediated
killing may not contribute to the cells’ rapid attrition; moreover, this upregulation occurred in
both Cre- and Cre+ mice, indicating that the expression of MHC Class I and Qa-1 by memory
CD8+ T cells also can occur independently of IFNα/β signaling. In summary, multiple studies
have shown that both T cell attrition and the upregulation of MHC class I & Qa-1 can be trig-
gered by T1IFN, but our data indicate that there is functional redundancy in memory T cells
which allows these changes to take place even when IFNαβR signaling is abrogated. We infer,
from the existence of this redundancy, that these biological events–attrition, and upregulation
of protective molecules–may play a key role in ensuring a balanced and appropriate memory T
cell response.

More detailed analyses of the kinetics of the secondary T cell responses (Fig 5) confirmed
that attrition (day 2) was unaffected by ablation of IFNαβR, and also showed that the subse-
quent expansion of the T cells, their ability to produce multiple cytokines, and their entry into
secondary memory, were both entirely normal in IFNαβR-ablated animals. This is in stark con-
trast to the primary immune response, in which T1IFN signaling plays a key supporting role in
T cell expansion, and provides a powerful selective pressure favoring effector CD8+ T cells that
bear the receptor [16,17,20,21]. We considered the possibility that such pressures may have
promoted the selective expansion of the few memory cells that had evaded tamoxifen-induced
Cre activation prior to secondary LCMV infection; theoretically, this could have provided an
alternative explanation for why IFNαβR-sufficient (Cre-) and IFNαβR-ablated (Cre+) animals
had near-identical numbers of virus-specific cells over the course of the recall response. How-
ever, the proportion of zsGreen-positive cells remained stable over time (Fig 6), furthering
reinforcing our conclusion that all phases of the CD8+ and CD4+ virus specific recall response
are independent of T1IFN signaling. These findings are discordant with published data using
conventional knockout mice, in which memory cells were reliant on T1IFN signaling. We pro-
pose that those memory cells, which had developed in an environment devoid of T1IFN signal-
ing, were intrinsically abnormal; indeed, it is possible that even their naïve precursors were, in
some unknown way, defective. Finally, we evaluated the importance of T1IFN signaling during
secondary virus infection. Compared to naïve mice, LCMV-immune mice rapidly control viral
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replication, and significant differences in viral RNA are detectable within as few as 6 hours of
infection [35]. T1IFNs are rapidly expressed during the recall response (Fig 1) [28], so it was
possible that these cytokines might have contributed to this antiviral effect. Conceivably, they
could have done so in two ways, by (i) upregulating ISG expression in somatic cells and/or (ii)
promoting the effector functions of virus-specific T cells, a suggestion supported by previous
work showing that the antiviral effector function of IFNαβR-deficient memory CD8+ T cells is
defective in vivo [22]. Therefore, we questioned whether the de novo ablation of IFNα/β signal-
ing prior to secondary infection would inhibit the control of LCMV in the spleen and the liver.
We found that the inducible deletion of IFNαβR had no significant impact on the containment
and ultimate clearance of a secondary viral infection (Fig 7B and 7C). Additionally, viral recru-
descence was undetectable as late as 23 days p.i. Thus, we contend that–contrary to current
thinking–T1IFN signaling is not required for the secondary response to viral infection, neither
regulating the attrition, expansion, and secondary memory formation of memory CD8+ and
CD4+ T cells, nor being required for establishing an antiviral state within host parenchymal
cells. It is possible that, in the absence of T1IFN signaling, other inflammatory cytokines may
contribute to supporting these key biological functions.

Two additional points are worthy of consideration. First, it has been known for some time
that memory T cells can very rapidly suppress viral replication. Viral RNAs are one of the
major instigators of the T1IFN response, and we recently showed that–when compared to
naïve mice–a reduction in RNA levels was detectable as early as 6 hours p.i. in LCMV-immune
mice, and there was a>100-fold reduction in viral RNA by 12 hours after LCMV challenge
[35]. Thus, the recall response very quickly prevents the accumulation of molecules that drive
T1IFN production; in that light, it makes good evolutionary sense that the recall response
should not rely on T1IFNs, and should be effective in its absence. Second, in recent years the
concept of “innate memory” has come to the fore. Our findings suggest that T1IFNs are not
required for the control or eradication of secondary viral challenge.

How might these observations relate to human immune responses and viral diseases?
Genetic deficiencies in IFNγ signaling (and related pathways) are increasingly being identified;
perhaps surprisingly, sufferers are not particularly susceptible to most viral infections, instead
being vulnerable to infection by mycobacteria [44]. To date, fewer defects in T1IFN responses
(and related pathways) have been reported in humans, and we speculate that such deficiencies
may be extremely rare because they confer a dramatic evolutionary disadvantage, by rendering
the victims open to severe primary viral infections. Nevertheless, there are some examples, in
humans, of mutations that disrupt T1IFN responses. Homozygous mutation in IRF7 led to a
near-fatal infection by influenza virus [45], while mutations in TLR3 [46] and in several other
T1IFN-related genes [47] markedly increase the risk of herpes simplex encephalitis (HSE).
This condition can be treated with acyclovir, and, although fatal in some individuals, the
majority survive, albeit usually with neurological sequelae. However, and notably, it appears
that the survivors are not at high risk for HSE recurrence; we speculate that the therapeutic
intervention led to the rapid suppression of the primary infection, allowing these patients to
develop memory T cell responses; thereafter, these patients are, in essence, phenotypically simi-
lar to our LCMV-immune, tamoxifen-treated Cre+ mice; despite being unable to respond to
T1IFN signaling, they are protected against secondary exposure to the virus.

In conclusion, we show here that T1IFNs are dispensable during a secondary viral infection.
This finding contrasts with published studies, and we suggest that this discrepancy has broad
implications. Many–indeed almost all–analyses of how individual genes contribute to memory
T cell responses have relied on approaches in which the knockout is either present in the germ-
line (conventional KO), or is conditional (e.g., Cre is expressed from a cell-specific promoter),
and, in almost all of those cases, the genetic defect is present prior to the primary infection.
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Using these approaches to study IFNαβR, defective expansion by memory T cells was observed;
it was inferred, therefore, that the memory T cell response–like that of their primary counter-
parts–must benefit from T1IFN signaling. However, our data strongly suggest that the memory
cells upon which those inferences depend are intrinsically abnormal, presumably because they
arose and developed in the absence of T1IFN signaling, and, therefore, such memory cells can-
not reliably be used to assess how individual genes affect the recall T cell response. Thus, we
contend that it is vital that the evaluation of any gene’s contribution to secondary (and subse-
quent) immune responses should employ an approach that does not compromise the very
response from which those memory cells arise.

Materials and Methods

Ethics statement
All animal experiments were approved by The Scripps Research Institute (TSRI) Institutional
Animal Care and Use Committee and were carried out in accordance with the National Insti-
tutes of Health’s Guide for the Care and Use of Laboratory Animals.

Mice, virus, & Cre activation
C57BL/6J mice were purchased from the TSRI rodent breeding colony. Transgenic inducible
Cre mice under the control of the human ubiquitin promoter (B6-UBC-Cre-ERT2, JAX
008085) [48] and IFNαβRfl/fl mice [49] were crossed together to generate UBC-Cre-ERT2+

IFNαβRfl/fl (referred to as Cre+IFNαβRfl/fl). To generate LCMV-immune mice, Cre+IFNαβRfl/fl

and control littermate Cre-IFNαβRfl/fl mice were challenged with 2x105 PFU LCMV-Arm
(Armstrong strain) intraperitoneally (i.p.).>6 weeks following LCMV infection, Cre+ and
Cre- mice were injected with 3 successive, daily i.p. doses of 2mg of tamoxifen dissolved in
corn oil. At least two weeks were allowed to elapse after tamoxifen injection before the Cre+

IFNαβRfl/fl and Cre-IFNαβRfl/fl mice were rechallenged with LCMV-Arm (2x106 PFU i.p.). For
experiments using a Cre reporter, IFNαβRfl/fl mice were crossed and backcrossed with zsGreen
Cre-reporter mice (B6.Cg-Gt(ROSA)26Sortm6(CAG-ZsGreen1)Hze/J, JAX 007906 [50]) to generate
doubly-homozygous IFNαβRf/fzsGreen+/+ animals. These mice were crossed against Cre+

IFNαβRfl/fl animals, providing F1 mice that were all IFNαβRf/fzsGreen+/wt, and were either
Cre+ or Cre-. Two weeks following tamoxifen administration, flow cytometry was used to iden-
tify T cells in which Cre activity had occurred, indicated by zsGreen expression. Mice were gen-
otyped with the following primers (5’-3’): UBC-Cre-ERT2 (F) GCC AGC TAA ACA TGC
TTC ATC GT & (R) CGC GGC AAC ACC ATT TTT TCT GA, IFNαβRfl/fl (F) AAG CTC
CTT GCT GCT ATC TG & (R) CAC ACC AGG CTT CTA ATG TC, and Cre-Reporter (WT
F) AAG GGA GCT GCA GTG GAG TA, (WT R) CCG AAA ATC TGT GGG AAG TC, (Tg F)
AAC CAG AAG TGG CAC CTG AC, & (Tg R) GGC ATT AAA GCA GCG TAT CC. To
assess UBC-Cre-ERT2 mediated deletion of IFNαβR, genomic DNA was extracted from vari-
ous tissues using Qiagen DNeasy Blood & Tissue Kit, then used as a PCR template with the
above IFNαβRfl/fl primer set. These primers flank both loxp sites and exon 10 of IFNαβR,
thereby discriminating between WT, floxed, and deleted alleles. Analysis of IFNαβR deletion
was routinely carried out for every mouse in this study.

Measurement of IFNα & IFNγ
LCMV-immune (>6 weeks p.i.) C57BL/6 mice were rechallenged with 2x106 PFU LCMV-Arm
ip, and blood was collected at the indicated times following secondary LCMV infection. Plasma
was isolated using K3-EDTA coated microvette tubes (Starstedt, Nümbrecht, DEU), aliquoted,
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and stored at -80°C. Interferon alpha levels within plasma were assessed using Verikine Mouse
Interferon Alpha ELISA kit (PBL Assay Science, Piscataway, NJ), and interferon gamma was
determined by LEGENDplex Mouse Inflammation panel multiplex (Biolegend, San Diego,
CA) according to manufacturer instructions.

PCR array and quantitative PCR
Interferon stimulatory gene expression within the spleens of wildtype C57BL/6 and Cre+ and
Cre-IFNαβRfl/fl mice was quantified via Mouse Interferons & receptors PCR Array (PAMM-
064Z, SA Biosciences, Frederick, MD) according to manufacturer instructions. Copies of
LCMV vRNA within the spleens of Cre+ and Cre- were assessed using reverse transcriptase
real time PCR (qPCR) as previously described [35,51].

Flow cytometry
Single cell suspensions of splenocytes were obtained from mechanically disrupted and red
blood cell lysed spleens. Dead cells were identified and excluded using Zombie NIR Fixable
Viability Kit (Biolegend). After Fc-blocking with anti-CD16/32 (BD Biosciences, San Diego,
Ca), splenocytes were immunophenotyped with the following fluorescently conjugated anti-
bodies to cell surface markers (Biolegend) CD8α (53–6.7), CD4 (RM4-5), CD44 (1M7), H2Kb
(AF6-88.5), & Qa-1 (6A8.6F10.1A6, Milteyi Biotec, Bergisch Gladbach, DEU). MHC-Class I
tetramers specific for DbGP33-41 and D

bNP396-404 were provided by NIH Tetramer Core Facil-
ity (Emory University, Atlanta, GA). Appropriately conjugated isotype-control antibodies were
used in all experiments. Samples were acquired on a BD Biosciences LSR-II and analyzed using
FlowJo (Treestar, Ashland, OR).

Standard (indirect) intracellular cytokine staining
As previously described [35], 2x106 splenocytes were incubated for 6 hours directly ex vivo
with GolgiPlug (BD Biosciences) and 1μM of the CD8+ epitopes GP33-41, NP396-404, or GP276-
286 or 10µM of the CD4+ epitope GP61-80. Stimulated splenocytes were subsequently washed,
stained with viability dye, Fc-blocked, and surface stained with CD4, CD8α, & CD44 as above.
After surface staining, splenocytes were washed, fixed with Cytofix/Cytoperm (BD Biosciences)
and resuspended in 1X PermWash (BD Biosciences). Intracellular cytokines were identified
with fluorescently conjugated antibodies to IFNγ (XMG1.2). Unstimulated (no peptide) cul-
tured splenocytes were used to identify antigen-specific cytokine production.

In vitro IFNβ stimulation
4x106 splenocytes were stimulated for 25 minutes directly ex vivo with or without 104U/ml of
recombinant mammalian IFNβ (PBL Assay Science). After stimulation, splenocytes were
washed in cold FACS Buffer (1x PBS pH 7.4, 2% FBS, 0.1% Na Azide), fixed with Cytofix/Cyto-
perm (BD Biosciences), Fc blocked, stained for CD8α as above, permeabilized with Perm
Buffer III (BD Biosciences), and phosphorylated Stat1 (pY701) was identified using fluores-
cently conjugated antibodies (4a, BD Biosciences). The functional deletion of IFNαβR signaling
was assessed for all mice presented in this study.

Statistical analysis
Significant differences were assessed via one or two way ANOVA with Sidak correction where
appropriate, and results were considered significant if P<0.05 (Prism 7, Graphpad, San Diego,
CA).
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