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Summary

Whole genome sequencing (WGS) brings comprehensive insights to cancer genome interpretation. 

To explore clinical value of WGS, we sequenced 254 triple negative breast cancers (TNBC) with 

associated treatment and outcome data collected between 2010-2015 via the population-based 

Sweden Cancerome Analysis Network-Breast (SCAN-B) project (ClinicalTrials.gov 

ID:NCT02306096). Applying the HRDetect mutational-signature-based algorithm to classify 

tumors, 59% were predicted to have Homologous-recombination-repair deficiency (HRDetect-

high): 67% explained by germline/somatic mutations of BRCA1/BRCA2, BRCA1 promoter 

hypermethylation, RAD51C hypermethylation or biallelic loss of PALB2. A novel mechanism of 

BRCA1 abrogation was discovered via germline SINE-VNTR-Alu retrotransposition. HRDetect 

provided independent prognostic information, with HRDetect-high patients having better outcome 

on adjuvant chemotherapy for invasive disease-free survival (Hazard Ratio, HR=0.42, 95% 

confidence interval, CI=0.2-0.87), and distant relapse-free interval (HR=0.31, CI=0.13-0.76) 

compared to HRDetect-low, regardless of whether a genetic/epigenetic cause was identified. 

HRDetect-intermediate, some possessing potentially targetable biological abnormalities, had 

poorest outcomes. HRDetect-low cancers also had inadequate outcomes: ~4.7% were mismatch-

repair-deficient - another targetable defect, not typically sought; and was enriched for (but not 

restricted to) PIK3CA/AKT1 pathway abnormalities. New treatment options need to be considered 

for now-discernible HRDetect-intermediate and HRDetect-low categories. This population-based 

study advocates for WGS of TNBC to better inform trial stratification and improve clinical 

decision-making.

Introduction

Recent advances in sequencing technology1 have significantly reduced sequencing costs. 

Cancer whole genome sequencing (WGS) is now feasible, with thousands of matched 

tumor-normal pairs successfully sequenced to date, revealing novel biological insights2–4. 

Yet, for WGS to become adopted clinically, systematic demonstrations of utility in well-

characterised population-based studies and validation in clinical trials are required.

The Sweden Cancerome Analysis Network – Breast (SCAN-B; ClinicalTrials.gov identifier 

NCT02306096)5 is an on-going population-based observational study currently involving 

nine hospitals in the South of Sweden serving nearly two million inhabitants or ~20% of the 

Swedish population. All patients with suspected breast cancer are offered recruitment 

without exception. Connection to national cancer registries ensures availability of excellent 
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clinical and outcome data. High inclusion rates of ~85% have resulted in >13,500 patients 

recruited since 2010. Tissue samples are taken via standard clinical diagnostic pathways 

without special dispensation. Outcomes from research on SCAN-B patients thus reflect real-

world population medicine (Extended Data 1).

To gauge WGS value in a clinical setting and capturing sufficient outcome information, we 

defined a recruitment period of September 1 2010 to March 31 2015 in the Skåne healthcare 

region serving ~1.3 million inhabitants. We focused on an area of unmet clinical need: triple 

negative breast cancer (TNBC) (estrogen-receptor [ER], progesterone-receptor [PR], human 

epidermal receptor growth factor 2/erythroblastic oncogene B [HER2/ERBB2]-negative)6,7, 

historically associated with poor clinical outcomes6,7. 4665 patients were registered with 

invasive breast cancer in that period. Nine percent (n=408) were TNBCs, consistent with 

national TNBC incidence (~9% in 2015). 340 had enrolled into SCAN-B. Clinical re-review 

and availability of material for genomic/transcriptomic sequencing left 254 cases for 

matched tumor-normal WGS/RNAseq analysis (170 at 30-fold and 84 at 15-fold sequence 

depth) (Figure 1). Among 254 patients, 2.4% had metastatic disease at diagnosis, and 6.7% 

received neoadjuvant treatment.

237 (93%) had WGS data of sufficient quality for comprehensive genomic profiling. Failure 

rate was influenced by sequencing depth: of cases sequenced to 30-fold depth, 3% failed, 

whereas 11% of cases failed when sequenced to 15-fold coverage. SCAN-B fresh-tissue 

procurement is fully-integrated into routine clinical diagnostics across participating 

healthcare institutions5. Failure rates of ~3% thus provide true estimates of 30-fold WGS 

success in a clinical context, without preselection for tumor cellularity. 15-fold coverage for 

clinical WGS is unlikely to be adequate.

Predicted somatic driver mutations, pathogenic germline mutations and somatic mutational 

signatures were obtained, together with regions of copy number loss, gain and loss of 

heterozygosity (LOH). These genomic features in the SCAN-B TNBC cohort were 

comparable to a previously reported WGS cohort8 (Extended Data 2). To assess additional 

benefits of WGS-based stratification, we applied a mutational-signature-based algorithm, 

HRDetect9 designed to detect “BRCA”ness or Homologous-recombination-repair deficiency 

(HRD)10, using default breast-cancer-specific parameters. More than half of TNBCs 

(58.6%) were classified as HRDetect-high (exceeding predefined score of 0.7, predictive of 

BRCA1/BRCA2-deficiency9). 35.9% were classified as HRDetect-low (score <0.2), 5.5% 

fell within an HRD-intermediate category (score 0.2-0.7) (Figure 2A).

To compare customary breast cancer stratification methods with HRDetect, we examined 

age, grade and gene expression phenotypes (e.g. PAM5011, CIT12, IC1013, TNBCtype14) in 

this cohort. HRDetect-high classification was enriched in expected subgroups such as young 

patients (88.5% of women <50 years), high-grade tumors and a basal-like expression 

subtype (PAM50 basal-like11, CIT basal-like12, IC10 IntClust 1013, and TNBCtype basal-

like 114) (Supplementary Table S1, Figure 2A). However, HRDetect-high scores were also 

observed in tumors with ER-staining (62.1% of cases with 1-10% ER-staining intensity), in 

middle-aged patients (58% of HRDetect-high were 50-70 years) and older patients (>70 

years, 36.4% HRDetect-high cases), as well as tumors with non-basal-like gene expression 
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profiles (Supplementary Table S1). Consequently, the HRD phenotype identified by 

HRDetect is enriched for but not restricted to typical basal-like tumors characteristic of 

young patients in TNBC. The corollary is also true - expression-based profiling (e.g., 

PAM50) and Integrative Clusters13,15 are not adequately able to discriminate HRDetect 

groups, suggesting that HRDetect provides a novel, independent angle to TNBC 

stratification.

Previously, Substitution Signature 3 and specific patterns of copy number aberrations 

(CNAs; “genomic scars”) have been used to infer a HRD phenotype10,16. However, choosing 

a Signature 3 cut-off is challenging as this signature has a featureless, flat profile, where 

mutations are often mis-assigned. The CNA-based “HRD assay” has a designated cut-off of 

4210. When compared with HRDetect as reference, the “HRD assay” has a false negative 

rate of 13%, and 16% of CNA-based HRD-high cases were false positives. HRDetect is 

therefore more specific than current substitution signature and CNA approaches, while 

extending identification of HRD to a wider set of samples revealing tumors that are likely 

inactivated by ways other than classical mechanisms (Figure 2B).

Next, to comprehensively understand the causes of HRDetect-high scores, we examined 

germline and somatic mutation status of BRCA1, BRCA2, a set of 163 additional HR-

related or breast cancer susceptibility genes (Supplementary Data Table), and status of 

remaining wild-type parental allele in all samples. Systematic promoter hypermethylation by 

pyrosequencing of BRCA1 and RAD51C was also performed.

Of 139 HRDetect-high cases, 29 (21%) confirmed biallelic loss of BRCA1 or BRCA2 (i.e., 

20 germline and 9 somatic with LOH of the wild-type parental allele) and 55 (40%) had 

BRCA1 hypermethylation with loss of the other parental allele (Figure 2A, note one case 

with concurrent BRCA2 biallelic alteration and BRCA1 hypermethylation). There were no 

instances of a dominantly inherited 5’ UTR variant causing methylation-associated BRCA1 

silencing17.

Five tumors had pathogenic germline PALB2 variants, three cases with c.509_510delGA 

variant (two biallelic, one monoallelic), one c.3239_3240delAA variant, one c.1039G>T 

variant. Four had wild-type allele inactivation through somatic pathogenic mutation in three 

cases and loss-of-heterozygosity in one instance. Five RAD51C hypermethylation cases 

were also observed with concomitant marked downregulation of RAD51C mRNA 

expression (Wilcoxon-test p=0.0001). Intriguingly, the four biallelic PALB2 and five 

RAD51C cases (6.5% of HRDetect-high cases) consistently showed a BRCA2-null 

phenotype16 including elevated Substitution Signature 3, elevated Rearrangement Signatures 

2 and 5, and no Rearrangement Signature 3 (Figures 2A, 3A-D, Supplementary Data Table), 

evidenced also by principal component analysis of HRDetect components (Figure 3E). 

PALB2, RAD51C and BRCA2 are involved in a complex that stimulates strand invasion of 

the RAD51 nucleoprotein filament18,19, a critical step in HR-related repair. Thus, their 

BRCA2-like profiles may be explained by these molecular relationships.

Causes for HRDetect-high scores in the remaining 46 (33%) samples were unclear. Six were 

monoallelic for BRCA1/BRCA2 and had low tumor cellularity. RAD51 and PALB2 
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pyrosequencing did not reveal positive findings. Mobile Element analysis for 11 HR genes 

(ATM, BARD1, BRCA1, BRCA2, BRIP1, CHEK2, MRE11, NBN, PALB2, RAD51C, 

RAD51D) identified a germline SINE-VNTR-Alu (SVA) retrotransposon 1.8kb downstream 

of the first coding exon of BRCA1 in one patient, PD35958a. This specific mobile element 

has not been reported in the 1000 genomes dataset. Moreover, wild-type allele LOH was 

noted and BRCA1 expression was markedly reduced. SVA elements have been reported as 

disease-causing20, but not in BRCA1. Thus, this observation may indicate a potential novel 

mechanism of germline BRCA1 abrogation.

Fourteen new pathogenic germline BRCA1/BRCA2 variants were identified, in addition to 

the 12 hitherto known variants, raising clinical genetic counselling implications. In Sweden, 

re-contacting patients/families based on BRCA1/BRCA2 incidental findings has been 

perceived positively21 supporting the added value that tumor-directed WGS brings to family 

counselling.

To seek distinguishing features between different HRDetect groups, we examined driver 

alterations. HRDetect-high and HRDetect-intermediate cases tended towards more driver 

amplifications (e.g. MYC and MCL1) than HRDetect-low (Extended Data 3). Eight 

substitution/indel driver genes were enriched, albeit non-discriminatory between groups 

(TP53, PTEN, ARID1B, MLLT4 for HRDetect-high, PIK3CA and AKT1 for HRDetect-low, 

and RB1 and FBXW7 for HRDetect-high and HRDetect-intermediate) (Chi-square test 

p<0.05, Extended Data 3). Of interest, PTEN driver mutations and activating PIK3CA and 

AKT1 mutations are differently enriched between HRDetect-high and HRDetect-low 

groups: (29% versus 14% for PTEN, 2.2% versus 25% for PIK3CA, and 0.7% versus 7.1% 

for AKT1 for HRDetect-high versus HRDetect-low, respectively). Thus, PIK3CA/AKT1/

PTEN pathway dysregulation is not restricted to a particular HRDetect group. This has 

potential implications for patient selection in clinical trials using PI3K-AKT-mTOR pathway 

agents, as mis-stratifying patients based on single mutations may affect clinical trial success.

To investigate whether HRDetect groups were simply genetic portraits of traditional 

transcriptional TNBC subgroups, we performed unsupervised group discovery and machine-

learning based supervised classification using matched RNAseq data (Extended Data 4). 

Two approaches of unsupervised consensus clustering were used. Neither was able to find 

distinct transcriptional patterns distinguishing HRDetect-high and HRDetect-low groups 

(Extended Data 4A-E). Likewise, exhaustive machine-learning-based exploration could also 

not achieve high prediction accuracy for HRDetect-high and HRDetect-low subgroups 

(Extended Data 4F-G). Further, tumor-infiltrating-lymphocytes (TILs) are increasingly 

implicated as a predictor of relapse in breast cancer. We examined CD8/CD3/CD4 and 

CD247 infiltration using matched transcriptomic data for all patients in this cohort. None 

was differentially expressed between HRDetect groups (Kruskal-Wallis p>0.05, Extended 

Data 4H). Together this implies that the mutational-signature-based algorithm HRDetect 

captures distinctive, pathognomonic phenotypes of TNBC that are not apparent at bulk tissue 

transcriptional level.

HRDetect categorizes tumors differently to customary TNBC classifiers. We thus evaluated 

whether HRDetect’s signature-based stratification had prognostic potential. TNBC patients 
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that did not receive adjuvant treatment due to age and/or poor performance status were 

considered a particular subgroup and assessed separately (Supplementary Table S2). For 

these patients, there were no differences observed in overall survival (OS), invasive disease-

free survival (IDFS), or distant relapse-free interval (DRFI) between HRDetect-high and 

HRDetect-low categories (log-rank p>0.05).

In distinct analyses of patients that received standard-of-care adjuvant chemotherapy 

(typically FEC±docetaxel, Supplementary Data Table), patients with HRDetect-high tumors 

significantly improved IDFS and DRFI (log-rank p=0.009 and p=0.01) compared to those 

with HRDetect-low tumors (Figures 4A-B). An improved OS was also observed (log-rank 

p=0.06, Figure 4C), albeit non-significant because of limited follow-up interval. This 

suggests that TNBC patients with HRDetect-high scores have a higher degree of 

chemosensitivity than HRDetect-low cases and are worth identifying.

Strikingly, chemotherapy-treated HRDetect-low patients had a similar IDFS to patients that 

did not receive adjuvant chemotherapy, in spite of superior fitness and lower age of 

diagnosis (75% <70 years) (Figures 4D-E). Soberingly, this suggests that HRDetect-low 

cases are deriving limited benefit from current standard-of-care, warranting a re-appraisal of 

systemic therapies for this now-identifiable subgroup with poor outcome.

To test independent prognostic value of HRDetect in patients receiving adjuvant 

chemotherapy, we performed multivariable Cox regression, adjusting for tumor size 

(≤20mm, >20mm), patient age (<50, ≥50 years), tumor grade (1, 2, 3), and lymph node 

status (N0, N+). We found that HRDetect classification amongst chemotherapy-treated 

patients provided independent prognostic information favouring a better outcome in 

HRDetect-high cases compared to HRDetect-low cases, for IDFS (Hazard ratio, HR=0.42, 

95% confidence interval, CI=0.20-0.87) and DRFI (HR=0.31, CI=0.13-0.76). Although not 

significant for OS (HR=0.46, CI=0.19-1.13), it implies a potential effect with longer follow-

up time (60% of the chemotherapy-treated cases had ≤5 years follow-up).

Notably, within the HRDetect-high group, we observed no difference in patient outcomes 

(OS, IDFS, DRFI) between cases with confirmed BRCA1/BRCA2 loss and cases where it 

was not possible to confirm genetic/epigenetic abrogation of these genes (log-rank p=0.79, 

0.51, 0.67, respectively, Figure 4F). Lending further credence, survival analysis excluding 

known BRCA1/BRCA2 cases showed that HRDetect-high classification remained 

significantly associated with improved IDFS in remaining patients (log-rank p=0.008, 

multivariable Cox regression HR=0.41, CI=0.19-0.91, p=0.03). BRCA1/BRCA2 abrogated 

status was next added as a covariate to the multivariable Cox regression. HRDetect 

classification persisted as a meaningful independent positive prognostic indicator for IDFS 

(HR=0.38, CI=0.17-0.85, p=0.02). This strengthens the argument that even in the absence of 

confirmation of the genetic/epigenetic aetiology, the mutational signature-based approach is 

capable of predicting potential clinical benefit for adjuvant chemotherapy. Critically, it 

expands the number of TNBC patients eligible for treatment strategies targeting DNA repair 

mechanisms such as PARP inhibitors22,27.
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We note that four HRDetect-low patients (4.7%) had mismatch-repair deficient (MMRd) 

tumors23 (Extended Data 5). One occurred in association with HRD. Despite lack of genetic/

epigenetic confirmation of MMR abrogation in these cases, independent analyses by protein 

immunohistochemistry (IHC) confirmed tumor-cell-specific loss of MLH1 and PMS2 

expression in all cases (Extended Data 5). This is of particular interest, as checkpoint 

inhibitors have been FDA-approved for MMRd in the metastatic setting irrespective of 

tumor of origin, emphasising the therapeutically valuable incidental insights that can be 

obtained via a WGS-based approach.

Finally, we explored the HRDetect-intermediate cohort (scores 0.2-0.7, n=13, 5.5%). We 

noted that 83.5% of HRDetect-high tumors had scores exceeding 0.99, and nearly all were 

BRCA1/BRCA2-null tumors. Additionally, based on mutational, indel and rearrangement 

signature patterns, cases with HRDetect-intermediate scores had different characteristics 

(Figure 2A).

We thus broadened the HRDetect-intermediate category to scores between 0.1-0.9 (n=32). 

Driver alterations and mutational signatures for the re-defined groups were examined in a 

new analysis (Extended Data 6). The broadened HRDetect-intermediate group had high 

prevalence of driver amplifications (75%, 24/32 cases) and harbored 47% of all CCNE1 
amplifications. CCNE1 was the most enriched amplification constituting 25% of all 

amplifications in this new intermediate group. This is interesting, as CCNE1 is implicated in 

oncogene-induced replicative stress24,25. The intermediate category is also enriched for 

hypermutators of a rearrangement signature of long tandem-duplications (RS1) (where RS1 

is predominant, exceeding 100 RS1 rearrangements)26. This pattern has been shown in 

prostate cancer26, and in ovarian27,28 cancer associated with CDK12 mutations. CCNE1 and 

CDK12 over-expression has been shown to deregulate cell cycle progression and disrupt 

DNA replication during S phase in vitro29,30. Recently, inhibitors of replication stress 

response such as Wee1 kinase inhibitors, ATR inhibitors and CHK1-inhibitors were 

developed targeting tumors with hallmarks of replication stress31 and CCNE1 

overexpression was reported to sensitize TNBCs to these compounds32. When assessing 

outcomes, the broadened intermediate group showed poorer IDFS regardless of whether the 

patients received adjuvant chemotherapy or not (Extended Data 6). Therefore, the 

HRDetect-intermediate group is a subset of tumors that are difficult to distinguish using 

customary genomic scar approaches or individual substitution signatures but are important 

to recognize because their idiosyncratic tumor biology is a harbinger of poor outcome and 

may be differently targetable in terms of therapeutics.

This population-based study of TNBC in a routine diagnostic setting demonstrates what can 

be revealed by WGS. We surmise that it is valuable to identify HRDetect status whether 

high, intermediate or low: all groups are informative. Combinations of targeted-sequencing, 

MSI-assays and CNA approaches may be used increasingly. However, the value of holistic 

WGS as a single assay is reinforced when we consider three matters. First, patients may be 

mis-classified based on individual mutations. For example, we show that PIK3CA/AKT1/
PTEN mutations identified through targeted sequencing are differentially enriched in 

HRDetect categories, with different survival likelihoods. Using mutations alone to stratify 

patients should thus be carefully considered in clinical trials. Second, it is possible to 
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identify poor responders to current standard-of-care that cannot be detected by any other 

method. The HRDetect low category has many more patients than would be detected by 

binary PIK3CA/AKT1/PTEN targeted assays alone. These limited assays will also not 

identify the HRDetect-intermediate category, an interesting now-detectable subset in which 

to explore alternative therapeutic strategies. Third, limited sequencing assays will miss the 

substantial proportion of tumors with HRD signatures that do not have genetic/epigenetic 

drivers but are predicted to have good outcomes. In short, this study argues for WGS to 

improve TNBC patient stratification.

Online Methods

A reporting summary of methods and analysis steps are found in the “Life Sciences 

Reporting Summary” document.

Ethics approval and consent to participate

The SCAN-B study was approved by the Regional Ethical Review Board in Lund, Sweden 

(applicable registration numbers 2009/658, 2015/277, 2016/742, 2018/267, and 2019/01252 

for this study). All patients provided written informed consent prior to enrolment.

Patient cohort

In Sweden, the definition of TNBC is a tumor with ≤10% of cells with IHC-staining for ER 

and PR (thus including tumors with 1-10% stained cells) and an IHC HER2-staining score < 

2, or for patients with IHC 2+ a non-amplified ISH-status. During September 1 2010 to 

March 31 2015, 408 patients were diagnosed with TNBC (localized or advanced disease 

with specified treatment status) in the Skåne healthcare region in southern Sweden, 

Scandinavia, based on data from the Swedish national breast cancer quality registry (NKBC) 

(Figure 1). 340 of these patients were enrolled in the SCAN-B study5,33,34 

(ClinicalTrials.gov ID NCT02306096), which is a prospective, observational, population-

based cohort study, from which 254 with concurrent RNAseq were selected for extensive 

clinical review and WGS. Of reviewed cases, 153 (60%) patients were eligible for OS/IDFS 

survival analysis after standard of care adjuvant chemotherapy (FEC-based [combination of 

5 fluorouracil, epirubicin, and cyclophosphamide] ± a taxane in 96% of cases) according to 

national guidelines. Of these (irrespective of clinical endpoint status), 41% had ≥5 years of 

follow-up, 25% 4-5 years, 31% 2-4 years, and 4% <2 years of follow-up. 148 of 153 patients 

(97%) were eligible for relapse analysis, of which 20% developed a relapse of some type 

(loco-regional or distant). Remaining cases received either neoadjuvant treatment, no 

adjuvant treatment (n=58), or were not treated in an adjuvant context (e.g. metastatic disease 

at diagnosis). As part of routine oncogenetic clinical screening, 49 of 254 recruited patients 

were previously screened for pathogenic germline variants in BRCA1 and BRCA2, with 12 

positive findings (nine BRCA1- and three BRCA2-carriers). Patient cohort characteristics, 

enrolled SCAN-B patients, WGS analysed SCAN-B patients, and WGS analysed SCAN-B 

treatment subsets are described in Supplementary Table S2. Individual patient characteristics 

are provided in the Supplementary Data Table.
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Tissue sampling, DNA and RNA extraction

Fresh tumor samples preserved in RNAlater (Qiagen, Hilden, Germany) were obtained in 

conjunction with routine clinical sampling by a diagnostic pathologist in regional pathology 

departments (see 5). RNA and DNA were extracted using the Qiagen Allprep extraction kit 

(Qiagen) as described33. DNA from whole blood was extracted by the Labmedicin Skåne 

Biobank.

Whole genome sequencing

WGS of TNBCs were performed using Illumina sequencing technology to achieve average 

coverage of 15-30 fold depth as previously described in matched tumor-normal samples8. 

Each patient was sequenced only once. Patients that received adjuvant chemotherapy were 

primarily selected for 30X coverage, whereas untreated patients were sequenced to 15-fold 

depth. WGS data quality, basic data analysis, variant calling, Mobile Element analysis, and 

HRD classification by the HRDetect algorithm were performed as outlined8,9 

(Supplementary Information). HRDetect classification was verified for known BRCA1/

BRCA2-deficient cases versus tumor cellularity by WGS or pathology estimation for both 

30-fold and 15-fold sequencing depth (Extended Data 7) to demonstrate that there was no 

systematic bias as a result of sequencing coverage or tumor cellularity.

DNA promoter methylation analysis

DNA promoter hypermethylation analysis of bisulfite treated DNA for specific CpG 

promoter sites in BRCA1, RAD51C, RAD51, and PALB2 was performed as described 

(Supplementary Information).

Gene expression analyses

Gene expression profiling of all TNBCs were performed using RNA sequencing as 

described33 and data has been reported elsewhere35. Molecular subtype classification 

according to PAM50 (by AIMS)11, IC1015, CIT12, and reported TNBC subtypes 

(TNBCtype)14,36, unsupervised clustering and machine-learning based supervised 

classification were performed as described (Supplementary Information).

Statistical analyses

Survival analyses were performed in R (ver 3.3.0) using the survival package with overall 

survival (OS), invasive disease-free survival (IDFS), or distant relapse-free interval (DRFI), 

as endpoints defined according with the STEEP criteria37 (see Supplementary Information 

for endpoint definitions and analysis exclusion criteria). Survival curves were compared 

using Kaplan-Meier estimates and the log-rank test. Hazard ratios were calculated through 

univariable or multivariable Cox regression using the coxph R function. Harrell’s C-index 

was computed using the dynpred R package. Statistical comparisons between groups were 

performed using Wilcoxon’s or Kruskal-Wallis tests for numerical values, or Chi-square test 

for ordinal values. All p-values reported from statistical tests are two-sided if not otherwise 

specified. Box-plot elements correspond to: i) center line = median, ii) box limits = upper 

and lower quartiles, iii) whiskers = 1.5x interquartile range
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Extended Data
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Extended Data Fig. 1. Sweden Cancerome Analysis Network - Breast (SCAN-B).
In the Skåne healthcare region (Region Skåne) four main hospitals are participating in the 

SCAN-B study: Lund, Malmö, Helsingborg, and Kristianstad. (A) SCAN-B overall 

enrolment rate at all participating hospitals, including Skåne healthcare region, during 

September 1 2010 to March 31 2015, corresponding to the same time period from which the 

TNBC cases in the current study were selected. The statistics are restricted to the seven 

hospitals were enrolment was operational from the start in 2010. (B) Overall accrual rate per 

quarter of a year (Q1-Q4) for the SCAN-B study since the start in 2010 Q4 up until 2018 
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Q1. Red line corresponds to the cumulative number of enrolled patients, reaching nearly 

12000 in 2018 Q1. (C) Illustration of the population-based nature of the SCAN-B study for 

primary resectable breast cancer. Based on data from the national breast cancer quality 

registry in Sweden (NKBC), a background population of primary resectable breast cancers 

from the entire SCAN-B catchment region during September 1 2010 to March 31 2015 was 

identified (same time period from which the TNBC cases in the current study were selected), 

comprising of 8587 patients. Of these 8587 patients, 5417 were enrolled in SCAN-B, with 

3520 patients having RNA sequencing data passing basic quality criteria. The lower panels 

demonstrate the clinicopathological characteristics of the different subgroups in the consort 

diagram, demonstrating the representativity of the end RNA sequencing cohort compared to 

all enrolled SCAN-B patients and the total patient population in the catchment region. To 

note, the RNA sequencing cohort has a slightly lower inclusion of smaller tumors, due to 

that the SCAN-B tissue sampling is performed by a pathologist after enough tissue has been 

secured for routine diagnostics. (D) Demonstration of the year to year representativity of 

molecular subtypes in breast cancer (PAM50, top panel) and administered treatments based 

on data from the NKBC (lower panel) for patients identified in D. The bars show patients in 

the RNA sequencing cohort from D, stratified by year of diagnosis (all patients diagnosed a 

particular year are included). PAM50 subtyping was performed using the AIMS method 

(Paquet et al.) (as for the TNBC cases in the current study) as this classifier is a single 

sample classifier that does not rely on a mean centering of gene expression data across a 

cohort (thus is not sensitive to e.g. potential bias in year to year inclusion). ACT: adjuvant 

chemotherapy.
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Extended Data Fig. 2. Similar genomic characteristics of SCAN-B TNBC cases compared to 
previously reported WGS analysed TNBCs
(A) Comparison of copy number alterations (CNA) as defined by Nik-Zainal et al. (Nature, 

2016) in the 237 SCAN-B TNBC cases versus 162 TNBC cases from Nik-Zainal et al. (one 

case of 163 cases in total not analyzed). Frequencies below 0 means frequency of copy 

number loss. (B) Comparison of frequency of LOH defined as in Nik-Zainal et al. between 

the same SCAN-B cases and Nik-Zainal et al. TNBC cases. (C) Comparison of copy 

number neutral (cnn) LOH defined as in Nik-Zainal et al. between the same set of samples. 

Staaf et al. Page 13

Nat Med. Author manuscript; available in PMC 2019 November 17.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



(D) Comparison of the frequency of driver gene amplifications between the same set of 

samples. Only amplifications matched in both cohorts are displayed. Driver gene list was 

obtained from Nik-Zainal et al. (E) Comparison of the frequency of homozygous deletions 

based on ASCAT data, as described in Nik-Zainal et al., between the same set of samples. 

Only deletions matched in both cohorts showed. (F) Frequency of somatic substitutions and 

indels for driver genes from Nik-Zainal et al. in the two cohorts. Only genes with >1% 

mutation frequency in Nik-Zainal is displayed. (G) Exposure to mutation substitution 

signatures as defined in Nik-Zainal et al. for the same set of samples. Line corresponds to a 

1:1 relationship. (H) Exposure to rearrangement signatures (RS1-RS6) as defined in Nik-

Zainal et al. for the same set of samples. Line corresponds to a 1:1 relationship.
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Extended Data Fig. 3. Clinicopathological and genomic characteristics of HRDetect groups
(A) Expression of the checkpoint proliferation (left), steroid (center), and basal (right) 

metagene from Fredlund et al. (Breast Cancer Research, 2012) across HRDetect groups 

stratified by BRCA-status. HRDetect-inter: intermediate subgroup. BRCA1pm: BRCA1 
promoter hypermethylated. BRCAgerm: BRCA1/2 germline carriers. BRCAsom: BRCA1/2 
somatic cases. (B) Distribution of patient age (left), Ki67 staining (%, center) and clinical 

grade (right) across the same groups (same set of patient numbers). (C) Distribution of 

number of detected substitutions (left), indels (center), and rearrangements (right) for the 
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same groups limited to cases with 30X sequence coverage. Two-sided p-values were 

calculated using Kruskal-Wallis test. (D) Frequency of the genome altered by copy number 

gain and loss (CN-FGA, left), LOH (LOH-FGA, center), and copy number neutral LOH 

(cnnLOH-FGA, right) defined as in Nik-Zainal et al. (Nature, 2016). (E) Frequency of copy 

number gain (above zero centerline) and copy number loss across the genome for HRDetect-

high tumors versus HRDetect-low tumors defined as in Nik-Zainal et al. HRDetect-

intermediate tumors omitted due to small numbers. (F) Frequency of amplification of driver 

genes from Nik-Zainal et al. (Nature, 2016) across HRDetect groups (left) and putative 

homozygous deletions (HD) called using ASCAT (right) as defined in Nik-Zainal et al. (G) 

Comparison of somatic mutation frequency (substitutions, indels & curated rearrangements) 

for driver genes from Nik-Zainal et al. versus HRDetect groups. Two-sided p-values 

calculated using the Chi-square test. (H) Violin plot of the distribution of Rearrangement 

Signature (RS) proportions per sample defined in Nik-Zainal et al. versus HRDetect groups 

for patients with at least 20 called rearrangements. Violin plot line elements correspond to: i) 

center line = median, ii) thick limits = upper and lower quartiles, iii) whiskers = 1.5x 

interquartile range.

In all box-plots the top axis shows the number of patients in each group. Box-plot elements 

correspond to: i) center line = median, ii) box limits = upper and lower quartiles, iii) 

whiskers = 1.5x interquartile range.

Kruskal: Kruskal-Wallis test. ChiSq: Chi-square test. All calculated p-values are two-sided.
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Extended Data Fig. 4. Unsupervised and supervised gene expression analyses versus HRDetect 
groups
In all analyses, raw expression data (FPKM) was offset by addition of +0.1, followed by 

log2 transformation prior to further analyzes. Only RefSeq annotated genes were used. 232 

cases with gene expression were included in all analyses. In all consensus cluster analyses, 

clustering was performed using pearson correlation and ward.d2 linkage, with 2000 

repetitions using the R ConsensusClusterPlus package. For PCA analyses pItem=0.8, and 

pFeature=0.98 were used in the consensus cluster function. For non-PCA analyses 
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corresponding values were 0.8 and 0.8. (A) Consensus clustering of PCA components from 

PCA analysis of 19102 genes using a 2-group solution. Heatmap to the left shows 

consensus, with blue color indicating that samples often cluster together across repetitions 

(rows = samples = columns). Bars to the right show proportion of HRDetect groups in 

different consensus clusters according to the legend. PCA captures all variation in the data in 

different principal componets, on which clustering was performed. (B) Same as in A, but for 

a 3-group consensus solution. (C) Same as in A but for a 4-group solution. (D) Consensus 

clustering performed on 16364 genes with mean-centered log2 data as input (i.e. no PCA). 

HRDetect-high implies probabilities >0.7, HRDetect-low probabilities <0.2, i.e. according to 

main manuscript definitions. Heatmaps show the percentage of samples for a group in 

respective consensus clusters (x-axis), across different cluster solutions = y-axis. E.g., for 

HRDetect-high cases (left heatmap) using a k=2 solution, >70% of these tumors are located 

in cluster 1, together with 40-70% of HRDetect-low samples (as seen in right heatmap). (E) 

Same visualization as in D, but now for 6776 genes with a standard deviation >0.6. (F) 

Supervised prediction of HRDetect-high (prob >0.7) and HRDetect-low (prob<0.2) 

according to main manuscript definitions based on the top 10000 varying RefSeq genes 

across all 232 cases using 7 different types of machine learning methods. FPKM values were 

offset by +0.1, log2 transformed. 10000 most varying genes across all relevant cases were 

selected. For each method, cases were divided into training (70% of cohort) and test (30%), 

balanced for age, lymph node status, and grade. HRDetect-intermediate cases were omitted. 

Training and test cohorts were individually mean-centered. ROC was used as optimization 

metric, 4-fold cross validation repeated 10 times for training using the training cohort. The 

optimized model was applied to the test set. The entire procedure was repeated 10 times 

through an outer loop, with different division of samples in the training and test set in each 

loop to assure that sample selection was not skewing results. This generated for each model 

e.g. 10 ROC metrics as each outer loop iteration created a (potentially) new model. The 

summarized results are shown to the left. For all methods bar height corresponds to the 

average metric across the 10 iterations with one standard deviation range shown in red and 

individual values in orange. All analyses were performed using the Caret R-package using 

the classifier names indicated in the plot and with the tuneLength variable set to 10. (G) (G) 

The same analysis as in panel F, but instead using PCA components as input data for 

machine learning. PCA components were derived originally in panel A to capture all 

variation in the data and now used as input for supervised prediction using the same setup 

and parameters as in F. (H) Gene expression (log2(FPKM+offset)) of prototypical 

immunomarkers versus HRDetect groups. Two-sided P-values calculated using Kruskal-

Wallis test.

sd=standard deviation. In all box-plots the top axis shows the number of patients in each 

group. Box-plot elements correspond to: i) center line = median, ii) box limits = upper and 

lower quartiles, iii) whiskers = 1.5x interquartile range.
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Extended Data Fig. 5. MMRd SCAN-B tumors
To note, unlike in colorectal cancer, mismatch repair deficient (MMRd) tumors are also able 

to carry signs of chromosomal or genomic instability as seen in PD31144a (BRCA1 

promoter hypermethylated case) and PD31040a. Thus the mutational processes driving these 

two features are not mutually exclusive in breast cancer.
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Extended Data Fig. 6. Characteristics of expanded HRDetect-intermediate cases
(A) Comparison of driver amplifications from Nik-Zainal et al. (Nature, 2016) between 

HRDetect groups defined from a broadened intermediate group (0.1-0.9 in HRDetect score). 

HRDetect (0.9-1) = 127 cases; HRDetect (0.1-0.9) = 32 cases; HRDetect (0-0.1) = 78 cases. 

(B) Comparison of somatic driver mutations (substitutions, indels) for driver genes defined 

in Nik-Zainal et al. (Nature, 2016). For the specific set of genes curated for rearrangements 

in Nik-Zainal et al. (e.g. RB1 and PTEN) these are included as events in the analysis (i.e., 

for instance RB1 includes both mutations and rearrangements). (C) Distribution of 
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mutational signature exposure for signature s3 (e.3) and 5 (e.5) defined in Nik-Zainal et al. 

(Nature, 2016), and a HRD score defined by Telli et al. (Clinical Cancer Research, 2016) 

(originally based on SNP arrays, “genomic scars”) across HRDetect subgroups defined by a 

broadened intermediate group. In all box-plots the top axis shows the number of patients in 

each group. Box-plot elements correspond to: i) center line = median, ii) box limits = upper 

and lower quartiles, iii) whiskers = 1.5x interquartile range. (D) Distribution of total number 

of detected substitutions, indels, and rearrangements for 30X sequenced cases across 

HRDetect subgroups defined by a broadened intermediate group. In all box-plots the top 

axis shows the number of patients in each group. Box-plot elements correspond to: i) center 

line = median, ii) box limits = upper and lower quartiles, iii) whiskers = 1.5x interquartile 

range. Two-sided p-values were calculated using Kruskal-Wallis test. (E) Distribution of 

exposure (displayed as a violin plot) to the six rearrangement signatures defined in Nik-

Zainal et al. (Nature, 2016) versus HRDetect subgroups defined by a broadened intermediate 

group. Only cases with at least 20 rearrangements are included in the plots. Violin plot line 

elements correspond to: i) center line = median, ii) thick limits = upper and lower quartiles, 

iii) whiskers = 1.5x interquartile range. (F) Outcome analysis for original HRDetect-groups 

(left panels) and new division with a broadened HRDetect-intermediate group (right panels) 

stratified by treatment status using invasive disease-free survival (IDFS) as clinical endpoint. 

Top two panels show IDFS for patients receiving adjuvant chemotherapy (ACT) and bottom 

two panels show IDFS for untreated patients according to division by HRDetect score. Log-

rank p-values are two-sided. (G) Distribution of different molecular subtypes in the 

broadened HRDetect-intermediate group based on 232 cases with gene expression data. 

mApo: molecular apocrine, BL1, basal-like 1: BL 2, basal-like 2: IM, immunomodulatory: 

M, mesenchymal: MSL, mesenchymal stem-like: LAR, luminal androgen receptor : UNS, 

uncertain.
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Extended Data Fig. 7. Tumor cellularity versus HRDetect probability scores and characteristic 
rearrangement signature proportions for BRCA1-null (biallelic alteration or promoter 
hypermethylation) and BRCA2-null (biallelic alterations) tumors.
(A) HRDetect probabilities versus WGS estimated tumor cell content based on the ASCAT 

algorithm (n=84 cases). (B) HRDetect probabilities versus a pathological assessment of the 

invasive cancer proportion from a section adjacent to the extracted tumor piece (n=67 cases). 

Tumors are further stratified by their intended sequencing depth (30X or 15X) in panels A-

B. (C) Proportions of the Rearrangement Signature 3 (Nik-Zainal et al. Nature 2016) for 

BRCA1-null cases. (D) Proportions of the Rearrangement Signature 5 for BRCA2-null 
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cases. One outlier exists, corresponding to a tumor with concurrent BRCA1 
hypermethylation that has a genetic phenotype very similar to a BRCA1-null tumor rather 

than a BRCA2-null tumor, as shown in panel.

In all box-plots the top axis shows the number of patients in each group. Box-plot elements 

correspond to: i) center line = median, ii) box limits = upper and lower quartiles, iii) 

whiskers = 1.5x interquartile range.
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Figure 1. CONSORT diagram of the study.
CONSORT diagram for patients identified during September 1 2010 to March 31 2015 in 

the Skåne healthcare region with four participating SCAN-B sites: Lund, Malmö, 

Helsingborg, and Kristianstad. NKBC: Swedish national breast cancer quality registry.
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Figure 2. HRDetect classification and genomic characteristics in population-based TNBC.
(A) Bar plot of HRDetect probability obtained in 237 TNBCs together with clinical and 

genomic characteristics obtained from WGS and RNAseq. Annotation tracks for samples 

include from top to bottom ER IHC scoring, patient age, the basal-like phenotype from 

PAM50 classification11, and genetic alterations in homologous recombination associated 

genes (BRCA1, BRCA2, PALB2, RAD51C). Further, proportions of mutational and 

rearrangement signatures and indel patterns are shown as bar plots. Mutations and copy 

number amplifications in key oncogenes and tumor suppressors are represented for 
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individual samples. Molecular subtype proportions in HRDetect-high and HRDetect-low 

cases for PAM50, CIT, IC10, and TNBCtype are represented by pie charts. Intermediary 

samples excluded due to low numbers. CIT subtypes12; mApo, molecular apocrine. IC10 

subtypes15; cl (IntClust) 10 corresponding to basal-like tumors by other subtyping schemes. 

TNBCtype subtypes14; BL1, basal-like 1: BL 2, basal-like 2: IM, immunomodulatory: M, 

mesenchymal: MSL, mesenchymal stem-like: LAR, luminal androgen receptor: UNS, 

uncertain. (B) Proportions of mutational signature 3 (in tumors with >20 events) and HRD 

scores according to Telli et al.10 across subgroups defined first by HRDetect class (-low, -

intermediate, and –high), where the HRDetect-high subgroup is further divided into whether 

BRCA1/BRCA2 was inactivated by a germline mutation, somatic mutation, promoter 

hypermethylation, or no mutation was identified. Right axes in box-plots shows the number 

of patients in each group. Box-plot elements correspond to: i) center line = median, ii) box 

limits = upper and lower quartiles, iii) whiskers = 1.5x interquartile range
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Figure 3. Genetic characteristics of RAD51C- and PALB2- altered TNBCs.
(A) Circos plot of a BRCA1 germline altered TNBC case classified as HRDetect-high. 

Circos plot depicting from outermost rings heading inwards: Karyotypic ideogram 

outermost. Base substitutions next, plotted as rainfall plots (log10 intermutation distance on 

radial axis, dot colours: blue, C>A; black, C>G; red, C>T; grey, T>A; green, T>C; pink, 

T>G). Ring with short green lines, insertions; ring with short red lines, deletions. Major 

copy number allele ring (green, gain), minor copy number allele ring (red, loss), Central 

lines represent rearrangements (green, tandem duplications; red, deletions; blue, inversions; 
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grey, interchromosomal events). (B) Circos plot of a BRCA2 germline altered TNBC case 

classified as HRDetect-high. (C) Circos plot and mutational signatures of a PALB2 biallelic 

altered TNBC case classified as HRDetect-high, histograms below show distribution of 

substitution signatures (left), rearrangement signatures (right), and deletions and insertions 

(center) as defined in8. Del: deletion. (D) Circos plots and mutational signatures of a 

RAD51C hypermethylated TNBC case classified as HRDetect-high. (E) Principal 

component analysis (PCA) of the six normalized HRDetect components9 for the 237 TNBC 

cases annotated by their BRCA1, BRCA2, PALB2, or RAD51C status. The plot displays 

PCA component 1 and 3 (accounting for 92.3% of variation across the six HRDetect 

components), showing the separation of biallelic BRCA2, biallelic PALB2, and RAD51C 
hypermethylated cases into a common sector (light grey), indicating similarities of 

HRDetect features.
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Figure 4. Association of HRDetect classification with clinical outcomes in an unselected 
population-based TNBC cohort.
Kaplan-Meier analysis of association with outcome for HRDetect classification in TNBC 

patients treated with standard-of-care adjuvant chemotherapy (ACT) for (A) distant relapse-

free interval (DRFI) as endpoint, (B) invasive disease-free survival (IDFS) as endpoint, and 

(C) overall survival (OS) as endpoint. (D) Invasive disease-free survival (IDFS) as endpoint 

showing both adjuvantly treated and untreated patients stratified by HRDetect status. (E) 

Distribution of patient age between HRDetect high and low groups stratified by treatment 
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and eligibility for IDFS analysis. Box-plot elements correspond to: i) center line = median, 

ii) box limits = upper and lower quartiles, iii) whiskers = 1.5x interquartile range. Right axis 

provides number of patients in each group. (F) Kaplan-Meier analysis of association with 

IDFS of HRDetect-high group demonstrating no significant difference between subjects 

where BRCA alterations were and were not identified. All p-values in panels A-F were 

calculated using the log-rank test and are two-sided.
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