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ABSTRACT

Objective: Lack of reproducibility in medical studies is a barrier to the generation of a robust knowledge base to

support clinical decision-making. In this paper we outline the Medical Information Mart for Intensive Care

(MIMIC) Code Repository, a centralized code base for generating reproducible studies on an openly available

critical care dataset.

Materials and Methods: Code is provided to load the data into a relational structure, create extractions of the

data, and reproduce entire analysis plans including research studies.

Results: Concepts extracted include severity of illness scores, comorbid status, administrative definitions of

sepsis, physiologic criteria for sepsis, organ failure scores, treatment administration, and more. Executable

documents are used for tutorials and reproduce published studies end-to-end, providing a template for future

researchers to replicate. The repository’s issue tracker enables community discussion about the data and con-

cepts, allowing users to collaboratively improve the resource.

Discussion: The centralized repository provides a platform for users of the data to interact directly with the data

generators, facilitating greater understanding of the data. It also provides a location for the community to col-

laborate on necessary concepts for research progress and share them with a larger audience. Consistent appli-

cation of the same code for underlying concepts is a key step in ensuring that research studies on the MIMIC

database are comparable and reproducible.

Conclusion: By providing open source code alongside the freely accessible MIMIC-III database, we enable end-

to-end reproducible analysis of electronic health records.
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INTRODUCTION

Concerns about the reproducibility of results in science are becom-

ing increasingly prominent in both scientific and mainstream litera-

ture.1 Some commentators have gone so far as to call the current

state a crisis, citing causes such as pressure to publish positive

results, the cost of replicating studies such as double-blind random-

ized controlled clinical trials, and the lack of emphasis on reproduc-

ibility as a requirement for sound science.

In parallel, health care has been undergoing a digital revolution

in recent years. The Health Information Technology for Economic

and Clinical Health Act has catalyzed the transition of hospitals and

care institutions from paper-based to electronic-based systems.2

Vast quantities of digital data are now routinely collected by modern

hospital monitoring systems, even more so in intensive care units

(ICUs), where patients require close observation. There is optimism

that increasing the availability of large-scale clinical databases will
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offer opportunities to overcome many of the challenges associated

with the lack of evidence in medical practice.

The Medical Information Mart for Intensive Care (MIMIC-III)

database is an example of such a data repository.3,4 The database

comprises detailed clinical information regarding >60 000 stays in

ICUs at the Beth Israel Deaconess Medical Center in Boston, Massa-

chusetts, collected as part of routine clinical care. The MIMIC-III

dataset is freely available to researchers around the world and has

been widely used in the development of predictive models, epidemi-

ological studies, and educational courses.

Perhaps the most important insight since the database was made

open access is how challenging research using electronic health

records (EHRs) can be, requiring close collaboration between do-

main experts and data scientists. As MIMIC-III is a deidentified ver-

sion of raw data stored during routine clinical care, a nontrivial

body of work is required to transform the data into a usable form

for research. This derivation of clinical concepts on an EHR data-

base is a resource-intensive task, however, and is a significant barrier

to those unfamiliar with the clinical environment or the database

structure. Moreover, if concepts are not defined collaboratively with

those who are familiar with the workflows, including how the data

are captured, the validity of the findings may be suspect.

In this paper, we describe the MIMIC Code Repository, a cen-

tralized location for derived concepts that are relevant to critical

care research. Detailed descriptions on how the concepts are defined

and extracted from the database are provided, including the assump-

tions that are made and the conditions for which codes or queries

are valid. Additional tools are provided to educate researchers on

best practices for conducting a fully reproducible study using the

database. The code is open source, follows good documentation

practices, and is contributed to by members of the research commu-

nity using MIMIC-III.

The repository provides a framework for collaboration around

research. While the case for open data has been already been

strongly made elsewhere, we believe open code is equally important.

We would make the argument that the use of an openly available

code repository will improve secondary analysis of health data by

accelerating the understanding of datasets by researchers, and im-

proving the consistency and validity of future studies.

THE MIMIC CODE REPOSITORY

The MIMIC Code Repository is available online5 and is open

source. Code is available as standardized scripts in languages includ-

ing Structured Query Language (SQL), Python, and R. Scripts are

modified to allow an individual who has been granted access to the

MIMIC-III database to generate a number of “views” of the data,

with each view being an extraction from the raw data. Each script is

associated with an automatically generated unique commit hash

that acts as an identifier for the code. Publications that use the code

repository can further cite the commit hash, allowing other research-

ers to download a copy of the code used regardless of any modifica-

tions since. All code follows the principles of good scientific

programming as outlined by Wilson et al.,6 including incremental

development with a distributed version control system, unit tests,

and a public issue tracker. The repository was tested on MIMIC-III

v1.4 at the time of this publication.

There are 3 components to the repository that facilitate naviga-

tion of the data for research purposes. These components are:

• Concepts: Code to extract important concepts from the health

records. For example, a module on acute kidney injury uses the

criteria as specified by Kidney Disease: Improving Global Out-

comes and provides the code to identify patients with acute kid-

ney injury in MIMIC.
• Executable documents: Notebooks that allow text and analytical

code to be seamlessly combined into a single executable docu-

ment, allowing studies and tutorials to be reproduced.
• Community: Public discussions to facilitate contributions from

members of the MIMIC research community.

Concepts
Code to extract concepts that that are broadly applicable to research

questions in critical care are provided in the repository. For exam-

ple, severity of illness scores are frequently required to adjust for

confounding factors in a study, but are complex to derive, and so

scripts are provided for reuse. These and other concepts are coded in

a modular fashion to reduce redundancy in code and allow for ex-

tension. The following sections describe various concepts currently

available in the repository.

Severity of illness scores

Severity of illness scores have been developed over recent decades to

provide an assessment of the patient’s acuity, particularly but not

exclusively at the time of admission to the ICU.7 The principal aim

of these scores is to risk-adjust patient populations for benchmark-

ing and research purposes, such as comparing cohorts in clinical tri-

als and observational studies. In the context of performing research

using MIMIC-III, the use of severity of illness scores for risk adjust-

ment is almost always required to address confounding.

While severity of illness scores are integral to risk adjustment,

their calculation, if done retrospectively, presents challenges. Most

severity scores were developed with well-curated datasets, put to-

gether through prospective data collection or manual data abstrac-

tion by dedicated trained personnel. As a result, the data tend to be

cleaner and often have, perhaps more importantly, a distribution

that is markedly different from routinely collected data, such as that

present in an electronic health record.

Secondly, routinely collected data often lack data elements re-

quired to compute the score. For example, the comorbidity “biopsy

proven cirrhosis” is required for the Acute Physiology Score and

Chronic Health Evaluation system, but this concept is not docu-

mented in a structured manner during routine care. Finally, the data

definitions for the same concept can vary between the original data-

set used to define the severity score and the EHRs being analyzed.

To illustrate this potential disparity, the Glasgow Coma Scale

(GCS), a common marker of neurological dysfunction that ranges

from 3 (worst) to 15 (best), is usually assumed to be 15 for patients

who are unable to be assessed due to sedation or ventilation but oth-

erwise appear to be neurologically intact. In an EHR, however, this

definition is not strictly adhered to, as there is no defined protocol,

and as a result, sedated patients may be assigned a score of 15 by

some care providers and a score of 3 by others.

Working with local nurses and doctors has helped us to address

the kinds of issues that potentially impact the code, helping to en-

sure that the derived scores accurately reflect the true severity of pa-

tient illness. There are 5 severity of illness scores currently

implemented in the MIMIC Code Repository: acute physiology

score (APS)-III,8 simplified acute physiology score (SAPS),9 SAPS-

II,10 and the Oxford acute severity of illness score (OASIS).11
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A more detailed comparison of the severity scores is provided in the

supplementary material, along with a discussion of the assumptions

made in calculating the scores. Organ dysfunction scores are also

available and detailed later.

Each score comprises at least 10 independent components. The

APS III, SAPS II, Sequential Organ Failure Assessment (SOFA), Lo-

gistic Organ Dysfunction system (LODS), and OASIS scores are gen-

erally calculated using data from the first 24 h of the patient’s stay.

Systemic inflammatory response syndrome score and qSOFA are

screening tools with scores calculated on admission to the ICU,

which is concretely defined as up to 2 h after the admission time.

The distribution of these scores is shown in in Figure 1.

Organ dysfunction scores

Organ failure is a hallmark of acute illness and is quantified in nu-

merous scores. Some scores assess multiple organ systems: the SOFA

score12 and LODS13 both assess 6 organ systems for failure. Others

are organ-specific. Examples include the Model for End-stage Liver

Disease,14 the Risk/Injury/Failure/Loss/End-stage renal disease crite-

ria,15 the Acute Kidney Injury Network classification,16 and the Kid-

ney Disease: Improving Global Outcomes criteria.17 The latter 3

scores assess the degree of acute kidney injury in patients. A variety

of lab, diagnostic, and therapeutic data are needed to calculate these

scores.

To highlight the discrepancies that can arise from the way a con-

cept is defined, we contrast 2 versions of the SOFA score, 1 derived

by prior researchers and 1 available in the MIMIC Code Repository.

Figure 2 shows the area under the receiver operator characteristic

curve for hospital mortality of patients admitted in the MIMIC-III

database between 2001 and 2008 using 2 versions of SOFA,

grouped by year of admission.

The disagreement between the 2 modalities is multifactorial, but

a major contributing factor relates to an important variable: the

GCS. In the original paper describing the SOFA score, clinicians

were instructed to set GCS to its maximum value, 15, if they were

unable to assess patients fully (eg, if patients were sedated to facili-

tate mechanical ventilation). In contrast, the documentation of GCS

for these patients in the MIMIC-III database is usually a value of 3,

the minimum value, with a note that they are unable to assess the

patients. Naive use of GCS values results in a dramatic difference in

the capability of the score to discriminate severely ill patients and

highlights the need to understand variables and how they are cap-

tured or derived. In the MIMIC Code Repository, special extraction

steps are used to detect a GCS value of 3 due to sedation, and these

values are corrected to 15 in the calculation of scores.

Timing of treatment

The timing and duration of treatment are important concepts for

researchers seeking to understand issues that relate to the intensity

of an administered intervention. Duration can serve as an indirect

metric of severity and has been used in the development of decision

support tools.18

As a result of data-capture limitations in the hospital, the exact

timing and duration of many medications and treatments are not ex-

plicitly available and so must be derived. Derivation can involve

identifying surrogate data known to be carried out with a high level

of compliance, documented by clinical staff contemporaneous to the

treatment. Figure 3 shows a schema for the derivation of the start

and stop times of mechanical ventilation. Similar rules are used to

define the timing of vasopressor administration and continuous re-

nal replacement therapy (CRRT) available in the repository. Clinical

expertise is invaluable in developing these rules and interpreting the

fine points of the medical chart that determine them.

An example of a patient undergoing mechanical ventilation and

receiving vasopressor agents is provided in Figure 4.

Sepsis

Sepsis is a major and costly disease in the ICU, costing over $20 bil-

lion in the United States in 2011 (5.2% of all US hospital costs),19

and growing to over $23 billion in 2013 (6.2% of all US hospital

costs).20 Sepsis has traditionally been defined as the concurrent pres-

ence of systemic inflammation and infection, but a recent reexami-

nation of the problem has suggested redefining the disease as life-

threatening organ dysfunction caused by a dysregulated host re-

sponse to infection.21 The precise onset of sepsis is not typically

documented in the EHR, and is, in fact, a difficult item to capture

clinically. In their quantitative evaluation of septic patients, Sey-

mour et al.22 first identified patients suspected of having infection

by cross-referencing antibiotic use with requests for a microbiology

assessment. We implemented a similar approach, defining suspected

infection as the acquisition of a microbiology culture followed by or

shortly after ICU admission. Using this definition, and following the

Sepsis-3 guidelines, we define sepsis as suspicion of infection associ-

ated with organ failure as quantified by an increase in SOFA�2.

This definition is admittedly a proxy for the actual onset of sepsis,

but in the absence of more precise markers, it serves as an approxi-

mation of onset time and could be used for the development of deci-

Figure 1. Comparison of severity of illness score distributions.

Figure 2. Comparison of areas under the receiver operating curve for SOFA

scores calculated from MIMIC code and a prior research report.
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sion support tools. Scripts for these concepts are available and a

notebook describing the derivation is also available.

Identification of sepsis has also been done retrospectively using

administrative data, and in particular billing codes acquired on hos-

pital discharge. Two billing codes explicitly denote sepsis (Interna-

tional Classification of Diseases, Ninth Revision [ICD-9] codes

785.52 and 995.92). Angus et al.23 and Martin et al.24 describe algo-

rithms for defining sepsis using a set of diagnostic and procedural

ICD-9 codes. The criteria as proposed by Angus et al.23 were vali-

dated in a later study by Iwashyna et al.25 These 3 criteria – explicit

coding, those proposed by Angus et al.,23 and those proposed by

Martin et al.24 – are available in the repository.

Comorbidities

Many ICU patients have chronic conditions prior to their acute pre-

sentation that affect the probability of their surviving critical illness.

Elixhauser et al.26 codified these comorbidities into 29 categories us-

ing administrative data, specifically ICD-9 codes. The American

Health and Research Quality group continues to maintain these ad-

ministrative codes via the Healthcare Cost and Utilization Project,

adapting them accordingly as changes are made to diagnosis and

treatment coding.27 Finally, Quan et al.28 proposed an enhanced

ICD-9 coding methodology based on examining inconsistencies

among previous definitions. Diagnosis-related groups, which are

used to bill for the principal diagnosis for a patient hospitalization,

are used to filter out those conditions that are not present prior to

hospitalization. A comparison of these 3 methods is provided in

Figure 5. These representations of comorbidities are provided in the

repository, both with and without diagnosis-related group filtering.

Van Walraven et al.29 later aggregated comorbidities codified by

Elixhauser et al.26 into a single point score for in-hospital mortality

prediction, which is also available in the repository.

Concept road map

Table 1 provides a list of currently available concepts in the reposi-

tory, as well as concepts that are planned for future development

(italicized). As code is demand-driven, the planned concepts are not

exhaustive.

Figure 3. Logic behind the query for converting aperiodically recorded ventilator settings into durations of mechanical ventilation.
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Executable documents
When both data and code are freely available to researchers, as is

now the case for MIMIC-III, this provides a framework that allows

a study to be entirely reproduced. This is especially powerful when

toolkits such as R Markdown and Jupyter Notebook are employed,

allowing documentation and code to be seamlessly combined to create

executable documents. Figure 6 shows an example of a Jupyter Note-

book that extracts patient demographics and displays the results for the

user to view. Jupyter Notebooks are language agnostic, supporting

code written in Python, R, MATLAB, SAS, and others.30,31

Figure 4. Example of a patient who was both mechanically ventilated and receiving vasopressors for cardiovascular support.

Figure 5. Comparison of 3 methods for calculating presence of a comorbidity

for a patient using billing data: an updated coding from the AHRQ which uses

diagnosis-related group (DRG) codes to mask non-comorbid conditions, the

same coding without the DRG masking, and finally an alternative coding that

does not use DRG masking, proposed by Quan et al.28

Table 1. Concepts available in the repository

Category Concepts

Severity of illness

scores

APS III, SAPS, SAPS II, OASIS

Organ dysfunc-

tion scores

SOFA, qSOFA, LODS, SIRS, MELD, KDIGO,

AKIN

Treatments Continuous renal replacement therapy, intermit-

tent hemodialysis, vasopressors, mechanical

ventilation

Sepsis Suspicion of infection, Angus et al. criteria,

Martin et al. criteria, explicit ICD-9 coding of

sepsis, CMS sepsis criteria, CDC sepsis crite-

ria

Comorbid burden Elixhauser et al. (AHRQ), Quan et al., Charlson

et al.

First 24 h aggre-

gates

Vital signs, laboratory values, blood gas values,

urine output

Diagnosis groups Certified Coding Specialist groups

Demographics Weight, height, age, gender, service type

Hourly data Vasopressor doses, vital signs, laboratory values,

blood gas values

Fluid balance Total fluid intake, total fluid output

Concepts that are italicized are planned for future release. MELD: Model

for End-stage Liver Disease; SIRS: systemic inflammatory response syndrome;

KDIGO: Kidney Disease: Improving Global Outcomes; AKIN: Acute Kidney

Injury Network; CMS: Centers for Medicare and Medicaid Services; CDC:

Centers for Disease Control and Prevention; AHRQ: Agency for Healthcare

Research and Quality.
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We have found executable documents particularly valuable for re-

search in cross-disciplinary fields such as health care, because they facil-

itate collaboration between data analysts and domain experts.

Notebooks primarily serve 3 purposes: (1) they allow documentation

of the logic behind the code in an organized and easy-to-read manner;

(2) they aid rapid writing of the code, particularly during group discus-

sions; and (3) they provide a means of sharing details of a published

study that captures the learning that takes place during the evolution of

a research project. To encourage sharing of research code, we have

reproduced a previously published study on indwelling arterial cathe-

ters and their association with in-hospital mortality for hemodynami-

cally stable patients with respiratory failure.32 This study was initially

performed in MIMIC-II, which has since been superseded by MIMIC-

III. As the structure of the databases differs, the study was reimple-

mented based on the manuscript. The executable documents perform

data extraction, preprocessing of the data, and construction of a pro-

pensity score, and provide an interpretation of the results. Specifically,

a Jupyter Notebook, aline.ipynb, extracts the study population

and necessary data, outputting data to a plain-text file. An R Mark-

down file, aline.Rmd, subsequently loads data from the plain-text

file and tests the study hypothesis after matching cohorts with a pro-

pensity score. The executable documents provide a template for creat-

ing completely reproducible studies using the MIMIC-III database.

Executable documents are also a platform well suited to tutori-

als. Harmonization of text and code allows for explanations of the

subject matter, while the interactive nature of the document allows

for experimentation and facilitates learning. A number of tutorials

have been made available to explain key concepts important for

working with MIMIC. For example, the transformation of recorded

clinical parameters, such as hemofiltration settings, into desired clinical

concepts, such as length of CRRT, is nontrivial and requires both do-

main and database expertise. An executable document is provided,

which overviews the process of exploring MIMIC-III, assessing the

data stored within and creating the definition of CRRT provided in the

database. In addition to explaining the logic behind the definition of

CRRT, the tutorial also acts as a template for defining other concepts

in the MIMIC database and potentially other similar ICU EHRs. Other

tutorials include an introduction to SQL, a step-by-step guide to select-

ing a study cohort, and an outline of the data-capture process for com-

monly recorded parameters in the database.

Community
The MIMIC Code Repository provides many benefits regarding dis-

tribution of the source code and enhancing reproducibility, as previ-

ously mentioned. An additional advantage is the communication

channel opened between the maintainers and distributors of the

MIMIC database and users. Longo et al.33 argue, in a well-

publicized editorial on data sharing, that researchers not involved in

the collection of data may lack an understanding of its underlying

details. Our framework connects researchers who reuse the MIMIC-

III dataset with the laboratory and clinical staff who collect and

produce the data, helping to provide context for downstream data

analysis. Researchers can post issues inquiring about aspects of the

data collection and best practices for analyzing the data, and experi-

enced users, some of whom are involved in collecting the data, can

provide insight and advice. This correspondence facilitates appropri-

ate and meaningful use of the data, and as all discussions are publicly

available, the result is an organically growing set of documentation

that spans both narrow and broad topics. Researchers are encouraged

to contribute to the MIMIC Code Repository, progressively improv-

ing the code base and helping to accelerate research in critical care.

Source code control allows for transparency both in the authorship of

the code and in the nature of any changes.34

CONCLUSION

Transparent research processes can help to improve the quality of evi-

dence that underpins health care, and the case for open data has been

Figure 6. Example of a notebook providing a tutorial with MIMIC-III data.

Journal of the American Medical Informatics Association, 2018, Vol. 25, No. 1 37



quite well described.35,36 To achieve full transparency, researchers

must be able to provide both the data used for analysis and the code

used to process it. The MIMIC-III database is exceptional due in no

small part to its publicly accessible nature: all researchers who un-

dergo human subjects research training and who sign a data use

agreement can freely access the data. By supplementing the

MIMIC-III database with the MIMIC Code Repository, we provide a

foundation for completely reproducible research in critical care.

Examples of reproducible code and even reproducible studies are

available and provide a framework for future work with the data-

base. Future work will build new concepts as well as provide execut-

able documents for other applications, such as predictive modeling.

There are some limitations of this approach. First, use of the re-

pository requires familiarity with technical tools such as git and

SQL. Second, the SQL code strongly conforms to the current Ameri-

can National Standards Institute–SQL standard (6th revision) and

may need to be adapted for noncompliant database systems. Third,

the repository is tailored to the MIMIC-III database, although we

anticipate much of the code to be broadly applicable as common

data models for critical care development. Finally, the content is not

exhaustive and continues to be developed over time.

While cultural barriers exist that may discourage some research-

ers from sharing code, it is clear that the barriers in the case of

MIMIC-III are not technical. The unique combination of open code

with publicly accessible data allows for the creation of fully execut-

able studies with diligent audit trails, and it would behoove

researchers to adopt these approaches.
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