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A B S T R A C T

The diffuse and continually evolving secondary changes after mild traumatic brain injury (mTBI) make it chal-
lenging to assess alterations in brain-behaviour relationships. In this study we used myelin water imaging to
evaluate changes in myelin water fraction (MWF) in individuals with chronic mTBI and persistent symptoms and
measured their cognitive status using the NIH Toolbox Cognitive Battery. Fifteen adults with mTBI with persistent
symptoms and twelve age, gender and education matched healthy controls took part in this study. We found a
significant decrease in global white matter MWF in patients compared to the healthy controls. Significantly lower
MWF was evident in most white matter region of interest (ROIs) examined including the corpus callosum
(separated into genu, body and splenium), minor forceps, right anterior thalamic radiation, left inferior longi-
tudinal fasciculus; and right and left superior longitudinal fasciculus and corticospinal tract. Although patients
showed lower cognitive functioning, no significant correlations were found between MWF and cognitive mea-
sures. These results suggest that individuals with chronic mTBI who have persistent symptoms have reduced
MWF.
1. Introduction

Mild traumatic brain injury (mTBI) is an urgent public health
concern. A systematic review from the WHO Collaborating Centre Task
Force on Mild Traumatic Brain Injury indicated a hospital treatment rate
of 100–300 mTBIs per 100,000 people but a predicted incidence of 600
per 100,000 people [1]. mTBI caused either by a direct blow to the head,
face, neck, or elsewhere on the body that leads to an impulsive force
transmitted to the head induce subtle, transient, and spatially distributed
changes in brain structure and function, resulting in cognitive, emotional
and behavioral challenges. While most individuals recover within 10–14
days, approximately 20% will experience persistent symptoms for
months or years after injury [2]. Stress, anxiety and emotional distress
are important risk factor for long-term impairment. Symptom persistence
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is therefore a consequence of an interaction between neurological and
psychosocial factors and the associated health outcomes. Despite its high
prevalence, the mechanisms underlying mTBI remain elusive.

The diffuse and continually evolving secondary changes that are the
hallmark of traumatic mTBI have made it challenging to evaluate brain-
behaviour relationships. Neurodegeneration is linked with TBI [3],
however conventional neuroimaging tools (such as CT and routine clin-
ical MRI) cannot detect the widespread and often subtle changes in
structure and function that occur in the brain [4]. The long-term effects of
mTBI are less clear than more severe head injuries and neuroimaging
findings are less consistent [5, 6]. Thus advanced MRI techniques are
increasingly being used to examine and monitor changes in the brain
following mTBI [7, 8, 9].
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Table 1. Description and demographics of participants with mTBI.

Subject Approx. Time Since Injury (years) Age (years) Gender Years of Education Injury Type

S1 2 18 F 12 Sport

S2 1 18 M 13 Multiple Concussions

S3 1 22 M 17 Fall

S4 6 months 29 M 16 Sport

S5 7 months 29 M 16 Multiple Concussions

S6 1 34 F 16 Sport

S7 4 34 F 18 MVA

S8 2 35 M 14 Assault

S9 2 43 F 18 MVA

S10 2 45 M 16 Multiple Concussions

S11 2.5 48 F 15 Assault

S12 9 months 48 M 16 Sport

S13 5 48 F 14 Multiple Concussions

S14 1.5 57 F 14.5 Fall

S15 1 50 M 17 Fall

MVA – motor vehicle accident (single incident).
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Physiologically, movement of the brain within the skull causes
shearing/stretching of the axons and initiates a cascade of molecular
events which disrupts normal brain cell function. Metabolic changes
occur rapidly following axonal strain, altering the permeability of sodium
channels, resulting in an increase in intra-axonal calcium and ultimately
a failure of the sodium pump, causing further metabolic disruptions [10].
Long white matter tracts and the corpus callosum are particularly
vulnerable to these forces and diffuse axonal injury (DAI) can lead to
demyelination and axonal loss resulting in brain atrophy [11, 12, 13, 14,
15, 16]. Loss of myelin increases axonal vulnerability to further trauma
and may predispose the axon to further damage [17, 18]. In animal
models of mTBI, extensive demyelination is reported [19, 20], and
human post mortem studies have found evidence of loss of myelin [21]
years after the initial TBI symptoms have resolved. Given the importance
of the integrity of white matter tracts, a validated quantitative technique
to examine myelination (loss and possible remyelination [17, 22]) of
these tracts would provide a powerful approach to understand the pa-
thology of TBI, the evolving nature of the injury and ultimately could be
used to evaluate the impact of neurorehabilitation.

Measuring myelin in vivo using MR is nontrivial and requires
specialized techniques [23, 24]. Myelin is a lipid rich membrane as-
sembly that wraps around axons in a series of layers. Myelin enables
saltatory conduction which produces fast and efficient neuronal signal
transmission across the brain and throughout the body. The loss or
disruption of myelin results in loss of saltatory conduction causing slower
signal propagation and thus delay of translation of information.
Measuring non-aqueous protons in myelin is difficult because the MR
signal decays too rapidly to be measured by commonMR techniques. The
water trapped betweenmyelin bilayers is known as myelin water and it is
accessible using MR. Several different techniques have been developed to
measure the myelin water [25], one such approach involves using
multi-component T2 analysis, myelin water imaging (MWI).
Multi-component T2 relaxation can be used to detect different water
environments in human brain tissue [26, 27, 28], including a short T2
component that is thought to be myelin water [29, 30, 31, 32, 33, 34, 35,
36, 37]. The proportion of water in brain that can be attributed to myelin
water is known as the myelin water fraction (MWF) which can be used as
a marker for myelin [38]. MWF has been validated as a myelin marker in
histological studies in animal models [39, 40, 41] and human
post-mortem Multiple Sclerosis (MS) brain [42, 43, 44] and spinal cord
[45]. MWF has been found to be decreased in normal appearing white
matter in neurodegenerative diseases such as MS [46, 47, 48, 49]. MWF
has previously been shown to decrease post single sports concussion
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(mTBI) and then recover after 2 months [50], showing the utility of MWF
in mTBI.

A few groups have documented a possible association betweenmyelin
water fraction and cognition. Recently, two studies in MS [51, 52] found
correlations between heterogenenity in MWF in several ROIs (including
the corpus callosum) and a number of cognitive tests including the
Symbol Digit Modalities Test (SDMT) (a measure of cognitive processing
speed) in MS but not in controls. Lang et al. [53] showed that, in patients
with schizophrenia, frontal white matter correlated with scores on a
premorbid IQ test, the North American Adult Reading Test (NAART).
Similarly, Choi et. al [54]. found a significant correlation between Pro-
cessing Speed Index and a global measure of apparent myelin water
fraction in a group of moderate to severe TBI subjects 3 months
post-injury. Although more research is needed to explore the potential
cognitive sequelae of MWF changes, these findings suggest that myelin
measures may reflect underlying cognitive functioning. However, to date
the change inMWF in individuals with chronic mTBI who have persistent
symptoms is unknown.

Here we examine myelin water fraction (MWF) within a group of
chronic participants with mTBI who present with persistent symptoms
and compare them to healthy controls using a whole cerebrum coverage
MWF sequence to characterize differences in myelin. We hypothesized
that brainmyelin inmTBI would be reduced compared to that in controls.
We also examined the effects of age and years of education on MWF,
independent of mTBI. Finally, we compared cognitive scores between the
two groups and their relationship with MWF. Based on previous results
by Choi et al [55] we hypothesized that MWF would be particularly
associated with processing speed and other measures of fluid cognitive
abilities.

2. Materials and methods

2.1. Participants

Participants were recruited from brain injury associations across the
Greater Vancouver area as part of a study to evaluate the impact of an
intensive cognitive intervention program in adults with TBI [56]. All
healthy controls were recruited from the lower mainland of Vancouver in
close proximity to the university. All controls were screened to ensure
that they had no history of head trauma, neuropsychiatric disorders, or
any other neurological conditions. Participants with mTBI were excluded
if they had a history of seizure, epilepsy, neurodegenerative disorder,
major head trauma, or a psychiatric diagnosis. They were also excluded if
they had severe vision or hearing impairment, have difficulty sitting in a
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chair for 1 h or were medically unstable. Participants were also excluded
if they were currently in litigation or if they had other severe medical
conditions affecting brain function. They were also excluded if they had a
diagnosis of psychiatric illness based on a Mini-international neuropsy-
chiatric interview (MINI) [57]. The severity of injury was based on
self-report using the diagnostic criteria from American Congress of
Rehabilitation Medicine (ACRM) [58] and the World Health Organiza-
tion (WHO) [59]. Information was retrospectively reported by the sub-
jects, where mild TBI was defined as Loss of Consciousness (LOC) of less
than 30 min and Post-traumatic amnesia (PTA) less than 24 h [58]. The
study was approved by the Clinical Research Ethics Board at the Uni-
versity of British Columbia. All participants provided written consent
according to the guidelines set by the Clinical Research Ethics Board.
Subject demographics are given in Table 1, and individual subject mTBI
demographics are given in Table 2. Time since injury varied from 6
months to 5 years post injury across subjects, and 6 months post-injury
was determined to be the benchmark for identifying chronic mTBI [60].

2.2. MRI protocol

MRI scans were completed on a 3T Philips Achieva scanner. Se-
quences included a 3DT1 structural scan (MPRAGE TR ¼ 3000 ms, TI ¼
1072 ms, 1 � 1 � 1mm3 voxel, 160 slices) for registration and segmen-
tation of global white matter and white matter regions of interest (ROIs)
and a 3D 48-echo Gradient and Spin Echo (GRASE) T2 relaxation
sequence with an EPI factor of 3 (TR ¼ 1073, echo spacing ¼ 8 ms, 20
slices acquired at 1� 2� 5mm and 40 slices reconstructed at 1� 1� 2.5
mm, FOV 230 � 190 � 100 mm, acquisition time 7.5 min) for MWF
determination [61, 62] using the standard MR scanner reconstruction
software.

2.3. Neuropsychological testing

The NIH Toolbox Cognition Battery [63] was used to evaluate
cognition in both groups. The Test of Memory Malingering was used to
exclude individuals showing suboptimal effort. Two primary composite
cognitive measures were employed in this study [64]. The Crystallized
composite score (age adjusted) from the NIH Toolbox was used to assess
crystallized cognitive ability, which refers to an accumulated storage of
verbal knowledge and skills that are heavily influenced by educational
and cultural experience. The crystallized score was based on the average
performance on the Picture Vocabulary Test (language) and Oral Reading
Recognition Test (language). The Fluid composite score was based on
performance on the following NIH Toolbox measures: Dimensional
Change Card Sort Test (attention, executive function), Flanker Inhibitory
Control and Attention Test (attention, executive function), Picture
Sequence Memory Test (episodic memory), Pattern Comparison Pro-
cessing Speed Test (processing speed), List SortingWorking Memory Test
(working memory). Fluid ability is defined as the capacity for new
learning and information processing in novel situations, which is espe-
cially influenced by biological processes and is less dependent on past
exposure. All scores were age-adjusted based on the NIH Toolbox na-
tionally representative U.S. normative sample, and standard scores had a
mean of 100 and standard deviation of 15. Three healthy controls did not
complete cognitive testing, one due to familiarity with the tests and two
due to study retention loss.
Table 2. Age and education in controls and participants with mTBI.

Subject Group N Gender Ratio (M:F) Age
Me

Control 12 8:4 p ¼ 0.5 37.

mTBI 15 8:7 37.
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2.4. Myelin water fraction (MWF) data analysis

The signal decay curve obtained by the T2 relaxation sequence was
modelled by multiple exponential components and the T2 distribution
was estimated using in-house software in matlab (MathWorks, Massa-
chusetts, U.S.A) which contained a regularized non-negative least
squares algorithm using the extended phase graph and flip angle esti-
mation to deal with stimulated echo artifacts [26, 27, 28, 65, 66]. MWF
in each image voxel was computed as the ratio of the area under the T2
distribution with times of 10–40ms to the total area under the distribu-
tion. MWF and 3DT1 images were registered to MNI space and brain
extracted and segmented using tools from FSL [67, 68, 69]. Slices below
the inferior portion of the hypothalamus (mammillary body) were
rejected in order to account for differing head sizes and make sure MWF
was measured over the same brain coverage for all subjects. Global white
matter (GWM) was segmented and pre-existing regions of interest from
the JHU tract atlas in FSL [70, 71, 72] were used to segment specific
tracts using FSL: splenium of corpus callosum (SCC), body of corpus
callosum (BCC), genu of corpus callosum (GCC), minor forceps (MN), and
right and left anterior thalamic radiation (ATR), inferior and superior
longitudinal fasciculus (ILF and SLF respectively), and corticospinal tract
(CST).

2.5. Statistical analysis

All statistical analysis was completed using IBM SPSS Statistics
Version 25. Demographic differences were examined; age and education
were compared between groups using an independent samples t-test and
a chi-squared test was used to compare gender ratios between groups,
where p < 0.05 was considered significant. Mean MWF for ROIs were
compared between participant groups using an independent samples t-
test, where p< 0.05 was considered significant. We elected not to correct
for multiple comparisons because the limited sample size would require
extremely large effects to detect statistical significance; therefore, a p-
value set at p < .05 was deemed appropriate. In addition, we calculated
Cohen's d effects sizes to provide information about the magnitude of the
effects, which was deemed more important than paying attention to the
associated p-values which are highly sensitive to sample size. Generally,
Cohen's effect sizes of 0.2 are considered to be small, 0.5 medium, and
0.8 large in magnitude [73]. The association between age and years of
education and MWF in each ROI was examined using Pearson's correla-
tions (r) across controls and mTBI. A linear model comparing MWF
(ANCOVA) across groups was used with age and education as covariates.
Finally, cognitive scores were compared between groups using an inde-
pendent sample's t-test and a Cohen's d to assess effect size. MWF was
compared with cognitive scores in mTBI using Pearson's correlation.

3. Results

3.1. Demographic characteristics between groups

Tables 1 and 2 show the general group demographics and the de-
mographic and clinical features for all the participants in this study. Age,
education and gender were not significantly different between controls
and individuals with mild TBI.
(years)
an � sd (Range)

Education (years)
Mean � sd (Range)

2 � 12 (21–53) p ¼ 0.6 16.4 � 3 (12–20) p ¼ 0.2

2 � 12 (18–57) 15.5 � 2 (12–18)



Figure 1. Myelin water fraction (MWF) maps for all participants; A) mild traumatic brain injury and B) controls with age and sex demographics.

Table 3. Mean and standard error of myelin water fraction (MWF) of all regions of interest; global white matter (GWM), splenium of corpus callosum (SCC), body of
corpus callosum (BCC), genu of corpus callosum (GCC), anterior thalamic radiation (ATR), minor forceps (MN), inferior and superior longitudinal fasciculus (ILF and
SLF respectively), corticospinal tract (CST) for controls and mTBI compared with an independent sample's t-test. No p-values survived Holm-Bonferroni analysis for
multiple comparisons. Cohen's d was calculated as a measure of effect size.

Region of Interest Control (n ¼ 12) Mild TBI (n ¼ 15) p-value –Cohen's d

GWM 0.114 � 0.005 0.101 � 0.003 0.03 0.91

SCC 0.147 � 0.006 0.125 � 0.005 0.008 1.12

BCC 0.111 � 0.006 0.095 � 0.004 0.04 0.84

GCC 0.103 � 0.005 0.086 � 0.005 0.02 0.93

MN 0.087 � 0.006 0.074 � 0.003 0.04 0.83

ATR Left 0.122 � 0.006 0.107 � 0.004 0.04 0.83

Right 0.112 � 0.006 0.097 � 0.004 0.04 0.81

ILF Left 0.100 � 0.005 0.080 � 0.005 0.008 1.12

Right 0.133 � 0.006 0.119 � 0.003 0.04 0.82

SLF Left 0.131 � 0.005 0.115 � 0.004 0.03 0.89

Right 0.144 � 0.006 0.126 � 0.004 0.02 0.95

CST Left 0.205 � 0.006 0.188 � 0.005 0.03 0.86

Right 0.194 � 0.006 0.176 � 0.005 0.03 0.89
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3.2. Myelin water fraction (MWF)

Figure 1 shows theMWFmaps of all 15 participants withmTBI and 12
controls. Note the overall qualitative reduction in MWF in the mTBI
participants. Region of interest (ROI) analysis confirmed significantly
lower global white matter (GWM) MWF in the mTBI group compared to
controls (see first row of Table 3 and Figure 2). Analysis of the ROIs
showed a consistently lower MWF in the mTBI group compared with the
controls in all ROIs (see Figure 2 and Table 3). Cohen's d were calculated
and the effect sizes were all large in magnitude.

Figure 1 shows that the range of MWF across the control or the mTBI
groups alone is large compared to the differences in means between the
groups. This indicates that factors other than mTBI pathology contrib-
uted to MWF. Two candidate contributors are years of education and age;
4

therefore the relationship between these factors and MWF across all
controls and mTBI were evaluated using Pearson's correlations. Years of
education was significantly positively correlated with MWF in all ROIs (p
< 0.044) except in the left ILF (p ¼ 0.1) but age was not significantly
related to MWF in any ROI. Figure 3 shows MWF of global white matter
in controls and mTBI plotted against years of education (p ¼ 0.002 and r
¼ 0.54) and age (p ¼ 0.3 and r ¼ 0.2). Correlations with GWM MWF for
each subject group were also determined; control: education (p ¼ 0.049,
r ¼ 0.58) and age (p ¼ 0.3, r ¼ 0.33); mTBI: education (p ¼ 0.09, r ¼
0.460 and age (p ¼ 0.6, r ¼ 0.150).

In the ANCOVA, the group difference indicating trending toward
lower GWM MWF in mTBI participants relative to controls (p ¼ 0.05)
after removing variances accounted for by years of education, which had
a significant effect on the model (p ¼ 0.01), and age, which did not p ¼



Figure 2. Myelin water fraction (MWF) for all controls and mild TBI subjects; in all regions of interest; A) genu of corpus callosum (GCC), body of corpus callosum
(BCC), splenium of corpus callosum (SCC), minor forceps (MN), global white matter (GWM), B) left and right anterior thalamic radiation (ATR), superior and inferior
longitudinal fasciculus (SLF and ILF respectively) and corticospinal tract (CST).
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Figure 3. Effect of years of education and age on myelin water fraction (MWF) of global white matter (GWM) across controls and mild TBI. The linear fit over both
control and mTBI is represented by the black line and the Pearson’s correlation coefficient (r) and p-value between A) education (p¼0.002, r¼0.6) and B) age (p¼0.3,
r¼0.2) with MWF.
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0.6. After controlling for education and age, the following ROIs showed
significant group differences: SCC (p ¼ 0.02) ILFL (p ¼ 0.02), and SLFR
(p ¼ 0.04), the other ROIs were not significant, p > 0.05.

3.3. Group differences in cognitive function and correlations between MWF
and cognitive scores

Average age adjusted cognitive composite scores for Crystallized and
Fluid cognition are summarized in Table 4 and the distribution of scores
are presented in Figure 4 for each group. Fluid cognition was signifi-
cantly higher in controls than mild TBI, although both means were above
100, which signifies average performance. Crystallized cognition was not
statistically significantly different between groups and both means were
above 115 which signifies a high average level of performance. Impor-
tantly, however, even though crystallized cognition was not statistically
significantly different between groups (likely due to sample size), the
Cohen's d indicated a large magnitude effect size for both Crystallized
Fluid between-group comparisons. Figure 5 shows the scatterplots for the
correlations between cognitive scores and GWMMWF for mTBI subjects.
No significant correlations were found betweenmTBIMWF and cognitive
scores in any ROI.
Table 4.Mean and sd of age-adjusted cognitive scores for controls and participants wi
size).

Subject Group N Crystallized Cognition Composite Score

Mean (sd) p-value

Control 9 123(5) p ¼ 0.06

mTBI 15 115(11)
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4. Discussion

In this study, we report several new findings in relation to MWF in a
select group of individuals with chronic mTBI with persistent symptoms.
First, we found significantly lower MWF in individuals with chronic
mTBI compared with age, gender and education matched healthy in-
dividuals. Lower MWF was evident globally, and in all white matter re-
gions examined . Global MWF was 12% lower, and MWF of the corpus
callosum was 15–18% lower in the mTBI group. The number of years of
education had a significant effect on most ROI MWFmeasures but age did
not. After accounting for the variance in MWF associatedwith differences
in years of education, GCC, left ILF, SCC, SLF and global white matter
MWF still exhibited significant group differences between controls and
mTBI, indicating that the reduced MWF in participants with chronic
mTBI was not solely due to education. It is important to highlight that
while theMWF findings may to some degree be related to the mTBI, there
may also be a number of other factors, such as pre-existing differences
between groups, ongoing symptoms, differences in psychological coping,
differences in ability of the brain to repair itself, etc. that may reflect the
decreases that we observed.

Previous recent studies on MWF in TBI have reported a range of
findings. For example, Choi et al. [54] found significantly lower global
th mTBI (compared using an independent t-test and a Cohen's d to quantify effect

Fluid Cognition Composite Score

Cohen's d Mean (sd) p-value Cohen's d

0.86 117(12) p ¼ 0.02 1.05

101(17)



Figure 4. Age adjusted A) Crystallized and B) Fluid Cognitive Composite scores for each subject group and subject, and independent t-test comparison between
control and mTBI. p-values are represented as *<0.05.

Figure 5. Age adjusted A) Crystallized (p¼0.3, r¼-0.3) and B) Fluid(p¼0.6, r¼0.1) Crystallized Composite scores compared to global white matter (GWM) myelin
water fraction (MWF) for mild TBI participants.
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apparent MWF in a TBI group compared to healthy controls; however,
their participants with TBI had moderate-to-severe injuries and were
only 3-months post-injury. A study [50] on athletes with concussion
found a decrease in SCC MWF in the acute stage but return to baseline
MWF at a month 2 follow up. In mice models [20], demyelination,
remyelination, and excessive myelin are components of white matter
degeneration and recovery in mild TBI with traumatic axonal injury.
These studies suggest that in addition to the nature of the injury, myelin
changes including increased myelin, reduced efficiency in clearing
myelin debris combined with the immune response may have complex
interactions that faciliatate ongoing neuroinflammation [20]. An
ongoing neuroinflammatory response may in fact be associated with
persistent symptoms. To our knowledge, this study is the first to report on
changes in MWF in chronic mTBI and points to the need for further work
to understand the complex underlying mechanisms of myelin change in
individuals with persistent symptoms.

Of particular interest is that we found significantly lower mylelin
water fraction in white matter tracts that have previously been impli-
cated in mTBI [74]. These include specific regions of the corpus callosum,
MN, right ATR, left ILF, SLF and CST. The corpus callosum is a bundle of
long commissural fibres that connect the two hemispheres of the brain.
Multiple studies and meta-analytic [74, 75] work show the CC is
commonly affected (and thus examined) and the posterior portion of the
CC (the splenium) is the area of the brain is more affected than the genu
and body and is most consistently injured after TBI. As well, the splenium
is an area known to be rich in myelin and thus has a high MWF [27]. We
found the CC, and specifically the SCC may be sensitive to detecting
differences between controls and mTBI.

MWF has been found to change as a function of age and years of
education. Specifically, in humans, myelin development begins in utero
and develops quickly through the first few years but continues to increase
through adolescence and young adulthood [76, 77] and is thought to
increase with learning and years of education in healthy adult brains [78,
79]. Our study add to the evidence of an association between MWF and
years of education in healthy adults, however we also found this rela-
tionship in our TBI cohort. We did not find a significant correlation be-
tween age andMWF in either cohort or combined, which is different than
what was found in the schizophrenia studies [53, 78]. This is most likely
due to the much lower mean age in the schizophrenia study. MWF
changes are more dramatic at lower ages and higher ages, while the in-
crease of MWF with age is gradual in middle age [79], and thus the in-
fluence of age may not have been detectable in our cohort. These findings
underline the importance of matching groups for years of education.

Individuals in the mTBI group showed lower Crystallized scores and
especially Fluid cognitive scores than controls. Despite this, it should be
noted that the mean cognitive scores were higher than or equal to 100
(average range) for both groups. Contrary to our hypothesis, we did not
find a significant correlation between measures of MWF and either
crystallized or fluid cognition for mTBI. A recent study reported a sig-
nificant association between global MWF and processing speed, but this
was evident in a sample of patients with moderate to severe TBI at 3
months post-injury [55]. Persistent cognitive deficits are rarely found in
mTBI; however, here we found lower cognitive scores in mTBI than
controls; however, we cannot rule out that the cognitive reductions in our
patients were not due to prexisting cognitive differences between groups,
highlighting that the results of this study may not be generalizable to all
mTBI patients.

Traumatic brain injury imparts a major burden on society and even
mild TBI can have long-term effects on some patients. There is increasing
evidence that TBI is not a ‘single event’ but rather an ongoing process
which unfolds across months, years, and possibly over a lifetime; thus,
improved monitoring of long-term effects of TBI is essential [80]. White
matter tracts are particularly vulnerable to a TBI and monitoring the
myelination of these tracts may expand our knowledge and inform the
development of diagnostic and prognostic biomarkers. Myelin water
fraction is a powerful quantitative technique to examine myelin content
8

and has been used to examine a variety of brain diseases and disorders
[38]. Here we showMWF differences in mTBI up to 6 months post-injury,
compared to healthy controls, and show the utility of MWF to examine
long-term bran changes in patients with mild TBI. Further study is
needed to identify the mechanisms underlying the lack of myelin
regeneration and strategies to enhance the recovery process in in-
dividuals with chronic mTBI with persistent symptoms.
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