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Although there are several immunotherapy approaches for the treatment of Central
Nervous System (CNS) tumors under evaluation, currently none of these approaches
have received approval from the regulatory agencies. CNS tumors, especially
glioblastomas, are tumors characterized by highly immunosuppressive tumor
microenvironment, limiting the possibility of effectively eliciting an immune response.
Moreover, the peculiar anatomic location of these tumors poses relevant challenges in
terms of safety, since uncontrolled hyper inflammation could lead to cerebral edema and
cranial hypertension. The most promising strategies of immunotherapy in neuro-oncology
consist of the use of autologous T cells redirected against tumor cells through chimeric
antigen receptor (CAR) constructs or genetically modified T-cell receptors. Trials based on
native or genetically engineered oncolytic viruses and on vaccination with tumor-
associated antigen peptides are also under evaluation. Despite some sporadic
complete remissions achieved in clinical trials, the outcome of patients with CNS
tumors treated with different immunotherapeutic approaches remains poor. Based on
the lessons learned from these unsatisfactory experiences, novel immune-therapy
approaches aimed at overcoming the profound immunosuppressive microenvironment
of these diseases are bringing new hope to reach the cure for CNS tumors.

Keywords: CNS, brain tumor, immunotherapy, chimeric antigen receptor, T cell receptor, oncolytic virotherapy,
vaccination, immunocheck point inhibitors
INTRODUCTION

Brain tumors are the most common solid tumors of children (1, 2). Standard therapy for these
diseases includes surgical resection, radiation, and, in selected cases, chemotherapy. Despite
aggressive treatment, many patients have a poor long-term outcome or, frequently, develop
treatment-related long-term sequelae, including hormone dysfunction, sensory-motor and
neurocognitive impairments (3). In the last decades, information on molecular pathways
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responsible for the development of these tumors has increased as
result of extensive knowledge on the genomic, epigenetic, and
transcriptomic landscape. This allows for a better tumor
classification and provides valuable information for target
therapies but does not significantly improve survival for the
most aggressive brain tumors. Immunotherapy represents an
innovative and attractive approach potentially able to eradicate
cancer cells, sparing adjacent normal brain tissue. This
peculiarity is relevant for CNS tumors, which cannot be
surgically resected due to their location in the brainstem.
However, several factors may hinder the efficacy of cell
immune therapy in the contest of CNS tumors. Indeed, the
brain was historically considered an immune-privileged site due
especially to the presence of several physical barriers, including
blood–brain barrier (BBB), blood-meningeal barrier, and
choroid plexus barrier (also known as blood–cerebrospinal
fluid (CSF) barrier) (4, 5). Moreover, the adaptive response to
CNS antigens is strongly reduced due to lack of (efficient)
lymphatic drainage (6). A recent report describes the presence
of lymphatic system in the meninges, allowing T cells to reach
the draining cervical lymph nodes for antigen presentation (7).
Physiologically, although resting T cells do not cross the BBB,
they traffic from meningeal blood vessels into the CSF, where
cells can enter the brain parenchyma via the pia mater or choroid
plexus. By contrast, activated T cells are able to traverse the BBB
trough the capillary tight junctions. For this reason,
immunotherapy approaches associated with in vivo or ex vivo
activation of T cells may potentially provide a potent tool to
facilitate the penetration of the immune system toward the BBB.

Moreover, the development of an effective immunotherapy
approach should take into consideration that normal brain
parenchyma has evolved to protect itself against an immunologic
attack (8), characterized by the paucity of professional antigen-
presenting cells (APC) (9) and by the downregulated expression of
the major histocompatibility complex (MHC), both features
limiting antigen presentation (10).

New evidence shows that the tumor microenvironment
(TME) plays a key role in negative modulation of
immunotherapeutic approaches.

Glioblastoma (GBM) is one of the best characterized CNS
tumors with regard to TME. It is characterised by abundance of
cytokines [in particular interleukin-6, interleukin-10,
transforming growth factor-beta (TGF-b) and prostaglandin-E]
secreted by tumor cells, microglia and/or tumor-associated
macrophages (TAMs), exerting strong immunosuppressive
activity toward the inhibition of Natural Killer (NK)-cells and
T-cells, as well as enhancing T-cell apoptosis, skewing TAM
phenotype, and downregulating MHC expression on both tumor
cells and APC (11, 12). Moreover, TAM are the most abundant
stromal cell type in large number of cancers, including GBM (13)
and brain metastases (14), and can represent up to 30–50% of the
tumor mass. Indeed, the presence of TAMs, often associated with
poor patient prognosis (15), fosters tumor growth, controls
metastasis and affects therapeutic response (16, 17).

TME hypoxia i s another re l evant regu la tor o f
immunosuppressive pathways. In particular, TME milieu
regulates STAT3 activation associated to hypoxia-inducible
Frontiers in Immunology | www.frontiersin.org 2
factor-1 alpha induction that in turn increase vascular
endothelial growth factor (VEGF) expression. This signaling
cascade leads to activation of T regulatory cells, and inhibition
of APC. For this reason, targeted delivery of cytokines/chemokines
has been considered to reduce the negative impact of the TME in
the immune-system control of CNS tumors (18–20).

CNS inflammation is another relevant factor to be considered
in the context of immunotherapy for CNS tumors. Recent insights
into neuro-inflammation indicate that immunocells represent a
cell component critical in regulating CNS inflammation. In
particular, IL1b, besides its function as key element in
inflammation, has a pivotal role in inducing a slow glioma-
initiating cell (GIC) transition into a mesenchymal (MES) state
(reactive-astrocyte-like cell state), influencing the tumor response
to therapy, as well as the development of resistant tumor clones
with a peculiar DNA methylation profile (21).

Another relevant factor to be considered in developing an
effective immunotherapy for CNS tumor is the strong exhaustion
profile induced via continuous TCR/CAR signaling and observed
in tumor-infiltrating lymphocytes (TIL) from patients with brain
neoplasia, associated to a significant reduction of IL2, IFN-g and
TNFa production (22, 23). In GBM patients, PD-1, LAG-3,
TIGIT, and CD39 were found highly expressed on CD8+ TILs
(23), supporting the reason to deeply investigate the interplay
between PD-1 receptor and its ligand PD-L1 in CNS tumors. In
particular, PDL-1 was not only described to be expressed on
GBM cells, promoting from one end T cell inhibition and to the
other end the invasion of tumor cells in the brain tissue (24, 25)
but also on TAMs (26), heightening their immunosuppressive
role in the brain TME (27).

These evidences led to the clinical exploration of the use of
monoclonal antagonist antibodies directed towards PD1 and
PD-L1, with clinical trials enrolling patients with recurrent
GBM (24) (Table 1).

Finally, encouraging results were observed in CNS neoplasia
treated with Adoptive Cell Transfer (ACT), of both un-modified
or gene-modified immune cells, as well as tumor associated
vaccines and oncolytic virus (Figure 1).

In the present review, we analyze several aspects that limit
efficacy of adoptive cell therapy in patients with CNS tumors and
present strategies to overcome these hurdles.
NON-ENGINEERED IMMUNE CELL
APPROACHES

Several groups proved that CNS tumors can be targeted by
conventional a/b T, NK and g/d T cells, although their activity
is significantly modulated by the TME.

NK cells play a relevant role in immunity against tumors,
without requiring antigen priming or HLA restriction for
displaying their activity (28). These advantages are particularly
relevant for CNS cancers where the antigenic landscape is
extremely heterogeneous, limiting the application of adoptive T-
cells. As previously mentioned, CNS tumor cells often downregulate
self-markers like HLA class I, allowing them to evade T-cell
June 2021 | Volume 12 | Article 634031
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mediated lysis; however, this renders them potentially more prone
to lysis by NK cells. GBM cells do express several activator ligand
for NK receptors, as for example MHC class I polypeptide-related
sequence A (MICA) (29) ligand for NKG2D+ present on NK cells,
as well as CD155 and CD112 recognized by TIGIT and CD96
receptors (30). Indeed, it has been proved that NK cells exert lytic
activity toward Medulloblastoma (MB) and GBM cell lines, both in
in vitro (31–33) and in vivo models (31, 34, 35). Nevertheless, NK
cell activity needs to be optimized in order to overcome inhibition
exerted by tumor intrinsic and TME-associated factors. In
particular, a pivotal trial (Table 1) has been conducted to test
safety and efficacy of autologous NK cells infused in combination
with IFN-b to improve NK-cell-mediated cytotoxicity (36). Four
weeks after infusion, this led to either stable disease or a measurable
response without severe toxicity. These results are encouraging,
although no complete response was achieved. For this reason, new
strategies were considered, both in the pre-clinical and the clinical
setting, to improve NK-cell mediated antitumor activity (31, 37),
including their genetic modification by CAR (38, 39). Unlike NK
cells, cell therapies with autologous TILs are HLA-restricted, and
Frontiers in Immunology | www.frontiersin.org 3
are based on the tumor recognition toward the T-cell receptor
(TCR). TILs specific for somatic mutations have demonstrated
significant clinical responses in both primary andmetastatic cancers
(40–42). Indeed, TILs, locally infused through an Ommaya
reservoir and combined with IL2, has been investigated in glioma
patients (43), resulting in no significant (Grade 3 or 4)
complications, the best response being represented by partial
response in three out of six patients.

Although these studies provided evidence that non-
engineered immune cells may traffic to CNS and exert
measurable antitumor activity, technical issues, mainly
associated to difficulties to isolate and expand TILs from tiny
fractions of primary brain tumors, have hampered the wide
clinical application for this approach in CNS tumors.

Some groups reported that antigens and DNA from human
cytomegalovirus (CMV) can be detected in GBM tissues but not
in surrounding healthy tissue (44–46). This observation provided
the rationale for hypothesizing alternative virus-specific ACT
approaches for CNS tumors. However, the clinical relevance of
this evidence is still controversial (47, 48). Indeed, it was also
TABLE 1 | Summary of recruiting or completed clinical trials covering brain tumor immuno-therapeutic approaches.

Treatment Strategy Brain tumor Routes of administration Phase Clinical Trial Number
(recruiting or completed)

or PMID

Autologous NK cells administered
in combination with IFN-b

Un-modified
Adoptive Cell

Malignant gliomas focal and intravenous injections Phase I PMID: 15274367

Autologous tumor infiltrating
lymphocytes (TILs) and
recombinant interleukin-2 (rIL-2)

Un-modified
Adoptive Cell

Malignant gliomas intratumoral infusions Phase I PMID: 10778730

Autologous lymphokine-activated
killer (LAK)

Un-modified
Adoptive Cell

GBM Intralesional LAK Cell Therapy Phase I/II NCT 00331526

Autologous Lymphoid Effector
Cells ((Cytotoxic T cells and
Natural Killer)) Specific Against
Tumor-cells (ALECSAT)

Un-modified
Adoptive Cell

GBM intravenous infusios Phase I NCT01588769

Autologous CMV-specific T-cell
therapy and chemotherapy

Virus specific
Adoptive Cell

Recurrent GBM intravenous infusion Phase I ACTRN12609000338268

Autologous polyclonal CMV pp65-
specific T cells

Virus specific
Adoptive Cell

GBM intravenous infusion Phase I/II PMID: 32299815

Neoadjuvant Nivolumab treatment Immunomodulation GBM intravenous infusion Phase II NCT02550249
Nivolumab plus ipilimumab
treatment

Immunomodulation Brain metastases of Melanoma intravenous infusion Phase II NCT02320058

Nivolumab vs Temozolomide
(TMZ) Each in Combination With
Radiation Therapy

Immunomodulation Unmethylated MGMT (Tumor O-6-
methylguanine DNA
Methyltransferase) Glioblastoma

intravenous infusion and oral
administration

Phase III NCT02617589

HSV-1 G207 treatment Oncolytic virus
(OV) Approaches

GBM and AA Intralesional Therapy Phase I PMID:10845725;
PMID:18957964

HSV-1 G207 treatment combined
with a single 5 Gy dose of focal
radiation within 24 h

Oncolytic virus
(OV) Approaches

Progressive or Recurrent Malignant
Supratentorial Brain Tumors

intratumoral inoculation Phase I PMID: 28319448

Rindopepimut with temozolomide
treatment

Vaccination EGFRvIII-expressing glioblastoma Rindopepimut: monthly
intradermal injection
Temozolomide: oral
administration

Phase III PMID: 28844499

Heat-Shock Protein Peptide
Complex-96 (HSPPC-96) vaccine

Vaccination GBM intradermal injection Phase II NCT00293423.

autologous formalin-fixed tumor
vaccine (AFTV)

Vaccination GBM intradermal injection Phase I/IIa UMIN000001426

HLA-A24–restricted candidate
peptides (ITK-1) vaccine

Vaccination GBM intradermal injection Phase I PMID: 21149665
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proved that the frequency of pp65-specific T cells in CMV-
seropositive GBM patients was decreased in comparison to
healthy donors (49). Although CMV is not classified as an
oncogenic virus, its role in modulation of cell proliferation,
angiogenesis, and immune evasion is well known (50). In the
context of brain neoplasia, human CMV increases glioblastoma
neurosphere proliferation and p-STAT3 levels, these findings
suggested the existence of an association between CMV infection
and STAT3-dependend modulation in glioma formation/
progression, together with tumor suppressor mutations (51).
Consistent with these findings, CMV seropositivity correlates
with worse prognosis in GBM patients (52). This discovery
provides the basis of viral antigen targeting immune therapies
in GBM. In this context, besides the incidental observation in one
patient of a robust CMV pp65-specific CD8+ cell response after
injection of autologous dendritic cells pulsed with an autologous
tumor lysate (53), the use of CMV-specific T-cell therapy did not
show a significant efficacy in a Phase I pivotal study for GBM
patients (54), or in a larger cohort of patients treated at MD
Anderson Cancer Center (55).

These preliminary clinical data support the hypothesis that
the development of effective immunotherapeutic strategies for
CNS tumors requires a robust understanding of factors
regulating the activity of the effector cells in the CNS tumor
lesions. Several groups proved that un-modified immune cells
Frontiers in Immunology | www.frontiersin.org 4
therapy is significantly potentiated when administered in
concomitance to hematopoietic stem and progenitor cells
(HPSC). Mitchel’s group (56, 57) elegantly proved, in MB and
GBM animal models, that transfer of HSPCs (in particular,
CCR2+ HSCs) (57) with concomitant cell therapy approach
led to the production of activated Dendric Cells (DCs)
(CD86+CD11c+MHC-II+ cells). These intratumoral DCs
largely replaced abundant host myeloid-derived suppressor
cells. This mechanism was strictly related to the T-cell-released
IFNg that leads to the differentiation of HSPCs into DCs,
activation of T cells and rejection of intracranial tumors (56).
In line with these findings, it should also be mentioned that
macromoleculs such cytokines, can reprogram the TME, but
systemically delivered cytokines have limited access to the CNS.
ENGINEERING T CELLS TO IMPROVE
ADOPTIVE CELL THERAPY IN CNS
NEOPLASIA

RNA-modified T cells have been considered in order to deliver
cytokines directly into brain tumors to bypass the hurdles to
access the CNS. In a GBM murine model, T cells modified with
GM-CSF RNA delivered this cytokine into brain tumors,
FIGURE 1 | Potential strategies for the treatment of brain tumors. The cartoon summarizes the main immunotherapeutic approaches currently used in clinical trials,
subdivided in four major categories: 1) Cancer Vaccine based on Dendritic Cells (DC) pulsed with neoantigens or electropored/infected to transfer neo-antigen genes;
2) Checkpoint Inhibitors based on the use of antibody blocking relevant exhaustion pathway in T cells; 3) Adoptive Cell Therapy based on genetic modification of
effector cells with expression vector for TCR or CAR; 4) Oncolytic Virus Therapy based on tumor cell infection, and the consequent activation of adaptive immunity.
DC, Dendritic Cells; CAR, Chimeric Antigen Receptor; TCR, T Cell Receptor; MHC, Major histocompatibility complex; NK, Natural Killer cells; OV, Oncolytic virus.
June 2021 | Volume 12 | Article 634031
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significantly prolonging overall survival of the animals (18). In
particular, GM-CSF recruited DCs in to the tumors, induced
their differentiation and maturation, leading to activation of
TILs (58).

T Cell Receptor (TCR) Redirected T Cells
to Target CNS Tumor Cells
TCR-based adoptive T-cell therapies allow the genetic redirection
ofT cells on specific tumor targets in aHLA-restricted fashion (59).
TCR-based ACT has produced preliminary promising clinical
results in extracranial solid tumor (60, 61) and in acute leukemia
(62), whereas in brain tumors, the clinical field is still largely
unexplored. At the preclinical level, several tumor antigens have
been evaluated for TCR approaches in CNS neoplasms, also
considering the evidence that tumor-associated antigen (TAA)-
reactive T-cells could be detected in patients with glioma (63),
suggesting that in this type of cancer the intratumor DCs can
process TAA, leading to the emergence of tumor-specific T cells.
Between the different categories of TAAs (64), cancer/testis
antigens (CTA) are overexpressed in most human cancers due to
promoter demethylation in tumor elements (65, 66), whereas their
expression in healthy tissues is restricted to germ cells that, lacking
the major histocompatibility complex (MHC), are not targeted by
T cells.

Among the members of the CTA family, PRAME (antigen
preferentially expressed in melanoma) is expressed in leukaemia
(67), some solid tumors (68), with a restricted expression in
healthy tissues (69). In brain tumors, the CTA PRAME is
detectable in about 80% of MB tissues, independently from the
molecular and histopathologic subgroups (70–72), with its high
expression being correlated with patient dismal overall survival
(72). We recently showed that PRAME-TCR T cells are capable
of killing MB cells, in vitro as well as in murine xenograft in vivo
models (72), representing an innovative, effective strategy for
patients with MB, in the absence of significant toxicity.

NY-ESO-1 (New York oesophageal squamous cell carcinoma
1) is a CTA expressed in ovarian cancer (22.6%), oesophageal
cancer (25.3%) and lung cancer (28.6%) (73). Discordant data
were reported for NY-ESO-1 expression in glioma; most cases,
were present at a very low level (63, 74), while the DNA‐
demethylating agent, as 5‐aza‐2′‐deoxycytidine, markedly
reactivated its expression in GBM but not in normal human
cells (74). For this reason, demethylating agents have been
administered in combination with ACT approaches targeting
NY-ESO-1 (75). These preclinical studies led to a clinical
investigation of the administration of T cells expanded ex vivo
through the stimulation with APCs (represented by CD4+ T cells
exposed to DNA-demethylating agent to induce the expression
of high level of CTA). Among the 25 GBM patients enrolled in
the Phase I clinical trial (NCT01588769), tumor regression was
observed in three patients (76).

Another category of relevant TAA is represented by
neoantigens generated by genetic mutation in cancer cells. One
example is represented by H3.3 K27M (lysine 27 to methionine
substitution in histone H3) mutation, present in 70% of DIPG
patients and associated to poor overall survival (77, 78). HLA-
Frontiers in Immunology | www.frontiersin.org 5
A*02-restricted epitope from H3.3 K27M mutated protein was
used to generate tumor specific T cell clone with high affinity for
the selected peptide. From this T cell clone, TCR a- and b-chains
were sequenced to generate H3.3K27M specific TCR, that
transferred in polyclonal T cells was able to specifically redirect
effector gene modified T cells toward H3.3K27M+ glioma cells in
vitro, but also when adoptively transferred into intracranial
glioma xenografts mice (79).

Tumor-specific-TCR engineered T cells represent an
interesting approach, allowing to target proteins with a wide
and specific expression in tumor cells even when their location is
subcellular. This feature enables the ability to largely broaden the
range of the targetable antigens, in regard to those suitable to be
recognized by standard antibody-based immune-strategy. High
affinity/avidity TCRs are described to recognize target cells even
at low epitope densities (80). Moreover, considering the high
cellular and molecular heterogeneity in CNS tumors (81), we
could also take into consideration the development of TCRs
targeting multiple antigens to avoid the rapid subclone tumor
selection due to the targeting of a single peptide. Regardless of
these great features and versatility, the efficacy of TCR T-cells is
strictly related to the HLA-peptide presentation, which is the
major reason for treatment failure in those tumors characterized
by HLA down-regulation (82, 83). To overcome this issue, we
have recently showed that IFN-g treatment can re-establish HLA
expression on brain tumor cells (72).

CAR T-Cell Approaches in CNS Tumors
T cells genetically modified with CAR emerged in recent years as
a promising immunotherapeutic approach, which could mediate
a non-MHC-restricted anti-tumor response (84). CARs are
artificial receptors composed of a region targeting a specific
antigen linked, through an intracytoplasmic domain, to the T-
cell activation domain CD3zeta chain (first-generation CAR).
The target specific region can comprise a single-chain variable
fragment (scFv) obtained from a specific monoclonal antibody,
as well as a receptor domain binding a specific ligand expressed
on tumor cells.

The intracytoplasmic domain can be enriched by either one or
two costimulatorymolecules (i.e. CD28, OX40, 4-1BB, or other) to
generate second- or third-generation CARs, respectively (85).
Clinical trials based on autologous CAR T-cells achieved
unprecedented results for the treatment of haematological
neoplasia. Two CD19-specific CAR T-cell products, namely
Kymriah® (Novartis) and Yescarta® (Kite Pharma), have been
recently approved by the US Regulatory Agency Food and Drug
Administration and subsequently by the European Medicines
Agency for treating B cell ALL and diffuse large B-cell lymphoma
(DLBCL), respectively (86).The therapeutic efficacyofCART-cells
beyond hematopoietic cancers is less clear to date, there is limited
documented information on antitumor activity against solid
neoplasms. Several reports on CAR.CD19 T cells have proven
that the genetically modified cells can cross the BBB (87, 88). A
patient with primary refractory DLBCL involving the brain
parenchyma who achieved complete remission after CAR.CD19
T-cell infusion, in the absence of cytokine release syndrome or
June 2021 | Volume 12 | Article 634031
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neurotoxic effects, provides strong support that CAR T cells have
the capacity to penetrate the CNS (89).Moreover, in the context of
CNS, intrathecal and intraventricular administration of CAR T-
cells was tested in patients with GBM. The treatment was well
tolerated, without cytokine release syndrome or severe
neurotoxicity (90–92).

Different approaches with CAR T-cells have been evaluated
for the treatment of patients with GBM and/or MB, also in phase
I/II clinical trials, by targeting one or more of the following
targets (Table 2):

Interleukin-13 receptor alpha2 (IL-13Ra2) is over-expressed in
up to 75% of the patients with GBM but not in normal brain (2, 93,
94). Both first and second-generation CARs, have been successfully
used to target IL-13Ra2 (90, 92). This CAR recognizes with high
affinity IL13Ra2 via a membrane-tethered IL-13 ligand and starts
cytolytic killing (95). Moreover, targeting of IL-13Ra2 positive
tumors by CAR T cell approach has been also explored in Phase
Frontiers in Immunology | www.frontiersin.org 6
I clinical trial (90, 92), proving the safety and feasibility of
intracranial administration of IL-13Ra2-CAR T cells,
administered toward multiple routes of infusion. These trials,
pioneers of the field, were extremely relevant since underlying
that in the majority of the cases, a patient’s response (whereas
partial and transient) was observed in the absence of serious adverse
events (90). In the path to optimize the approach and reach more
impact on patient outcome, T cell population enriched in central
memory cells (91) were considered during the manufacturing
process as well as the CAR design was optimized by
incorporating 4-1BB (CD137) as a costimulatory domain (96), to
achieve a prolonged in vivo survival.

Finally, an innovative and intriguing approach to enhance
CAR. IL-13Ra2 T cell antitumor activity toward self-renewing
GBM stem cells (GSCs), has been recently discovered by the
application of whole-genome clustered randomly interspersed
short palindromic repeats (CRISPR)-knockout screen applied to
TABLE 2 | Summary of recruiting or completed clinical trials related to the use of CAR-T cells in the treatment of brain tumors.

Treatment Target Strategy Costimulatory
domains

Brain tumor Routes of administration Phase Clinical Trial
Number

(recruiting or
completed)

h IL13(E13Y)-zetakine CD8+
CTL

IL-
13Ra2

I CAR T none Recurrent or Refractory High-Grade
Malignant
Glioma

intravenous infusion Phase I NCT00730613

IL13Ralpha2-specific Hinge-
optimized 41BB-co-
stimulatory CAR Truncated
CD19-expressing T Cells

II CAR T 4-1BB Recurrent or Refractory
Glioblastoma

CAR T Cells: via
intratumoral, intracavitary, or
intraventricular catheter

Phase I NCT02208362

IL13Ra2-Targeted CAR T
Cells Combined With
Checkpoint Inhibitor

II CAR T±
Nivolumab
and
Ipilumab

4-1BB Recurrent or Refractory
Glioblastoma

Nivolumab and Ipilumab:
intravenous infusion CAR T
Cells: via Rickham catheter
(ICV/intracranial ICT)

Phase I NCT04003649

CAR T-EGFRvIII T cells EGFRvIII II CAR T 4-1BB Patients With Residual or
Reccurent EGFRvIII+ Glioma

intravenous infusion Phase I NCT02209376

CAR T-EGFRvIII T cells +
Aldesleukin

III CAR T CD28.4-1BB Malignant Gliomas Expressing
EGFRvIII

intravenous infusion Phase I/II NCT01454596

EGFR806-specific CAR T II CAR T 4-1BB EGFR-positive Recurrent or
Refractory
Pediatric CNS Tumors

Locoregional administration Phase I NCT03638167

CMV-specific Cytotoxic T
Lymphocytes Expressing
CAR-HER2

HER2 II CAR T CD28 glioblastoma multiforme (GBM). intravenous infusion Phase I NCT01109095

Memory-enriched autologous
HER2(EQ)BBzeta/CD19t+ T
cells

II CAR T 4-1BB Recurrent Brain or Leptomeningeal
Metastases

intraventricular administration Phase I NCT03696030

HER2-CAR T cell CAR T not specified CNS Tumors ARM A: Tumor Cavity
Infusion
ARM B:Ventricular System
Infusion

Phase I NCT03500991

HER2-specific CAR T cell CAR T not specified CNS Tumors Intracranial Injection Phase I NCT02442297
(C7R)-GD2.CART cells GD2 CAR T not specified high grade glioma (HGG) or diffuse

intrinsic pontine glioma (DIPG)
intravenous infusion Phase I NCT04099797

14g2a-CD8.BB.z.iCasp9 CAR T 4-1BB Diffuse Intrinsic Pontine Gliomas
(DIPG) and
Spinal Diffuse Midline Glioma (DMG)

intravenous infusion Phase I NCT04196413

B7H3-CAR T cells B7-H3 CAR T not specified Diffuse Intrinsic Pontine Glioma/
Diffuse Midline Glioma and
Recurrent or Refractory Pediatric
Central Nervous System Tumors

via an indwelling catheter
into the tumor resection
cavity or ventricular system

Phase I NCT04185038
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both CAR T cells and GSCs (97). In particular, TLE4 or IKZF2
gene targeting were associated to an increased and long-term
efficacy of CAR T cells in this model, with a significant reduction
in exhaustion signal of the T cells, whereas knockout of RELA or
NPLOC4 GSCs were associated to the increased responsiveness
to CAR T cell control (97). Confirmation papers are highly
desirable to assess whether the same gene editing could
potentially optimize the activity of CAR T lymphocytes
characterized by antigenic specificity other than IL-13Ra2, in a
CNS tumor context other than GSC.

Epidermal growth factor receptor (EGFR/ErbB1/HER1)
belongs to the tyrosine kinase receptor family, also including
ErbB2, ErbB3, and ErbB4 (98). Overexpression of EGFR was
described in many solid tumor types and associated with cancer
cell resistance to chemotherapy (99, 100). In GBM, EGFR
amplification is mostly associated with gene rearrangements
associated to deletion of particular exons, or portions of exon,
and leading to the generation of EGFR variants, that include
deletion at N-terminal regional (EGFRvI), deletion at exons 14-
15 (EGFRvII), deletion at exons 2–7 (EGFRvIII), deletion at
exons 25–27 (EGFRvIV), deletion at exons 25–28 (EGFRvV).
The EGFR-encoding gene is overexpressed in almost 50% of
GBM patients, 25–64% of which present EGFRvIII (101, 102),
making this oncogenic protein an optimal therapeutic target for
CAR T cells (103). In a Phase I study (NCT02209376) conducted
at the University of Pennsylvania and California (USA), 10 adult
patients (45–76 years) affected by EGFRvIII-expressing recurrent
GBM were treated with CAR. EGFRvIII T cells, incorporating 4-
1BB as costimulatory domain (104). Patients received
intravenous infusion of the product, without evidence of
EGFR-directed “off-tumor, on-target” toxicity or systemic CRS.
However, magnetic resonance imaging (MRI) show the lack of a
marked tumor regression in the enrolled patients. Only one
patient had residual stable disease for 18 months (104). This
study underlined the difficulties of the clinical translation of
EGFRvIII targeting, due to the intra-tumoral heterogeneity of the
antigen expression, leading to clonal selection of the antigen-
negative tumor cells. The antigen-escape phenomenon is mostly
observed in highly heterogeneous tumors when a single antigen
is targeted. This outcome seems to be related neither to the vector
platform nor to the CAR design, since similar results have been
observed in a Phase I pilot trial on 18 patients with GBM treated
using autologous T cells genetically modified with a lentivirus
carrying CAR.EGFRvIII/CD28.4.1bb (105). To optimize the
CAR T cell therapy, a combinatory approach has been
suggested. In particular, PD-1 checkpoint blockade achieved by
either antibody blocking (106) or CRISPR-Cas9 (107–109) gene
editing has been used in combination with CAR.EGFRvIII T-
cells, both in vitro and in vivo models. To minimize “on-target,
off-tumor” toxicity, Ravanpay et al. (110), proposed a second-
generation CAR.EGFR designed using the scFv derived from the
monoclonal antibody mAb806, specific for EGFR epitope
present also in the EGFRvIII. Therefore, the construct binds to
EGFR subjected to gene amplification, with no recognition of
wild-type EGFR expressed on astrocytes (110). Recently, a Phase
I study testing locoregional infusion of CAR.EGFR806-CAR T-
Frontiers in Immunology | www.frontiersin.org 7
cells has been opened to enrol paediatric patients with EGFR-
positive recurrent/refractory CNS tumors (NCT03638167).

Choi et al. (111) proposed a CAR.EGFRvIII T-cells secreting
EGFR-bispecific T-cell engager (BiTE) to circumvent antigen
escape. In mouse models of GBM, they showed that CART.BiTE
cells were able to secrete BiTEs locally in the brain tumor,
redirecting non-specific bystander T cells against tumors which
eliminated efficacy heterogeneous tumors more efficiently,
compared to the use of a conventional CAR T cell approach
(111). This group elegantly combined two therapeutic tools
(CAR and BiTE), which are typically considered competitive
technologies, which instead could be applied in a synergicmanner.

The human epidermal growth factor receptor 2 (HER2) has
been described to be involved in cancer cell growth
and metastasis, thus representing an attractive target for
immunotherapy (112). The primary mechanism of HER2
activation in these cancers is the gene amplification leading to
the overexpression of the HER2 on the cell membrane. The
second mechanism recognized to drive the protein activation is
related to the occurrence of activating mutations (113). HER2 is
overexpressed in approximately 51% Wilms tumor, 44% bladder
cancer, 26% pancreatic carcinoma and 25% breast carcinoma
(114). ErbB2/HER2 mutation was also detected in 8–41% GBMs
(115). Primary GBM stem cells are targeted by CAR.HER2 T,
inducing regression of patient derived tumors in the animal
model (116). In open-label Phase I dose-escalation trial, Ahmed
et al . (117) used virus (CMV, Epstein–Barr Virus,
and Adenovirus) specific T cells (VSTs), expressing a
CAR.HER2.CD28.z construct to treat 16 HER2-positive
relapsed/refractory GBMs. CAR-modified VSTs show
persistence after the infusion for up to 12 months, using
molecular DNA evaluation. Whereas the majority of treated
patients relapsed early after the treatment, the overall response
rate was of 50%, with the median OS of 11.1 months from the
CAR VSTs infusion (117).

Lastly, Zhang et al., in a preclinical model targeting HER2,
proposed a different platform to treat GBM patients, based on
NK-92 cell line transduced with CAR.HER2.CD28.z construct.
In the in vitro and in vivomodels, they show a potent and specific
lytic activity of the CAR NK-92 cell line toward GBM (118).

Disialoganglioside GD2 is a ganglioside (119) of unknown
function, with limited expression in normal tissues and high
expression in to neuroblastoma (120), melanoma (121), some
sarcomas (122) and H3-K27M-mutated diffuse midline gliomas
(DMG) (123). Intravenous anti-GD2 antibodies have already
become the standard of care for high risk neuroblastoma patients
(124, 125). Although it has been reported that a normal brain
express low level of GD2 (126), in pre-clinical models (127) and
clinical trials exploring the safety and efficacy of GD2-CAR T-cell
whose scFv being derived from 14g2a monoclonal antibody
(including our academic clinical trial NCT03373097), no cases of
significant neurotoxicity were reported (128, 129). Mount et al.
showed, that intravenously administered CAR.GD2 T-cells are
able to cross the BBB and clear patient-derived H3K27M-mutated
DMG tumors (123). Shum et al. showed that CAR.GD2T cells also
engineered to express IL-7 receptor (GD2-CAR.C7R) promotes
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CART cells persistence, proliferation and anti-tumor activity in an
orthotopic GBM xenograft model (130). These encouraging
studies have fastened the clinical translation of CAR.GD2 T cells
in patients with brain tumors (NCT04099797, NCT04196413).

B7-H3/CD276 is a type I transmembrane protein belonging
to the B7/CD28 superfamily, found in a wide variety of normal
tissues and cells, including T and B cells, endothelial cells, resting
fibroblasts, osteoblasts. Recently, several studies have proved the
overexpression of CD276 on a variety of TME cells, as well as
hematologic and solid tumors, including leukemia (131),
prostate cancer (132), melanoma (133), neuroblastoma (134),
osteosarcoma (135), and CNS tumors (136).

Many pediatric CNS tumors express B7-H3; in particular,
high B7-H3 expression has been found in the following tumors:
atypical teratoid/rhabdoid tumors (ATRT), ependymomas (all
grades), MB, CNS embryonal tumors, choroid plexus tumors
(CPTs), meningioma and craniopharyngiomas (136, 137).

In MB, WNT subtype expresses the highest B7-H3, while
SHH subtype show the lowest one (136). However, low-grade
gliomas and germ cell tumors show a negligible difference of B7-
H3 expression respect to normal brain (136).

Majzner et al., recently reported that CAR.B7-H3 T cells
incorporating 4-1BB as costimulatory domain, showed a potent
efficacy in in vivo xenograft models, including MB (138). Loco-
regional delivery of CAR.B7-H3 T cells also exerted significant
activity over the systemic infusion for the treatment of CNS
malignancies (139). In this study, CAR.B7-H3 T-cells used for
intra-cerebroventricular or intra-tumoral administration,
mediated a significant antitumor effects in the brain ATRT
xenograft mouse model, with a reduced toxicity relative a
significant diminished systemic levels of inflammatory
cytokines as opposed to intravenously administered CAR T
cells (139). The Seattle Children’s Hospital has started a
clinical trial in 2019 based on CAR.B7-H3 T Cell based
locoregional infusion in DIPG/DMG patients and recurrent/
refractory paediatric CNS tumors (NCT04185038).

CD70 is a type II transmembrane protein, ligand for CD27.
While activated T/B lymphocytes and a subset of mature dendritic
cells express high level of CD70 expression, several hematologic and
solid tumors, including GBM, constitutively overexpress CD70
(140–142). Indeed, CD70 expression is an independent predictor
of poor OS for patients with low-grade gliomas (LGG) and GBM,
correlating with chemokine-mediated immune modulation, tumor
aggressiveness and immunosuppression via tumor-associated M2
macrophage recruitment/activation in GBM (142). Linchun et al.,
reported that CAR.CD70 T cells potently induce lytic activity
against CD70+ gliomas, both in vitro and in vivo models (143).
In order to increase the intra-tumoral T-cell migration, the same
group integrated CXCR1 and CXCR2 chemokine receptors into the
CD70-CAR approach (144). Moreover, to overcome the intra-
patient variability, for which antigen heterogeneous expression on
the tumor cells may result in a non-complete eradication of the
tumor, and inter-patient variability, for which tumor cells from
different patients may express different antigen patterns (145), bi-
specific [CD70 and B7-H3 (146) or HER2 and IL-13Ra2 (147)], or
even trivalent (targeting at the same time HER2, IL1-3Ra2 and
Frontiers in Immunology | www.frontiersin.org 8
EphA2) (148) CAR approaches have been developed, also in
combination with DNA-demethylating agent azacytidine to
diminish the occurrence of relapse after CAR T-cell
administration in the animal xenograft models of Group 3 MB
and ependymoma, associated to antigenic escape secondary to
epigenetic silencing (149).

CD-133 also called Prominin-1, is a pentaspan membrane
glycoprotein. Several human malignancies show OS inversely
correlating with CD133 expression (150). Indeed, CD133+

cancer stem cells are known markers of chemo- and radio-
resistance in GBM (151). Recently, Vora et al. provided evidences
that, in a preclinical model, CAR.CD133 T cells, with CD28
costimulation, represent a therapeutic option to target self-
renewing, chemo-radio resistant CD133+ brain tumor-
initiating cells (151).

Chondroitin sulfate proteoglycan 4 (CSPG4) is a type I
transmembrane protein with a central role in tumor progression
and metastasis (152). Many types of solid tumors overexpress
CSPG4, barely detectable in normal tissues (153–155). In
preclinical models, CSPG4-directed CAR T-cell therapy
efficiently inhibits GBM-derived neurospheres growth in both in
vitro, as well as in vivo xenograft patient-derived GBM orthotopic
mouse model (156). Clinical studies need to be conducted to study
the safety and real therapeutic activity of the proposed innovative
CAR approaches.
IMMUNOMODULATION

Approaches to optimize endogenous T-cell immune responses,
including Immune Checkpoint Inibitors (ICIs) (157, 158),
oncolytic viruses (159), and tumor neoantigen vaccines (160)
have shown evidence of bioactivity against brain tumors, also in
clinical trials (Figure 1 and Table 1).

Immune Checkpoint Inhibitors (ICIs)
Although immune checkpoint inhibition using antibodies against
CTLA-4, PD-1or PD-L1has shownconsiderable tumor regression
in several solid tumors, CNS tumors remain refractory to these
treatments (161). ICI administration in melanoma patients with
CNS metastases has shown a durable anti‐tumor response (162).
This positive outcome could be explained considering that
melanoma has a high tumor mutational burden (TMB) and that
TMBhas been clearly correlated to ICI response in treated patients.
In linewith these observations, also a subset ofGBMscharacterized
by high TMB, show a durable remission after ICIs (157, 158).
However, the majority of brain tumors are characterized by low
TMB, this last explaining a lowoverall responsiveness to ICIs (163).
It has been suggested that radiation and chemotherapy therapies in
newly diagnosed CNS tumors could increase the TMB and
therefore, favor the response to ICIs (164), as also proved in an
animal model (165). However, recent phase III trials (CheckMate-
143 and CheckMate-498) failed to prove the OS improvement in
GBM patients receiving PD-1 monotherapy (166). Nevertheless,
these studies remain important as they confirm that CNS tumors
are accessible to the immune system, and were associated with
June 2021 | Volume 12 | Article 634031

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Quintarelli et al. Optimized Immunotherapy for CNS Tumors
some clinical benefit, including the induction of the so-called
“abscopal effect”. This phenomenon is linked to the recognition
and elimination of tumor cells outside the irradiation field that are
induced by the immune system when ICI are administered (167).
Thus, further clinical studies are required to define the optimal
application of ICI in GBM patients, considering the peculiarity of
the target tumors. In particular, several reasons could explain this
unsatisfactory outcome, including the lack of prominent T cell
infiltrates especially observed in to mismatch repair-deficient
gliomas (168), the paucity of DC in the brain TME playing a key
role in the recruitment of T cells (57, 169–172), and the reduced
ability of monoclonal antibodies to cross effectively the BBB (173,
174). Several attempts are under evaluation to circumvent this
latter aspect, for example, by the delivery of ICI by nanoparticles
(175), to deliver small interfering RNAs (siRNAs) targeting EGFR
and PD-L1 (176). In a combinatory point of view, it has been
suggested that brain delivery of nanoparticle can be potentiated by
low-dose radiation that altering the tumor structure allows for the
enhancednanoparticles delivery in tumor-associatedmacrophage-
dependent fashion (177). In regard to the issue of a reduced
contribution of DC in the brain TME, the role of APC in
controlling response after ICI is strongly suggested by several
evidences. Indeed, as in the model of skin carcinoma in which it
wasproved thatT cell response to ICI is associated to the expansion
of T cells that have entered de-novo the tumor instead of the re-
activation of pre-existing highly-exhausted TIL (178, 179). It could
also be plausible that the clinical response to ICImay be associated
to thenewly recruitmentofT cells to the tumor site that are induced
by the signal generated from activated APCs. Further
investigations to study the clinical efficacy of combinatory
therapy between CARs and ICI are ongoing, including a clinical
trial in GBM patients (NCT03726515) that will evaluate the
combination of CAR.EGFRvIII T cells in association with
pembrolizumab (PD-1 inhibitor).
Oncolytic Virus (OV) Approaches
OV with their ability to selectively replicate in tumor cells, has
been described as potent antitumor approach (3). GBM was
shown to be responsive to OVs in preclinical models and clinical
trial (180–182). To overcome the viral exclusion exerted by the
BBB, the OVs can be intratumorally injected, or the approach
can be based on parvovirus that is known to have good CNS
penetration (183). Pivotal trials have established the safety of
OVs in GBM, but their efficacy has been modest to date (184).
Innovative approaches are focusing on targeted OVs and
combinatory therapy. GBM stem cells utilize autophagy
modulation as main resistance mechanism to OVs (185).
Indeed, glioma oncolysis is significantly reduced when Beclin-I
(autophagy inducer) is downregulated in tumor cells, and
tamoxifen drug, upon activation of apoptosis in OV infected
cells via BAX/PUMA pathway, is able to re-establish the tumor
sensitivity to oncolytic infection (185). Oncolytic HSV-1 (oHSV)
G207 has been the most comprehensively investigated virus in
human brain tumors (186–190). Phase I studies in adult patients
with recurrent GBM provided data of safety for intratumoral
Frontiers in Immunology | www.frontiersin.org 9
injections of single (186) or double doses of G207 dosages (187)
also combined with a single 5 Gy dose of focal radiation (188).
Based on the safety observed in the trials on adult patients, a
paediatric clinical trial (3–18 years old) in recurrent/progressive
supratentorial malignant brain tumors has been opened (189).

The oncolytic adenovirus DNX-2401 (Delta-24-RGD) has
been infused by single intratumoral injection in patients with
GBM. Amongst the 37 treated patients, 20% experienced long
term survival (>3 years from treatment), with three patients
showing a significant tumor reduction (≥95%). These relevant
clinical results were also corroborated by the observation of
DNX-2401 replication and spreading within the tumor (191).
The same oncolytic adenovirus DNX-2401 has been also used to
treat pediatric subjects with DIPG, showing improvement in OS
and quality of life (192). Lastly, Rat H-1 parvovirus (H-1PV) in
recurrent glioblastoma patients has shown the ability to trigger
specific T-cell responses (193).
Vaccine-Based Approaches
The immune system can eradicate malignant cells via
recognition of TAAs. Ideal TAAs have an expression restricted
to tumor cells, being negligible in surrounding healthy tissue. In
CNS tumors, tumor antigens can be categorized into three main
classes; (i) antigens with an aberrant expression; (ii) mutated
oncogenes and (iii) neo-antigens. One valid example is
represented by Rindopepimut, an EGFRvIII-targeted vaccine,
which tested in a clinical trial, failed to show survival
improvement (194). Several other vaccines are in development
with several promising candidates (195).

HSPPC-96, a vaccine based on heat-shock tumor peptides,
has been applied to recurrent GBM in a phase II trial, showing 6-
month survival rate of 90% (196). A different vaccination
approach has been developed for AFTV, which is based on
formalin-fixed tumor sample fragments, infused intradermal in
GBM patients. This approach allows to reach a 3-year survival
rate in 38% of the treated patients (197).

Autologous DCs have been also considered in the vaccination
prospective. As previously underlined, CNS TME is characterized
by a marked absence of infiltrating APC. For this reason, adoptive
transfer of T-cells alone could not be substantially beneficial for
patients with CNS tumors. Several approaches aimed at overcoming
this CNS tumor limitation have been described. Current evidence
deriving from phase I and II trials suggests that DC vaccination may
activate an immune response against CNS tumors (198–202).
Although more than 500 GBM patients have been treated with
DC vaccination and clinical results have been encouraging, there is
not robust evidence of clinical efficacy, because of either the non-
controlled design of the studies or the low patient numbers. One
attempt has been carried out by German clinical centers
participating to the randomized controlled phase II trial GlioVax
(mature DCs loaded with tumor lysate) (203). This trial has been
designed to enroll 136 GBM patients into two cohorts (1): radio/
temozolomide “gold standard therapy” and (2) DC vaccination plus
standard therapy. Data coming from this trial will clarify the impact
of DC vaccination on patient outcome.
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COMBINATION APPROACHES

It is increasingly evident to researchers that a combination of
different therapeutic approaches is needed to efficiently treat
patients with high immunosuppressive brain tumors. Saha et al.,
showed that the triple combination of an OV expressing IL-12
with two immune checkpoint inhibitors targeting PD1 and
CTLA-4, can eradicate glioma in two mouse models (204),
reducing Tregs, increasing CD8+ T cells and inducing M1-like
polarization in TAMs. Moreover, in a in vivo model of Glioma,
Tang et al., proposed a complex therapy based on a combinatory
approach of an adoptive cell transfer of tumor-specific CD8+
cells (to increase adoptive T cell targeting of the tumor),
rapamycin (to enhance antigen presentation by DCs), celecoxib
(to modulate the TME inflammation and immunosuppression),
and intratumoral injection of IL15Ra-IL15-armed oncolytic
poxviruses (to boost T cell activation) (205). In tumor-bearing
mice, the combinatory approach was safe and able to promote
longer survival of tumor-specific cytotoxic T cells, in respect to
the administration of only CD8+ T cells (205). Pivotal clinical
trials need to be designed and carried out to corroborate the
safety and efficacy of the described combinatory approach.
CONCLUSIONS

The recent advances in immunotherapies, coupled with the
essential insights in the understanding of neuro-immunology,
are creating innovative opportunities to treat CNS cancer. To
achieve durable antitumor effect, it is likely that combinatorial
regimenswill be required and based on1) increase ofCNSdelivery;
2) “multi-valent” tumor targeting; 3) targetingboth tumor cells and
the CNS TME. The road to identify an effective cure for brain
Frontiers in Immunology | www.frontiersin.org 10
tumors still appears long and filled with pitfalls, but the deep
knowledge of these tumors and their microenvironment will lead
in the near future to increasingly personalized treatment, possibly
changing the natural history of these diseases.
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